
AppSensor Guide
Application-Specific Real Time Attack Detection & Response

Version 2.0

Lead Author

Colin Watson

Co-Authors

Dennis Groves    John Melton

Other Contributors, Editors and Reviewers

Josh Amishav-Zlatin    Ryan Barnett    Michael Coates    Craig Munson    Jay Reynolds

Version 1 Author

Michael Coates

The AppSensor Guide is primarily written for those with software architecture responsibilities, but 
can also be read by other developers and those with an interest in secure software. Implementation 
requires a collaborative effort by development, operational and information security disciplines.

Version 2.0.1 published 8th May 2014

© 2008-2014 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license



OWASP AppSensor Project Founder

Michael Coates

OWASP AppSensor Project Leaders

Dennis Groves    John Melton    Colin Watson

Full A-Z of Project Contributors

All OWASP projects rely on the voluntary efforts of people in the software development and 
information security sectors. They have contributed their time and energy to make suggestions, 
provide feedback, give advice, write, review and edit documentation, give encouragement, make 
introductions, produce demonstration code, promote the concept, and provide OWASP support. 
They participated via the project’s mailing lists, by developing code, by updating the wiki, by 
undertaking research studies, and through contributions during the AppSensor working session at 
the OWASP Summit 2011 in Portugal and the AppSensor Summit at AppSec USA 2011. Without all 
their efforts, the project would not have progressed to this point, and this guide would not have 
been completed.

Josh Amishav-Zlatin Erlend Oftedal Craig Munson
Ryan Barnett Sean Fay Giri Nambari

Simon Bennetts Dennis Groves Jay Reynolds
Joe Bernik Randy Janida Chris Schmidt
Rex Booth Chetan Karande Sahil Shah
Luke Briner Eoin Keary Eric Sheridan
Rauf Butt Alex Lauerman John Steven

Fabio Cerullo Junior Lazuardi Alex Thissen
Marc Chisinevski Jason Li Don Thomas
Robert Chojnacki Manuel López Arredondo Christopher Tidball
Michael Coates Bob Maier Kevin W Wall

Dinis Cruz Jim Manico Colin Watson
August Detlefsen Sherif Mansour Farag Mehmet Yilmaz
Ryan Dewhurst John Melton

Cover
Light Installation by David Press

Kinetica Art Fair 2012, Ambika P3 Gallery, London, photograph Colin Watson



OWASP Summer of Code 2008

The AppSensor Project1 was initially supported by the OWASP Summer of Code 2008, leading to 
the publication of the book AppSensor v1.12.

Google Summer of Code 2012

Additional development work on SOAP web services was kindly supported by the Google Summer 
of Code 2012.

Other Acknowledgements

The project has also benefitted greatly from the generous contribution of time and effort by many 
volunteers in the OWASP community including those listed above, and contributors to the OWASP 
ESAPI project, members of the former OWASP Global Projects Committee, and support from the 
OWASP Project Reboot initiative. The second version of the guide was conceived during the 
AppSensor Summit held during AppSec USA 2011 in Minneapolis.



Tables of Contents

Contents

Preamble i
Introduction........................................................................................................................................... ii
How To Use This Guide .....................................................................................................................x

Part I : AppSensor Overview 1
Chapter 1 : Application-Specific Attack Detection & Response ..................................................2
Chapter 2 : Protection Measures ........................................................................................................8
Chapter 3 : The AppSensor Approach............................................................................................16
Chapter 4 : Conceptual Elements ....................................................................................................20

Part II : Illustrative Case Studies 29
Chapter 5 : Case Study of a Rapidly Deployed Web Application ...............................................30
Chapter 6 : Case Study of a Magazine’s Mobile App....................................................................31
Chapter 7 : Case Study of a Smart Grid Consumer Meter...........................................................33
Chapter 8 : Case Study of a Financial Market Trading System ...................................................34
Chapter 9 : Case Study of a B2C Ecommerce Website ................................................................35
Chapter 10 : Case Study of B2B Web Services ..............................................................................37
Chapter 11 : Case Study of a Document Management System...................................................38
Chapter 12 : Case Study of a Credit Union’s Online Banking.....................................................39

Part III : Making It Happen 41
Chapter 13 : Introduction..................................................................................................................42
Chapter 14 : Design and Implementation.......................................................................................47
Chapter 15 : Verification, Deployment and Operation ................................................................54
Chapter 16 : Advanced Detection Points .......................................................................................60
Chapter 17 : Advanced Thresholds and Responses ......................................................................69
Chapter 18 : AppSensor and Application Event Logging............................................................79
Chapter 19 : AppSensor and PCI DSS for Ecommerce Merchants...........................................83

Part IV : Demonstration Implementations 85
Chapter 20 : Web Services (AppSensor WS)..................................................................................86
Chapter 21 : Fully Integrated (AppSensor Core) ...........................................................................89
Chapter 22 : Light Touch Retrofit ...................................................................................................92
Chapter 23 : Ensnare for Ruby.........................................................................................................95
Chapter 24 : Invocation of AppSensor Code Using Jni4Net ......................................................98
Chapter 25 : Using an External Log Management System ........................................................100
Chapter 26 : Leveraging a Web Application Firewall .................................................................103

Part V : Model Dashboards 107
Chapter 27 : Security Event Management Tools.........................................................................108
Chapter 28 : Application-Specific Dashboards............................................................................112
Chapter 29 : Application Vulnerability Tracking.........................................................................117



Part VI : Reference Materials 121
Glossary.............................................................................................................................................. 122
Detection Points ...............................................................................................................................125
Responses ..........................................................................................................................................152
Data Signaling Exchange Formats.................................................................................................161
Awareness and Training Resources ...............................................................................................168
Feedback and Testimonials.............................................................................................................171
References..........................................................................................................................................172



Tables of Contents

List of Figures

Figure 1 The Spectrum of Acceptable Application Usage Illustrating How Malicious 
Attacks are Very Different to Normal Application Use 4

Figure 2 Pseudo Code Illustrating the Addition of AppSensor Detection Point Logic 
Within Existing Input Validation Code 23

Figure 3 Pseudo Code Illustrating the Addition of Completely New AppSensor 
Detection Point Logic 23

Figure 4 Schematic Arrangement of AppSensor Conceptual Elements 27

Figure 5 An Imaginary AppSensor Dashboard Under Normal Operational Conditions 
i.e. Blank 57

Figure 6 The Imaginary AppSensor Dashboard When A User Is Identified as an Attacker57

Figure 7 The Imaginary AppSensor Dashboard Demonstrating AppSensor Cross-System 
Integration 57

Figure 8 The Spectrum of Application Acceptable Usage Illustrating How Normal Use 
Requires Input Validation to Cater for a Range of User-Provided Input 64

Figure 9 The Spectrum of Application Acceptable Usage Showing How Some 
Unacceptable Data Input Are Much More Likely to Indicate a Malicious User 65

Figure 10 The Spectrum of Application Acceptable Usage Showing How Application-
Specific Knowledge Increases the Ability to Differentiate Between Normal and 
Malicious Input 66

Figure 11 Schematic Arrangement of the AppSensor WS Reference Implementation 87

Figure 12 Schematic Arrangement of the AppSensor Core Reference Implementation 89

Figure 13 Schematic Arrangement of Example Light Touch Retrofit to Existing Code 92

Figure 14 Schematic Arrangement of the Ensnare Implementation 95

Figure 15 Schematic Arrangement of Example AppSensor Code Invocation Using 
Jni4Net 98

Figure 16 Schematic Arrangement of Example External Log Management System 100

Figure 17 Example Use of Common Event Format for Event Signaling 102

Figure 18 Schematic Arrangement of Example Leveraging a Web Application Firewall 103

Figure 19 Example AppSensor Event Data Using Delimited Name-Value Pairs 108

Figure 20 AppSensor Data Feed Addition to Splunk 109

Figure 21 AppSensor Event Summary in Splunk 109

Figure 22 AppSensor Event Detail in Splunk 110

Figure 23 AppSensor Event in the AuditConsole Dashboard 111

Figure 24 An Example AppSensor Dashboard for an Ecommerce Website 112



Figure 25 An Example Detection Point Indicators on Website Functionality Map 113

Figure 26 Illumination of Detection Point Indicators 113

Figure 27 System Trend Detection Points 114

Figure 28 Highlighting of Changes to System Trend Detection Points 114

Figure 29 Detection Points Event Log Display 114

Figure 30 Response Event Log Display 115

Figure 31 Ensnare Violations Listing 115

Figure 32 Ensnare Metrics page 116

Figure 33 ThreadFix Dashboard Showing Mock Up of CWE vs Attack Chart Overlay 118

Figure 34 Detailed View of Chart Overlay Mockup 118

Figure 35 Mockup Illustrating How URL Paths Could be Used To Match Vulnerabilities 
Identified Through Security Scanning Correlate with Where Attacks are 
Occurring 119

Figure 36 Diagram Showing the Assignment of Detection Points to All the 
Categorizations 129

Figure 37 Diagram Showing the Related AppSensor Detection Points 130

Figure 38 Example Detection Point Definition Overview Sheet for an Instance of IE2 149

Figure 39 Example Detection Point Definition Overview Sheet for an Instance of ACE3 150

Figure 40 Part of Example Detection Point Schedule for IE2 151

Figure 41 Example Detection Point Schedule for AE3 151

Figure 42 Example Threshold Schedule No1 158

Figure 43 Example Threshold Schedule No2 158

Figure 44 Example Threshold Schedule No3 159

Figure 45 Basic AppSensor Event Format for JSON Data 162

Figure 46 Important HTTP Headers and Example JSON Event Data 162

Figure 47 Extended AppSensor Event Format for JSON Data Showing Optional and 
Custom Fields 163

Figure 48 AppSensor Event Format Data Value Definitions 164

Figure 49 Basic AppSensor Event Data Using CEF 166

Figure 50 Basic Additional CEF Field Values in the Context of AppSensor 166

Figure 51 Example CEF AppSensor Event Data Using CEF Predefined Keys 167



Tables of Contents

List of Tables

Table 1 Pros and Cons of the Most Commonly Implemented Responses 25

Table 2 List of Conceptual Elements in the AppSensor Pattern 26

Table 3 Properties for the Case Study of a Minimal AppSensor Implementation for a 
Small Rapidly-Built Web Application that Already has a Strong Input Validation 
Module 30

Table 4 Properties for the Case Study of a Magazine’s Mobile App to Identify 
Authentication Attacks, Account-Sharing and Blatant XSS Attempts 31

Table 5 Properties for the Case Study of a Smart Grid Consumer Meter for the 
Detection of Attempted and Actual Tampering. 33

Table 6 Properties for the Case Study of a Financial Market Trading System for the 
Detection of Collusion Between Traders. 34

Table 7 Properties for the Case Study of a B2C Ecommerce Website 35

Table 8 Properties for the Case Study of B2B Web Services 37

Table 9 Properties for the Case Study of a Document Management System 38

Table 10 Properties for the Case Study of a Credit Union’s Online Banking 39

Table 11 AppSensor Aspects Mapped to Open SAMM Activities 44

Table 12 AppSensor Aspects Mapped to BSIMM Activities 45

Table 13 AppSensor Aspects Mapped to BITS Software Assurance Framework Areas 46

Table 14 AppSensor Aspects Mapped to MS SDL Processes 46

Table 15 Example Thresholds and Responses for Individual Per User Detection Points 74

Table 16 Example Multiple Thresholds and Responses for the Overall Number of Events 
Per User in a Single Fixed Time Period 75

Table 17 Example Response Thresholds for the Overall Number of Events Per User For 
a Range of Time Periods 76

Table 18 Example Response Thresholds for a System Trend Detection Point Monitoring 
the Usage Rate of an Application's "Add a Friend" Feature 77

Table 19 Typical Event Logging Properties for Web Applications 80

Table 20 Possible Detection Points if the Only Event Source are Web Server Logs 81

Table 21 List of Detection Point Categories Supported by AppSensor Core 90

Table 22 List of Response Categories Supported by AppSensor Core 90

Table 23 List of Detection Point Categories Implemented in this Example Light Touch 
Retrofit 93

Table 24 List of Response Categories Implemented in this Example Light Touch Retrofit 93



Table 25 List of Detection Point Categories Implemented in Ensnare 96

Table 26 List of Response Categories Implemented in Ensnare 96

Table 27 List of Response Categories Possibly Available to an External Log/Event 
Management System 101

Table 28 List of Detection Point Categories Implemented in ModSecurity Core Rule Set 104

Table 29 List of Response Categories Implemented in ModSecurity Core Rule Set 105

Table 30 Summary of AppSensor Detection Point Identifiers and Titles Grouped by 
Exception Category 125

Table 31 AppSensor Detection Points Categorized by Suspicious and Attack Events 127

Table 32 AppSensor Detection Points Categorized by Whether They are Discrete, 
Aggregating or Modifying 128

Table 33 Descriptions of Request Exception (RE) Detection Points 132

Table 34 Descriptions of Authentication Exception (AE) Detection Points 134

Table 35 Descriptions of Session Exception (SE) Detection Points 136

Table 36 Descriptions of Access Control Exception (ACE) Detection Points 138

Table 37 Descriptions of Input Exception (IE) Detection Points 139

Table 38 Descriptions of Encoding Exception (EE) Detection Points 141

Table 39 Descriptions of Command Injection Exception (CIE) Detection Points 142

Table 40 Descriptions of File Input/Output Exceptions (FIO) Detection Points 143

Table 41 Descriptions of Honey Trap (HT) Detection Points 144

Table 42 Descriptions of User Trend Exception (UT) Detection Points 145

Table 43 Descriptions of System Trend Exception (STE) Detection Points 146

Table 44 Descriptions of Reputation (RP) Detection Points 147

Table 45 Summary of AppSensor Response Identifiers and Titles, Grouped by the Effect 
on the User 152

Table 46 Assignment of AppSensor Responses to Categorizations 153

Table 47 Descriptions of AppSensor Responses Listed Alphabetically by Code 154

Table 48 Mapping of AppSensor Event Format (AEF) Terms to Common Event Format 
(CEF) Keys 166



Tables of Contents



Foreword

Foreword

The security of our applications and services is of paramount importance. Internet 
connected applications play a role in every aspect of our lives and the operations of society. 
From financial and medical, through everyday personal and business interactions, to 
important infrastructure, applications process an immense amount of critical information 
every single day.

Despite the importance of these systems, we are yet to integrate advance defenses in many 
of these applications. The attackers are determined and backed by criminal organizations, 
activist groups, nation states, private enterprises and more. These attackers have the 
funding, tools and time to infiltrate critical applications. Everyday attacks are launched to 
inspect and probe applications searching for weaknesses and vulnerabilities. The sad reality 
is that nearly every application is completely blind to these attacks until it is too late.

Organizations may place false trust in antiquated defenses such as signature based detection 
of generic attacks or reactive log review; however, these approaches are trivially bypassed 
by attackers every day. We need more. We need a better approach. We need a defense that 
understands the custom nature of the application; how business logic works, how access 
control is enforced, and all of the unique aspects of the application. The defense we need 
must not only detect generic attack techniques, but also custom attacks targeting an 
application’s specific design and architecture.

But advanced detection alone is not enough. The path forward requires a defensive system 
that can identify a malicious attacker before they find and exploit a vulnerability. This 
approach requires the ability to detect and contain an attacker while they are probing for 
vulnerabilities throughout the application. The response must be swift and fully automatic 
to eliminate the threat from the application. Reactive analysis by humans is too slow. By the 
time a human sees an attacker, the attacker will already be gone, along with the critical data 
they’ve compromised.

The future of application defense is a system that can understand custom attacks against an 
application, correlate them against a malicious attacker, and react in real-time to contain and 
eliminate the threat. This defense is OWASP AppSensor – an open source project created 
through the contributions of security experts with years of experience assessing, securing 
and breaking the security systems of applications for financial systems, government bodies, 
businesses and major organizations around the world.

Michael Coates
AppSensor Project Founder





Preamble

i

Preamble



Preamble

ii

Introduction

AppSensor is the most important advancement in Application Security in the last decade. 
Now this is a very large claim, and the reasoning and justifications follow in the paragraphs 
below. These can be broken into roughly three key areas, philosophy, architecture, and 
statistics. Let me explore them briefly with you now.

• Philosophy: OWASP AppSensor presents a new methodology to security. 
Incidentally, that new methodology is actually not new at all; however it is the road 
that is very much “less traveled in the IT industry”. This road is heavily traveled in 
industries where actuarial sciences are used to control risk, such as healthcare, 
pharmaceuticals, and aviation. Once exposed to the idea; you will have a not only 
have a new tool in your security tool chest, but one you will increasingly want to 
use and apply to your IT risk.

• Architecture: OWASP AppSensor is both a set of security patterns and practices. 
This guide will discuss in detail the practices. OWASP AppSensor started as a 
development practice. However, this set of practices can be decomposed into a 
methodology. After doing this it became apparent that OWASP AppSensor is 
actually a new security pattern. Further, this pattern can be used to evaluate and 
practice security in both the design as well as development of applications.

• Statistics: This is perhaps the most exciting part of OWASP AppSensor. OWASP 
AppSensor captures data for analysis that is currently discarded. Unfortunately, this 
discarded data contains incredible amounts of valuable information about the 
security of the application.

On those three pillars, OWASP AppSensor improves the effectiveness of your entire 
information security management program, and it is very exciting indeed.

Philosophy

To start the philosophy discussion, begin with a thought exercise. Imagine tomorrow we 
have a pistol duel. If we loose we will be shot and likely die, if we win our opponent takes 
the bullet instead and dies. Let’s agree to analyze this event following the process which 
matches our information security management practices. We will do a risk analysis, then 
reduce the risks identified and then we will go have our duel. So the question is “What can 
we do to improve our chances of survival?”

Lets begin our risk analysis now. To begin with we need far more information if we want to 
survive.

It would be really important to know what the rules of our pistol duel are to start out with. 
Incidentally, there are two types of pistol duels. There are Victorian era and Western movie 



Preamble

iii

film genre pistol duels. And depending on which of these we are participating in greatly 
changes both our risks and the strategies we require to survive.

In a Victorian pistol duel, opponents stand back to back, take ten steps away from each 
other, turn and fire. The fairness of this kind of duel depends on neither party turning at 
the ninth step or earlier. So it is a game of trust, that depends on neither party cheating. 
However, cheating means we are not killed. And since our goal is to survive and our pistol 
duel is a Victorian duel; then we have our first risk reduction strategy. We simply turn after 
step one and shoot our opponent.

Increasing speed, or being faster is a key security metric. In fact it is the entire basis for time 
based security. Time based security states that our protection time must be greater than or 
equal to detection time plus response time. A great example of this principle in action was 
the final scene of the 1999 Hollywood movie The Matrix where Neo can dodge the bullets. 
He is able to detect and react before the bullets reach him; this causes him to be invincible 
for all practical purposes. We all know what the longer it to fix security bugs, the greater 
risk we are at, as attackers are able to attack us until we can patch. Similarly, the longer it 
takes for us to fix our own bugs the more vulnerable we are. This metric can be applied in 
many circumstances, and organizations are encouraged to try and apply it to things in their 
own environment and to start measuring security from this perspective.

Now the other kind of duel we may be having is a Western duel. A Western duel is the one 
in all the western cowboy films where the opponents meet at high noon. We no longer 
have to trust our opponent, instead we have place and time that decides when the duel 
begins. Punctuality is important otherwise someone you love will be killed in your place. 
Opponents face one another from twenty paces and draw pistols from holsters. It is 
difficult to cheat at the Western duel, but you should try anyway.

Additionally, it is a good idea to know whom our opponent is. Actually it is essential 
otherwise you have no ability to understand the threat you face and mitigate risks 
accordingly. For example, if we were put in a situation where the opponent was one of our 
loved ones or immediate family, many of us would loose on purpose. For the purpose of 
this exercise however imagine the opponent is a next door neighbor - a 6 foot 4 inch, 63 
year old man. Because of this disadvantage, we use a Western duel to keep things fair.

Now we may be feeling a bit relieved to know that we are facing an old man, and one who 
has a fairly large surface area to aim for. In application security we very rarely consider who 
our opponent is, what they are motivated by and how many resources they have at their 
disposal to attack us. But it is critical. To further emphasize this point let us learn a bit more 
about the 63 year old neighbor. His name is Johnny Brusco, and he was the fastest quick 
draw in the United States until 1974 when he retired from quick draw competition. 
Suddenly, with a single new piece of information our assessment of the risk went from a 
risk of “mostly harmless” to “we are seriously, very dead”.



Preamble

iv

This scenario is not unlike the one we face with our web applications every day. Attackers 
significantly out number defenders. Additionally, attackers do not have tight budgets, 
deadlines and last minute changes to requirements to manage. Attackers only have to find a 
single vulnerability, defenders have to find and fix them all; something we know can not be 
done, so we rank them in order of importance by perceived risk. Indeed all is not hopeless, 
industry experience tells us risk treatment is the “best practice” today. And we can use the 
same principles here in our duel where we are seriously out gunned by our opponent.

Risk can be defined simply as the probability of the vulnerability times the threat. And the 
two most widely used strategies for managing risk are to reduce the probability of a threat 
and/or reduce the probability of a vulnerability. To reduce the probability of a threat we 
reduce the attack surface. This is a fancy way of saying we patch the vulnerabilities that are 
identified so there are “less places for attackers to attack”. The other things we do is to hire 
penetration testers, and to do internal code reviews and testing of our own security. This is 
how we identify vulnerabilities. By finding our vulnerabilities before the bad guys we can fix 
them before they are exploited.

We can apply the same to our gunfight tomorrow. We can reduce our attack surface by not 
turning so our shoulders are “square” with our opponent which would expose our entire 
torso to bullets. But rather we can stand perpendicular to our opponent minimizing the 
surface area of our bodies subject to bullets. We can also reduce our vulnerabilities by 
hiring a gunslinger to teach us the art of gunslinging and practice. This is like penetration 
testing; the gunslinger will identify what we are doing wrong and help us to eliminate the 
bad habits thus reducing our vulnerabilities or bad habits that are likely to get us shot.

We can still improve our chances tomorrow however, by attempting to predict in advance 
where our opponent will shoot and move out of the way. This is similar to our risk 
prediction models where we rank the identified vulnerabilities according to perceived risks. 
When we do this we are making a prediction that on vulnerability is more likely than 
another to be exploited. So for example if the gunman is right handed he may well fire on 
his right side and so moving to the left will increase the probability that you will survive. 
Incidentally, there are actually three options you can move left, move right and stay in the 
middle. Which is your optimal strategy if you want to survive?

Now, as it happens the correct answer to this question is far more difficult that it initially 
seems. Indeed, it is a subject of research3 in the field of “game theory”. Now it just so 
happens that the correct answer can only be derived from playing hundreds if not 
thousands of games. In the case of a Western duel; this requires us to derive the answer 
from getting shot at hundreds if not thousands of times. Now that seems like certain death.

Imagine that you have a 50% chance of surviving. And let us represent that chance by a fair 
toss of a coin that lands heads up. If you survive the first toss - do you really want to toss 
the coin a second time? Hopefully it is obvious you do not, as you have only a 25% chance 
of living through the second toss. Although the odds of any given toss are 50%, you 



Preamble

v

actually only have a 1 in 4 chance of heads coming up a second time in a row. Given that 
kind of odds, a tails is almost certainly going to come along and ruin your day eventually. 
Try it for yourself4. Perhaps you get “No heads 48%” - so would have died once out of 
every 2 duels. Therefore, you do not want to have a gun fired at you hundreds if not 
thousands of times if your goal is survival.

We will assume that we are able to practice those 100 duel shots using blanks before noon 
tomorrow and learn the correct answer, perhaps we hired a consultant who could teach us 
the answer or a seasoned gunslinger who knows his trade. In the case of our applications, 
this is not a penetration testing consultancy, but rather a subject matter expert in 
information security who is able to coach and mentor us with valuable strategic information 
that comes only from a lifetime of experiences in the field. We are now armed with 
knowledge about the “best strategy” for survival in our duel tomorrow.

So while pistol duels and application security are very different; the security problems in 
each domain share a common thread. So, lets recap the 7 best practices that we identified:

• Perform a Risk Analysis
• Use Time Based Security Metrics
• Know the Enemy
• Practice Risk Reduction
• Reduce Surface Area
• Use Risk Prediction
• Practice, Practice, Practice.

Now, while we can all agree on these best practices or security principles, there are many 
more. Incidentally, 193 such security principles are now publicly documented as the 
OWASP Security Principles project5. What is universally observed, is that organizations “at 
best” do “at most” a handful of such practices that they happen know about. And even the 
most seasoned security practitioners are unable to identify more than a dozen such 
principles. It seems this is why we are failing to secure those things that matter most to us.

It is possible to try to attempt to identify the “Pareto Efficient” security principle (or 
principles as it happens to be). Using the 80/20 principle, one day we may be able to 
identify the 20% of the security principles that give you 80% of the risk reduction. In this 
way, a definitive minimal roadmap of security best practices can be developed.

To date, at least one of the security principles is a Pareto Efficient one, and there will be 
others. Incidentally, this principle happens to be one that most people have never heard of, 
and consequently never practice. This is the principle of Impact Reduction sometimes 
known as Risk Optimization. Although, it is rarely practiced, it is a very effective method. 
The goal of this principle is to examine ways that you can reduce the impact of events when 
the occur.



Preamble

vi

Returning to our pistol duel the most obvious way to implement the security principle of 
impact reduction is to wear a bullet proof vest. That is to say when we get hit by a bullet, it 
reduces the impact of the bullet when we get hit. Mind you, we still do not want to get hit 
and are going to do our best to avoid it. And if we get hit, it is still going to hurt like crazy, 
but we will very likely survive. A bullet proof vest is obviously going to do more to save our 
lives at high noon tomorrow than all of the other 7 practices combined.

If we get hit, our chances of survival are greatest if we have a bullet proof vest, but we 
would be equally foolish to rely on the bullet proof vest alone. Indeed we will still combine 
the bullet proof vest with the other 7 practices in order to maximize our chances of survival 
tomorrow. Naturally this begs the question how do we apply an impact reduction strategy 
to our web applications? What do we do?

This is exactly what the OWASP AppSensor is. This book, the OWASP AppSensor Guide, 
is entirely about what to do. And just to be clear, AppSensor is not a panacea anymore than 
a bullet proof vest. You do not want to be shot in general, but if you do get shot you want 
to be wearing a vest. And If you get shot while wearing a bullet proof vest, it is going to 
hurt; it may potentially break bones however, you will survive what would otherwise have 
been a fatality. Similarly, OWASP AppSensor will reduce the impact of a successful attack 
but it does not entirely eliminate risk of a successful attack.

We all know the devil is in the details; even a bullet proof vest is not a one size fits all 
solution. Vests are rated according to the ability to stop different masses and speeds of 
projectiles. And the true is this is also true of OWASP AppSensor as well.

Hopefully this has demonstrated sufficiently how important the philosophy and practice of 
impact reduction is, and it is so exciting. Risk Optimization is actually how risk is managed 
across a wide range of disciplines outside of IT and it has been found to be very effective, 
and when applied to IT projects it has been equally effective.

Architecture

Most software today is built according to Weinberg’s Second Law which states that if 
builders built buildings the way programmers wrote programs, then the first woodpecker 
that came along would destroy civilization. Nowhere is this more true than in the discipline 
of software security, where the woodpeckers are the so called “hackers”, and indeed there is 
no question in my mind that we are witnessing in the news daily evidence of the 
degradation of civilization as a result.

IT architects have long been highly concerned with the technical aspects of software, and 
very little focus in any at all has been placed on the human aspects. And as a result software 
is not only ugly, and confusing it is fragile and breaks easily, and particularly when placed 
under stress as hackers will do. Software is not so much designed, as organically evolved, 



Preamble

vii

and consequently form does not follow the function further increasing the complexity and 
fragility.

 “Form follows function - that has been misunderstood. Form and function should be one, joined 
in a spiritual union.”

 – Frank Lloyd Wright, Architect

This statement drives directly to the heart of the security problem with software 
engineering as it is widely practiced today. We first build the software and then we secure it 
after it is built, deployed or shipped. Sometimes this is necessary, due to requirements 
changing or the need to secure legacy software. However, in ideal circumstances, rather 
than after the fact, security and the application “should be one, joined in spiritual union.” 
Software security must exist before the software, it must be part of the plans, the budgets, 
the schedule, the architecture, the design, and the engineering process.

Many people are starting to do this. Microsoft has its SDL. BSIMM project defines a 
methodology for building security in to the software development process, and OWASP 
has the Open SAMM and AppSensor projects. None of these are mutually exclusive; in fact 
they have a great deal in common. AppSensor differs in a number of ways from the others 
however. The first has already been discussed – OWASP AppSensor is designed around the 
philosophy of Risk Optimization or impact reduction.

Impact reduction is exactly how exactly how rescue services and first responders work. 
Think about it; their entire existence is to minimize the impact of an event so that as few 
lives as possible are lost and restore services as quickly as possible. This is how your smoke 
detector operates, it does not try and predict where a fire is likely and when it will happen. 
Rather it detects and responds as quickly as possible to minimize the impact of the fire to 
the occupants. The fire department acts to reduce the impact of the fire to the property. 

'Think simples' as my old master used to say - meaning reduce the whole of its parts into the 
simplest terms, getting back to first principles."

– Frank Lloyd Wright, Architect

Architecture is about design principles. In the case of traditional architecture they are line, 
color, shape, texture, space and form. In security architecture there are many principles, and 
as previously mentioned some are “Pareto Efficient”. Where security architecture is 
concerned two are Separation of Duty, and Trust.

Separation of duty is perhaps the most important principle in security architecture. 
Inevitably applications are designed with security principles architects knew about, security 
folks included. However, as this demonstrated in our thought exercise, there are far more 
than just a “few” principles, most of which never make it into the design. For example, 
security design happens with perhaps a handful of principles:



Preamble

viii

• Use Least Privilege
• Use Perimeter Security
• Practice Defence in Depth
• Practice Risk Reduction
• Reduce Surface Area
• Use Risk Prediction.

As a result, we regularly see designs without separation of privilege. Think about that – 
most web applications today have all their eggs in a single basket. The business logic, the 
identities, passwords, products, policy enforcement, security rules are all found in the same 
application database that makes up the typical website. It is little wonder then, that attacks 
on the database have been so completely devastating, since there is no separation of 
privilege.

The principles of trust can be examined in detail with data flow diagram tools. One way to 
understand AppSensor is to think of it as baking the above mentioned data flow diagrams 
(DFDs) into the application, and when it detects a violation of trust it raise an event, just 
like the smoke alarm. This event is then analyzed by an event analysis engine which then 
decides how to respond or not. This gives us two new and incredibly powerful and 
important features not found in other approaches.

Currently OWASP AppSensor is a reference implementation of a set of very specific and 
unique development practices. First we take some input from some place, we analyze it for 
validity according to rules that make sense, then we either raise events or continue 
normally. The event analysis engine decides to respond accordingly to the exceptions as 
required. This is an inter-process communications protocol for adaptation to events outside 
of the programs execution control. At first glance this does not seem so interesting, after all 
is this not what virus software does? It is not, because the virus checker is acting on behalf 
of the operating system. If you feed the right input into the virus checker it will crash. 
However, AppSensor is acting on behalf of the application, so it is defending itself and that 
is a critical difference.

AppSensor is actually a software security pattern for turning “fragile” software into “agile” 
software. And, while the OWASP AppSensor is currently demonstrated as a number of 
reference implementations and examples, it is not hard to identify this as an architecture 
pattern when you start to imagine how it can be scaled out just like any other software 
today. For example, in a service oriented architecture (SOA), the detection points are built 
into the application itself as normal, where as the analysis and response could be services 
that are consumable by secure web API, just like any other enterprise application built 
today. Perhaps it is XML, WSDL or more likely JSON. It does not actually matter because 
the security architecture pattern is the same.



Preamble

ix

In conclusion, we have demonstrated that OWASP AppSensor represents a significant 
security architecture pattern above and beyond the security protocol that the reference 
implementation demonstrates. In this guide we will look at half a dozen case studies and 
reference implementations. As you study them, pay special attention to what is common 
about each of them and synthesize a larger picture. There is far more to AppSensor than 
first appears.

Statistics

OWASP AppSensor captures so much data that that it becomes possible to apply big data 
analytics to security. And, more importantly, it opens up whole new possibilities of what 
you can do with it. OWASP AppSensor currently defines more than 50 detection points all 
with adaptive response. And this is just the tip of the iceberg. This is an area for 
AppSensor’s future development and will be included in a subsequent version of this guide.

Conclusion

In conclusion, AppSensor is a powerful tool that can improve the effectiveness of your 
entire information security management program. However, while not a panacea, nor a 
quick fix for your security ills, OWASP AppSensor is a strategic investment in this 
program.

“I very frequently get the question: 'What's going to change in the next 10 years?' And that is a 
very interesting question; it's a very common one. I almost never get the question: 'What's not 
going to change in the next 10 years?' And I submit to you that that second question is actually 
the more important of the two -- because you can build a business strategy around the things that 
are stable in time. ... [I]n our retail business, we know that customers want low prices, and I 
know that's going to be true 10 years from now. They want fast delivery; they want vast selection. 
It's impossible to imagine a future 10 years from now where a customer comes up and says, 'Jeff I 
love Amazon; I just wish the prices were a little higher,' [or] 'I love Amazon; I just wish you'd 
deliver a little more slowly.' Impossible. And so the effort we put into those things, spinning those 
things up, we know the energy we put into it today will still be paying off dividends for our 
customers 10 years from now. When you have something that you know is true, even over the long 
term, you can afford to put a lot of energy into it.”

– Jeff Bezos, Founder Amazon

Security is going to be important to your business 10 years from now, just like it was 13 
years ago when OWASP was founded. Your investment in OWASP AppSensor will be 
paying dividends 10 years from now, and that is a sound investment over the long term.

Dennis Groves, MSc
Co-Founder OWASP



Preamble

x

How To Use This Guide

The AppSensor Guide is divided into six parts.

Part I : AppSensor Overview
This first part provides a high-level overview including justification, comparison with other 
techniques, benefits, preliminary requirements and a summary of the conceptual elements.

Part II : Illustrative Case Studies
Inspirational summaries of how AppSensor can be used for a range of different software 
application architectures and business risk.

Part III : Making It Happen
This describes a detailed technology-agnostic process for planning, implementing and 
operating application-specific attack detection and response.

Part IV : Demonstration Implementations
In this part, OWASP and other practical examples of how the concept can be deployed, 
including some standalone components that could be utilized within an organization’s own 
deployments, or to act as inspiration.

Part V : Model Dashboards
This part introduces the necessary concepts for visualizing AppSensor data, and presents 
example application-specific dashboards.

Part VI : Reference Materials
The final Reference Materials part contains a glossary, detailed listings of detection point 
types and response types, and the suggested logging and signaling formats. A list of 
AppSensor awareness and training resources is included, and a full list of other resources 
cited through the guide for further subject matter reading.

This part also includes details how to provide feedback or become involved with the 
project.



Part I : AppSensor Overview

1

Part I : AppSensor Overview

The OWASP AppSensor Project defines the concept of real-time attack-aware detection 
and response services for software applications providing guidance and example code. Part 
I gives a high-level overview of the concept. It also details why it is different to traditional 
defensive techniques. This is then followed by a description of the general approach 
towards implementing AppSensor within application software projects.



Part I : AppSensor Overview

2

Chapter 1 : Application-Specific Attack Detection & Response

Purpose

Organizations are concerned about protecting their applications, the application users, and 
related data. The concept of AppSensor is to reduce the risks to these assets by detecting 
malicious activity within an application. AppSensor is designed to detect activities such as 
malicious users probing or attacking the application, and to stop them before they can 
identify and exploit any vulnerability. 

This objective is possible because many software vulnerabilities can only be discovered as a 
result of trial and error by an attacker. Adding the AppSensor framework to an application 
gives that application the ability to respond to attack attempts by intervening early 
(oftentimes almost immediately), and blocking those attempts. This approach, if 
successfully implemented, would make it economically infeasible to attack that application.

Dynamic defense

In the same way that users are benefitting from responsive design in user interfaces and 
bandwidth utilization, with concepts like progressive enhancement, mobile first and 
graceful degradation, applications themselves should, and can, alter their behavior and 
posture in a pre-defined manner when under attack to defend themselves, their data and 
their users.

The application advantage

Detection is undertaken at the application layer where, unlike infrastructure protection 
devices, the software application itself has access to the complete context of an interaction 
and enhanced information about the user. The application knows what is a high-value issue 
and what is noise. Input data are already decrypted and canonicalized within the application 
and therefore application-specific attack detection is less susceptible to advanced evasion 
techniques. When appropriate detection points are selected, a very high degree of 
confidence in attack identification can be achieved..

Benefits to organizations and users

Application-specific attack detection and response is a comprehensive adaptive approach 
that can be applied to applications throughout the enterprise. It reduces the risk of 
unknown vulnerabilities being exploited. The benefits can include:

• Intelligence into whether your applications are under attack, how, and from where
• Certainty due to an extremely high degree of confidence in attack identification
• Fast and fluid responses, using application and user specific contexts
• Protection for software vulnerabilities that you are unaware of
• Defends against future unknown attack methods



Part I : AppSensor Overview

3

• Early detection of both unsuccessful and successful attempts to exploit 
vulnerabilities

• Insight into users’ accidental and malicious misuse
• Information enrichment for conventional network-based intrusion and attack 

detection systems.

The approach helps to defend organizations (e.g. increased system security, enhanced data 
protection, insight into attacks, identification of attempted espionage) and its application 
users (e.g. privacy protection, malware infection prevention).

It greatly increases the visibility of suspicious events and actual attacks. This can provide 
additional information assurance benefits:

• Lowered information security risk for data and information systems
• Improved compliance
• Reduced impact of attacks leading to increased system survivability.

In turn, these can provide improved service levels and resilience, and competitive 
advantage.

Architects and developers, who have the most knowledge about the intent of an application 
and its inner workings, can use the techniques described in this guide to build more robust 
applications that can defend themselves, by adapting the failure response to minimize the 
impact of the attack, and provide valuable insight into application usage for other systems 
and processes.

AppSensor attack-aware applications with real-time response

OWASP AppSensor Project defines a conceptual framework, methodology, guidance and 
example code to implement attack detection and automated responses. It is not a bolt-on 
tool or code library, but instead offers insight to an approach for organizations to specify or 
develop their own implementations – specific to their own business, applications, 
environments and risk profile – building upon existing standard security controls. 
AppSensor:

• Detects attackers, not vulnerabilities
• Is application-specific, not generic
• Does not use signatures, or try to predict anything
• Allows applications to adapt in real-time to an identified attacker
• Reduces the impact of an attack
• Provides security intelligence.



Part I : AppSensor Overview

4

This AppSensor Guide describes how to build detection capabilities into applications to 
identify unacceptable malicious attacks. The idea is similar to the approach taken for 
building fire protection. In the event of a fire (an attack), the smoke and/or heat sensors 
(detection points) signal the building’s central control system which automatically warns the 
occupants to escape using a siren and lights, notifies fire fighters to attend, inactivates 
elevators, turns off air conditioning systems, primes the water sprinkler system, and closes 
fire doors and ventilation duct baffles. These actions (responses) reduce the spread of the 
smoke and fire to reduce the impact on people (users) and other assets (systems). The fire 
fighters respond in additional ways after they have received the alert and arrive on site. In 
the same way as building fire protection systems, applications should have self-protection 
built in.

Many application attacks are potentially obvious and not the result of "user error". They 
require the use of tools and/or bypass of the user interface controls. Application software 
usage behavior can be thought of as a continuum of unacceptable to acceptable behavior – 
AppSensor is only concerned with identifying and responding to clearly malicious events, 
beyond the range of normal user behavior:

Figure 1 THE SPECTRUM OF ACCEPTABLE APPLICATION USAGE ILLUSTRATING HOW MALICIOUS ATTACKS ARE VERY 
DIFFERENT TO NORMAL APPLICATION USE

 

Application-specific attack detection does not need to identify all invalid usage, to be able 
to determine an attack. There is no need for “infinite data” or “big data” in this approach. 
In the analogy of the bank, someone jumping over the counter is sufficient evidence; the 
bank does not need to wait until the robber starts using a thermal lance to drill through the 
safe door. Similarly in an application, receipt of modified data that the user cannot alter 
through normal usage should be enough to identify bad behavior and there is no need to 
wait for a SQL injection payload to be prepared, or tested or executed, regardless of 
whether there is a vulnerability or not.

The application has full knowledge about the business logic and the roles & permissions of 
users. Using this knowledge, AppSensor can make informed decisions about misuse, and 
identify and stop attackers with an extremely high degree of confidence. It also does this in 
real time.



Part I : AppSensor Overview

5

Additionally, AppSensor can potentially make better use of information from other security 
devices to contribute to its pool of information for attack detection, increasing the value of 
those other systems.

Implementing AppSensor is like defining a whitelist for a subset of application 
functionality, and noting exceptions to this whitelist (for the functionality/entry points 
included). Only a sufficiently sized subset that covers the highest risks, or the most 
common things done by attackers is needed. AppSensor does not need to detect everything 
or know about every attack vector.

Once an attack has been identified, a predefined adaptive response can be undertaken in 
real-time. Responses can include anything possible in the application’s code including 
logging users out, locking an account, hardening the application and sending alerts, 
signaling infrastructure devices to perform other actions, or sharing data with other systems 
or industry groups. 

It has also been demonstrated6,7 how AppSensor can be used to contain the effects of an 
application worm by detecting rapid escalation of functional usage, combined with an 
automated response that disables one part of the site, to allow the remainder of the 
application to continue to operate, and freeze the corruption of data. It has also been 
shown how a web application with access control detection points combined with an 
automated real time log out/lock out response seriously hinders automated vulnerability 
scanning software. So much in fact, that fuzzing data and entry URLs becomes almost 
impossible for any sort of reasonable timescales.

Technique adoption

The following use cases are most common:

• Identifying attacks (e.g. application or data enumeration, application denial of 
service, system penetration, fraud)

• Responding to attackers, including prevention
• Monitoring users (e.g. call center, penetration testing lab)
• Maintaining stability (e.g. application worm propagation prevention)
• Attack information sharing.

The Mozilla Foundation has established8 an integrated application intrusion detection 
system across its enterprise-scale portfolio of web applications using AppSensor to identify 
application attackers.

Architects and developers realize they can deploy the AppSensor concept themselves. This 
is not just for a “big company” or using a “big budget” approach. The technique can be 
piloted, undertaken in stages, progressively extended and enhanced over time.



Part I : AppSensor Overview

6

Software assurance community

AppSensor was promoted to the US software assurance community in the Sept/Oct 2011 
edition of CrossTalk (The Journal of Defense Software Engineering)9 in a concise overview 
of the concept and method of implementation. The article is available to download10 from 
the CrossTalk website.

AppSensor is a recommended component of resilient software, described on a page11 in the 
Software Assurance (SwA) section of the US Department of Homeland Security’s website. 
This discusses the need for defenses that are proactive, not reactive.

The BITS (Financial Services Roundtable) Software Assurance Framework12 mentions 
software security intelligence as an emerging practice where “technology advancements 
include software and devices designed to monitor, and in some cases prevent, security 
threats within the production environment”.

The Payment Card Industry Security Standards Council (PCI SSC) requires in-scope public 
facing web applications to address new threats and vulnerabilities on an ongoing basis (PCI 
DSS v3 requirement 6.6) with one option being “Installing an automated technical solution 
that detects and prevents web-based attacks…”.

AppSensor-like functionality elsewhere

It cannot be claimed that the following are using AppSensor or ever heard of it, but the 
following information alludes to the adoption of production enterprise-scale AppSensor-
like functionality.

In a discussion about distributed denial of service attacks against financial institutions13, it 
was reported that “Some [financial institutions] also have implemented measures to turn off 
access to certain parts of their online sites, such as search functions, when DDoS activity is 
detected. These precautions, and others, have helped ensure sites are not completely taken 
offline by an attack, experts say.”. This includes application layer responses – not just 
network layer responses.

A blog post “Monitoring of HTML and JavaScript entering an application by Etsy”14 by a 
vulnerability researcher on how a vulnerability he had identified was fixed before he had 
been able to verify it, and the related link15 to a presentation by Zane Lackey, Etsy’s 
Engineering Manager for Application Security, about web application security at scale 
including the point about “instrument application to collect data points” and their 
instrumentation library16,17 that runs on the Node.js platform and listens for statistics, from 
counters and timers.



Part I : AppSensor Overview

7

The US Defense Department announced they are funding cyber security research that 
include “developing active defenses – technologies that detect attacks and probes as they 
occur, as opposed to defenses that employ only after-the-fact detection and notification”18.

The principle of “cyber maneuver” in cyber security has been used to describe the 
defensive and offensive use of changing computing and information resources at machine 
speeds to achieve a position of advantage19,20.

It was reported that Google Chrome’s security team built in a detection trap to identify the 
exploit attack being used21. Furthermore, the Google Hack Honeypot (GHH)22 is a website 
that mimics vulnerable behavior and monitors attacker reconnaissance once it has been 
installed and indexed by search engines. The information in the generated attack database 
can be used to “to gather statistics on would-be-attackers, report activities to appropriate 
authorities and temporarily or permanently deny access to resources”.

Vendor implementations

OWASP is not affiliated with any company and does not endorse or recommend any 
commercial products or services. But there is a close fit in the following application-
integrated (non network) products/services with some aspects of the AppSensor concept:

• Fortify Runtime23 (formerly Fortify Real-Time Analyzer), supporting Java and .Net, 
includes dynamic injection of protection against malware and for logging and 
monitoring of application security activity and integrates with other HP Fortify 
Software 360 products

• Prevoty24 highly-scalable software as a service that validates inputs, queries and 
tokens, with a range of SDKs for popular programming languages and frameworks 
such as C#, Java, Objective-C, PHP, Python and Ruby on Rails.

No review or assessment of these has been undertaken during the writing of this guide. 
Other commercial and open source products and services are expected in due course. This 
guide documents a number of free and open source demonstration and production 
implementations in Part IV : Demonstration Implementations.

Conclusion

AppSensor provides comprehensive visibility into attacks against applications, valuable 
intelligence, allowing real-time automated response. AppSensor is not a perimeter defense 
solution but assumes the application is operating in a hostile environment. AppSensor 
implementation should be a baseline for application defense and be part of “defense in 
depth” strategies.



Part I : AppSensor Overview

8

Chapter 2 : Protection Measures

Intrusion detection and prevention fundamentals

AppSensor builds on the work of many researchers, but has taken the concepts of intrusion 
detection and prevention into the heart of application software. The most important work 
to date in the field of Intrusion Detection is Rebecca Bace’s book titled Intrusion Detection25

. Her NIST Special Publication on Intrusion Detection Systems26 mentions application-
based Intrusion Detection Systems (IDS). The subsequent SP 800-94 Guide to Intrusion 
Detection and Prevention Systems (IDPS)27,28 mainly focuses on network-based, wireless, 
network behavior Analysis and Host-Based IDPS. These are all valuable sources of 
background information with many good referenced works, and are recommended reading 
to help understand the fundamental concepts, options, deployment and operational 
considerations, pros and cons. 

Wile most research has been undertaken relating primarily to the network layer, AppSensor 
takes IDPS concepts to the application layer as ISO/IEC 7498-229 (twinned as ITU X.80030

) predicted in 1989.

Detecting attacks on applications

AppSensor can be used to perform:

• Attack determination
• Real-time response
• Attack blocking.

It can help to protect software applications against:

• Skilled attackers probing looking for weaknesses
• Misuse of valid business functionality
• Propagation of application worms
• Data scraping and exfiltration
• Application-layer denial of service (DoS)
• As yet unknown attack methods and exploits.

AppSensor is not an application security magic bullet. AppSensor helps defend securely 
designed and developed applications. It is not a shortcut to deploy security controls. 
AppSensor will not do these for you. It depends on rigorous input validation practices at 
every point in the application. Using a Systems Security Engineering Capability Maturity 
Model31 rating as an example, AppSensor provides a “Well Defined” (level 3) pattern for 
“Quantitative Control” (level 4) of application security. This constitutes a major 



Part I : AppSensor Overview

9

organizational investment and it is not necessarily the right model or investment for every 
corporation.

If you have not specified, designed, developed, tested, deployed the application securely, 
you cannot benefit from AppSensor’s capabilities. Attackers will be able to easily identify 
and exploit weaknesses. If you have an obviously insecure application, concentrate on 
solving that first. You must have existing authentication, session management, 
authorization, validation, error handling and encryption services available and implemented 
in a robust manner.

Localized security controls are not sufficient. Functions like authentication failure counts 
and lock-out, or limits on rate of file uploads are localized protection mechanisms. These 
themselves are not AppSensor equivalents, unless they are rigged together into an 
application-wide sensory network and centralized analytical engine. Similarly logging is 
necessary but not equivalent to its AppSensor counter part. AppSensor differs 
fundamentally from traditional alerting logging and alerting systems, and this aspect will be 
discussed in further detail subsequently. Logs may be a method of recording event and 
attack information and application security logging should exist for many other purposes32, 
but can sometimes be used as part of an AppSensor implementation.

The issue of vulnerabilities

Most importantly, AppSensor does not detect software weaknesses or vulnerabilities. 
Instead it is used to detect users trying to find vulnerabilities.

AppSensor does not analyze an application’s source code or examine the application in its 
runtime environment. AppSensor protects against attackers trying to find weaknesses. 
Organizations must already be undertaking information security activities throughout the 
software development life cycle (SDLC) to prevent vulnerabilities being deployed in 
production code, and be ensuring that supporting hardware and network infrastructure is 
secured.

Similarly AppSensor does not perform dynamic patching. There are promising integrations 
of web application firewalls with automated static analysis (source code review) and/or 
dynamic analysis (run time or penetration testing) to generate “virtual patches” for 
vulnerabilities discovered. These can be implemented in a web application firewall (WAF) 
while work is undertaken to remediate the source code if it is available. If there is a known 
weakness, solve it. AppSensor exists to help prevent attackers finding these, not stopping 
exploits that an organization is already aware of.

Comparison with other defensive mechanisms

In AppSensor, attack detection and prevention capabilities are added to an application 
instead of functioning at a lower or more generic level. By doing this, the organization gains 



Part I : AppSensor Overview

10

the detection and response capabilities of other systems, coupled with detailed business 
specific data related to a specific application or set of applications.

AppSensor has been compared with more conventional alternatives using research and 
experimental techniques33 by Pål Thomassen at the Norwegian University of Science and 
Technology in Tronheim. The thesis attempted to address four questions:

1. What is the current state of application-based intrusion detection and prevention 
systems?

2. How does OWASP AppSensor compare to other IDPS technologies?
3. In the given scenario, what are the benefits of using AppSensor compared with 

trying to stop the attacks in a IDPS or WAF?
4. How hard is it to built AppSensor into an application?

The paper primarily compares the use of Snort34, ModSecurity35 WAF using the OWASP 
ModSecurity Core Rule Set36 and the reference AppSensor Core implementation - see 
Chapter 21 : Fully Integrated (AppSensor Core) - to protect a demonstration online banking web 
application in a lab environment subjected to attacks based on the OWASP Top Ten Most 
Critical Web Application Security Risks37. The conclusions to the four questions above 
includes the comment that “AppSensor shines in that in addition to detect the well known 
web application attacks it is also able to detect attack which exploits the internal workings 
of an application, such as failure in access controls mechanisms”. The full paper and 
conclusions should be read to understand the context of this statement.

Comparison with infrastructure protection mechanisms

Three questions that can be used to identify if a mechanism is AppSensor-like are whether 
the system/service/solution/mechanism/device can:

1. Determine an attack where a user is stepping through a multi-step business process 
in the wrong order?

2. Understand the difference between a user who has access to a particular document 
today but not tomorrow, due to a change in user’s role or a change in the 
information classification of the document?

3. Identify an attack that is an attempt to exceed an individual user-specific action 
threshold (e.g. payment transfer limit).

AppSensor can be used for all of these. Common non-AppSensor-like protective 
mechanisms that cannot do any of the above are described bovver the next few pages.

These are often cited as providing defense to applications, but they have no knowledge of 
custom application knowledge or insight into the context of user’s actions. They do not 
provide application-specific protection, and if these are all an organization is replying on for 
application defense, the applications are dangerously exposed and the organization 



Part I : AppSensor Overview

11

probably does not have insight as to whether the applications are really under attack. Some 
may be physical appliances, but they can also be software hosted locally or as a remote 
service.

Network firewall

Network firewalls control traffic source, destinations and ports. If an application needs say 
port 443 open to all internet users and no other ports open, a network firewall is the correct 
device. Similarly network firewalls might limit access to a particular application to only 
certain internal users. However, they have no insight into the application or the user 
context. A network firewall could be utilized to perform application-elected response such 
as blocking an individual IP address.

At this point it is also probably worth mentioning the use of HTTP over Transport Layer 
Security (TLS)/Secure Sockets Layer (SSL)38 for web applications. The correct use of 
TLS/SSL provides confidentiality and assurance in the integrity of data sent between two 
points. It can also provide some degree of identity assurance. However, it does not protect 
web applications at all. Malicious payloads and activities can be undertaken just as well 
using TLS as not. And in many cases TLS will prevent the inspection of the data while in 
transit.

Application-aware firewall

Some network firewalls are rather confusingly called “application firewalls” or “application 
aware firewalls” or “next generation firewalls”. These only allow or deny traffic for 
individual and groups of users to and from defined IP addresses, ports and URLs for many 
common applications (e.g. Facebook, Twitter). It sounds a like AppSensor, but looks like a 
network firewall with some extra social media aware configuration options.

Traffic/load balancer

Traffic/load balancers are used to distributed network and/or application traffic across a 
number of servers. Some of these can have the ability to inspect traffic at the application 
layer (e.g. an understanding of HTTP for example), but they are limited to knowledge 
gained from the data stream, and have no inherent understanding of the application. Some 
of these devices can have custom rules written and thus have some application firewall 
capabilities (e.g. like a basic Web Application Firewall - see below).

Anti DDoS system

Network firewalls, switches, routers, traffic/load balancers and intrusion protection systems 
often include some measures to protect against distributed denial of service (DDoS) attacks 
which intend to prevent legitimate access to the targeted system. However specialist 
systems (often as outsourced services) are also available that prevent these attacks reaching 
an organization’s own network. These do not have knowledge of individual applications 
even if they are able to detect application protocol DDoS attacks.



Part I : AppSensor Overview

12

Web gateway

These devices scan incoming web traffic to an organizations’ end-users who are browsing 
the web. They may incorporate data on blacklisted websites, signatures for malware present 
in web page content, email messages and files, and even perform live malware analysis. Web 
Gateways do not protect applications used by other people.

Intrusion Detection System (IDS) and Intrusion Prevention System (IPS)

As mentioned above (Intrusion detection and prevention fundamentals), typical IDS and IPS 
observe network traffic (NIDS) or activities on hosts (HIDS). They detect deviations from 
baseline behavior but have no knowledge of application behavior and thus have to use 
signature-based misuse detection or statistical based anomaly detection and are thus 
susceptible to a higher level of false positives. While policies, a continuously updated 
database of known attacks, and information sharing between users has improved 
performance, they have little understanding of application protocols and none of 
application logic, or even what entry points or user data is acceptable. Intrusion is not 
always the same as attack. And due to these factors IDS and IPS are more prone to false 
positives for attacks against applications.

Data Loss Prevention (DLP)

Data loss prevention is concerned with the detection and prevention of the loss, leakage or 
exfiltration of targeted data types. The exploit has already been performed and this useful 
technique is not an application protection.

Application firewall, filter or guard

These are usually protocol-specific application firewalls looking only at Layer 7 in the OSI39 
stack. They tend to be good at examining one particular data type (e.g. XML, PDFs) or 
protocol (e.g. SQL, HTTP) and can include some element of self-learning about “normal” 
traffic, but often include many blacklist signatures. Some may be self-learning, include web 
behavioral analysis and have some mitigating capabilities, but in the end they are a generic 
solution to generic attacks. They are not application-specific. See also Web Application 
Firewall below.

Web application firewall

Many applications are web-based and there are now a number of commercial and open 
source HTTP protocol application firewalls, built upon earlier HTTP filtering techniques. 
They are generally referred to as “web application firewalls (WAFs). WAFs understand 
HTTP traffic and can be an excellent way to screen web applications from generic attacks 
and can be used for virtual patching. Some WAFs have application traffic self-learning 
capabilities, and others support custom attack and application logic rule building including 
support for scripting languages. WAFs also have capabilities to drop connections, or 
interact with network firewalls to block IP addresses. However, WAFs are sometimes left 



Part I : AppSensor Overview

13

operating in detection-only mode due to concerns about false positives leading to denial of 
service to normal users.

Certain types of AppSensor-like functionality can be built into a WAF, and some of these 
might be much more efficiently undertaken by a WAF for both detection (e.g. HTTP 
protocol misuse detection, generic blacklist input validation, web application denial of 
service identification) and response (e.g. HTTP logging, proxying requests, IP address 
blocking). However, a WAF still does not have insight into the full capabilities of each 
application such as user session and access controls. The demonstration implementation in 
Chapter 26 : Leveraging a Web Application Firewall discusses some of these many possibilities 
further.

Use of AppSensor with infrastructure protection mechanisms

The above mechanisms may often be deployed as well as AppSensor. If such devices block, 
change or mask application traffic or data, it is important to consider how these might 
affect the ability of the application to detect an attack.

Often the mechanisms can provide inputs to AppSensor (as external “reputational” 
detection points). This is certainly almost always true for web application firewalls in front 
of web server farms, database monitoring/firewalls in front of database servers, and for 
other similar application firewalls, filters and guards.

Application protection mechanisms

Applications must have their own in-built security controls such as services for 
authentication, session management, authorization, input validation, output validation, 
output encoding, and cryptography. They may also have discrete functionality that behaves 
very similarly to “attack response” such as:

• Counting multiple failed authentication attempts to lock a user account
• Detecting the use of the TRACE HTTP method to block requests
• Checking the IP address during a session and terminating the session if the IP 

address changes
• Displaying a message to the user about invalid input
• Logging unexpected requests
• Investigating suspicious incidents at a later date.

These alone are not sufficient to be considered AppSensor. These are typically be 
implemented as isolated processes and some may be undertaken reactively to events or 
performed largely in a manual way. AppSensor centralizes and formalizes this approach. 

AppSensor is about implementing measures proactively to add instrumentation and 
controls directly into an application in advance so that all these events (and more) are 



Part I : AppSensor Overview

14

centrally analyzed, using all the knowledge about the business logic and the roles & 
permissions of users, responding and adapting behavior in real time.

The event and attack information can be displayed using custom application-specific 
dashboards. Since attack events are hopefully rare, especially within the authenticated part 
of an application, operators can quickly identify and assess the attack and the responses 
being taken automatically by AppSensor.

These are discussed further in Part III : Making It Happen - Chapter 15 : Verification, 
Deployment and Operation.

AppSensor defining characteristics

AppSensor does not act as a security silver bullet for all the reasons above and more. 
AppSensor is another technique, with some unique benefits, that contributes to an overall 
software security assurance program. It also relies on other infrastructure defenses, but 
those are platform and architecturally specific.

So what properties would a system have to say it is AppSensor-like? The fundamental 
requirements are the ability to perform four tasks:

• Detection of a selection of suspicious and malicious events
• Use of this knowledge centrally to identify attacks
• Selection of a predefined response
• Execution of the response.

These tasks are fairly generic and can therefore be applied in many different ways to suit 
the systems architecture and an organization’s policies, development practices and cultural 
preferences. AppSensor can often be completely contained within the application itself, but 
that is not the only way.

AppSensor improves system survivability in spite of malicious actions through all three 
survivability quality sub-factors40:

• Detection/recognition of attacks as they occur
• Prevention through changes to security posture
• Reaction/recovery through responses to attacks.

Applications of greater complexity are unlikely to have all these components built into the 
application’s code itself. For example:

• Applications deployed across clustered servers



Part I : AppSensor Overview

15

• Distributed applications
• Applications where a significant part of the business logic is external to the 

application (e.g. a mobile app that communicates with a central server)
• Detection point sensors deployed in related applications (e.g. databases, file 

integrity monitoring systems, anti-virus systems) and infrastructure components 
(e.g. web application firewalls, network firewalls).

If there is no capability to modify the source code or build AppSensor in from the start of a 
development, AppSensor concepts may all have to be externalized such as in a web 
application firewall (WAF) or logging system that communicates to a network firewall.

Different implementation models are discussed further in Parts II and IV.



Part I : AppSensor Overview

16

Chapter 3 : The AppSensor Approach

Stop! Develop and operate secure applications first

Do not progress any further until this important information is understood. It has already 
been stated that AppSensor does not detect software weaknesses or vulnerabilities, and 
instead it is used to detect users trying to find vulnerabilities.

If in any doubt, make sure security considerations are already integrated into software 
acquisition and development practices using the techniques described in the Open Software 
Assurance Maturity Model41 (Open SAMM), other software assurance models and 
frameworks. Consider the guidance listed by DACS/IATAC42, ENISA43 and OWASP44, 
such as from BITS45, CMU46,47,48, CERT49, ISO/IEC 2703450, NIST51, SAFECode52, and 
the DoHS/SwA Forum53,54, and publicly available information about actual assurance 
programs (e.g. Microsoft SDL55, Oracle SSA56 and the ongoing BSIMM57 study and related 
work58 such as vBSIMM59 for software vendors from FSISAC). Practices should commonly 
include, but are not limited to:

• Creation and maintenance of coding and development standards
• Role-specific application security training
• Source code control and protection
• Security requirements
• Architectural and design reviews
• Source code review
• Security testing
• Infrastructure hardening
• Secure application deployment
• Backup and recovery processes
• Vulnerability assessment and penetration testing
• Patch management program
• Incident response plan.

OWASP’s Application Security Guide for Chief Information Security Officers (CISOs)60 
discusses application security from governance, compliance and risk perspectives, the 
parallel CISO Survey and Report61 provides tactical intelligence about security risks and 
best practices.

The objective must be to identify and treat vulnerabilities before software is released into 
production environments, and to ensure those environments are secure and continue to be 
maintained in that manner.



Part I : AppSensor Overview

17

Other preliminary requirements

If an application has known vulnerabilities, fix those first. Do not attempt to use 
AppSensor to prevent the exploitation of vulnerabilities already known about – a single 
specially crafted payload, maybe perfected elsewhere, could be sent to the application to 
exploit it regardless of whether AppSensor is used or not.

Similarly, ensure the supporting network and application’s host infrastructure (e.g. servers, 
workstations devices, other hardware as appropriate) are hardened, administrative access 
requires strong authentication, appropriately authorized ingress and egress network firewall 
rules exist, and that all system components have relevant security patches tested, deployed 
and verified.

Before embarking on the adoption of AppSensor, organizations must decide what needs to 
be protected and with how much effort. This can normally be linked with the outputs from 
an existing risk assessment processes. Identification and risk assessment will provide insight 
into the applications, but most importantly allows organizations to rank them based on 
their own business-relevant criteria. The criteria may be from the organization’s viewpoint, 
but it is sometimes necessary to take into account the value of the data and system from 
other perspectives such as its users, other parties and society.

The application risk assessment should also identify common dependencies such as shared 
components, identical data access, common hosting or inter-related back-end systems 
which may mean all applications need to be considered at the greatest risk classification. An 
understanding of the dependencies and inter-relationships is necessary to ensure 
AppSensor detection points are selected and applied appropriately, and in the most efficient 
manner. Although it is usual to treat each application as a single item, in some cases, it may 
be possible to partition an application into sections, with different risk ratings, and this 
could be used to allocate AppSensor detection points in a more targeted manner.

One possibility to consider is whether the application can be partitioned into public areas, 
authentication, private areas for authenticated users and perhaps back-office functionality 
such as a web-based content management system or other website administration 
functionality. AppSensor defends against an attacker who might be able to find a 
vulnerability; for an unknown vulnerability, organizations do not know the likelihood or 
impact, but should know the exposure. Derive the impact from the risk assessment for the 
whole application.

Architecture

Conceptually, AppSensor can be considered to comprise of two modules, a detection unit 
and a response unit. The detection unit is responsible for identifying malicious behavior 
based upon defined policies. Detection points can be integrated into presentation, business 
and data layers of the application. The detection unit reports activity to the response unit. 



Part I : AppSensor Overview

18

The response unit will take an action against the user. The action taken will depend upon 
whether the event is a suspicious situation or is obviously an attack.

AppSensor should be integrated into an application such that a specific exception will be 
thrown whenever the application detects a suspicious or attack event. AppSensor’s 
detection unit should be aware of the exception thrown, and catalog the event together 
with relevant details. The response unit will take action against the user responsible using 
techniques such as a user warning, account lockout, application administrator warning, etc. 
Consequently AppSensor must have appropriate rights and hooks within the application to 
perform such response actions.

Although this guide discusses AppSensor on its own, as if it is something separate to the 
application, the concept is often highly integrated within an application’s source code. 
Other architectures are certainly possible, may have certain benefits, and are discussed in 
Part IV : Demonstration Implementations. When reading “AppSensor”, consider it to mean 
“those parts of the application and related systems that perform attack detection and 
response functionality”, regardless of how/where it is performed.

The process

AppSensor can be applied to existing application code, or built into the requirements for 
new projects, whether developed in-house or out-sourced. The planning stages are 
probably the most time-consuming aspect of implementing AppSensor.

The implementation must ensure that high confidence in attack identification is not 
compromised by adding inappropriate detection points, or designing them in a way that 
leads to additional events being detected that are not attacks. The method presented also 
tries to build in consideration of business operations and usability, so that not only is the 
high degree of confidence in attack identification maintained, but processes are not unduly 
disrupted and the users are not subjected to difficulties through simple human error. In 
other words, building in a degree of human fault tolerance.

Although AppSensor works best within the authenticated portion of an application, it is 
also possible to apply the principles to other areas. In the latter, the range of "normal 
behavior" may be wider, the identity and location of users may be harder to pinpoint and 
some detection points may no longer be necessary. But the same benefits are possible.

AppSensor's individual detection point ideas are not necessarily novel, but extend common 
security principles. Some similar ideas may already exist in an application, but these will 
typically be implemented as isolated processes and some may be undertaken reactively to 
events or performed largely in a manual way. Some examples of these include:

• Counting multiple failed authentication attempts to lock a user account
• Detecting use of invalid HTTP methods to block requests



Part I : AppSensor Overview

19

• Checking the IP address during a session and terminating the session if the IP 
address changes

• Logging unexpected requests
• Investigating suspicious events at a later date.

AppSensor focuses and formalizes this approach. AppSensor is about implementing 
adaptive measures to add instrumentation and controls directly into an application in 
advance so that all these events (and more) are centrally analyzed and responded to. It is 
necessary to build applications securely in the first place, and understand the risks the 
application faces. If an application has centralized and standardized modules for input and 
output validation, authorization and security event logging, these can provide a head start 
which can be extended to included AppSensor-like capabilities.

In general, the four stages necessary to adopt AppSensor are planning, implementation, 
deployment and operation. These should be incorporated into existing software acquisition 
and development practices, and are not meant to map to any particular software 
development life cycle.

Roles

The types of personnel involved in these stages for in in-house development process are 
dependent on each organization’s structure and culture. However, successful 
implementation requires a mix of skills and it is usually requires a collaborative effort 
between Development, Information Security and Operational teams.

• Business owners will need to determine and approve the level of resources to 
commit for each application and also the rules of engagement for responding to 
attack events

• Designers, architects, information security staff and lead developers will have to 
consider how the agreed approach can be implemented by development, network 
and operational teams

• Developers and testers will need to undertake verification activities to ensure the 
AppSensor design has been implemented and tuned correctly, so that it does not 
affect normal usage and does not have any adverse side-effects

• Operation security, development leads and others as required will monitor 
AppSensor activity and respond to relevant alerts.

Where development is outsourced, there will be additional involvement from procurement 
and legal roles during the planning stage in particular, and the implementation stage will 
largely relate to the outsourced development provider. 

Part III : Making It Happen describes the process of adopting AppSensor in greater detail. 
But in the next chapter further detail is provided on the necessary components.



Part I : AppSensor Overview

20

Chapter 4 : Conceptual Elements

Introduction

The primary elements that need to be considered when adopting AppSensor are detection 
points, possible response actions available when an attack is identified, and the thresholds 
at which these occur. These are considered briefly here to provide background to the 
subsequent more detailed discussions of the methodology in Part III : Making It Happen.

Approach

The commonly cited process model for IDPS comprises information sources, analysis and 
response. Analysis approaches are usually either misuse detection or anomaly detection:

• Misuse detection identifies specific malicious activity (single or multiple events) by 
comparison with predefined attack patterns (also known as signature-based 
detection)

• Anomaly detection identifies unusual activity that is outside normal legitimate 
bounds.

AppSensor does not fit cleanly into either of these since it does not attempt to define 
numerous attack patterns (misuse detection) but instead primarily focuses only on blatantly 
malicious events but can also include predefined extreme trend aberration limits. This 
actually provides a unique benefit in that previously unknown attacks can also be detected, 
that is unavailable in any other defensive mechanism regardless of cost.

The approach pursued in this book and the demonstration code examples relate to defining 
application-specific events with related thresholds for attack detection and response. 
Statistical models also have strengths and weaknesses; as does machine learning, but these 
are not considered here.

Detection

It is necessary to understand what constitutes an attack, and how threats go about 
identifying, and probing targets, developing exploits and executing the exploit to achieve 
the desired result (e.g. data extraction, code/data addition, modification or deletion, denial 
of service). Although reports on application vulnerability prevalence from static (source 
code) and dynamic testing, and information from actual breaches of confidentiality are 
useful, there are other projects22,62,63,64,65,66,67 providing tools and invaluable data about how 
attackers perform reconnaissance before the creation and deployment of an exploit.

The Common Attack Pattern Enumeration and Classification (CAPEC)68, a dictionary of 
common approaches used to attack software, can be used to identify attack patterns. The 
results69 from the 2011 ModSecurity SQL Injection Challenge70 revealed that although it 



Part I : AppSensor Overview

21

only took a matter of hours for attackers to find an exploit (evasion of a WAF using a 
negative security model to protect a known vulnerable web application), the number of 
requests submitted in this time was in the hundreds.

Suspicious or an attack?

When detecting malicious activity, the application must distinguish between two possible 
scenarios. Firstly, the some detected activities might equally have been caused by an 
unintentional user mistake, or by a crafty attacker snooping around or seeking to mask their 
other attacks. Since the detected activity could result in an undesirable system response, it is 
important not to disregard this type of activity altogether. This type of event will be 
referred to as “Suspicious” because it might be an attack. Examples of suspicious events 
are:

• Data is submitted for a username that includes the two characters ‘; at the end – 
this could simply be the result of the user accidentally hitting these tow keys on 
their keyboard when attempting to press enter, or it could be an attempt to 
discover a SQL injection vulnerability on the log in page.

• A web form is submitted from the middle of a multi-step check-out process 
without the previous steps being completed – the user might have bookmarked a 
web page and gone back to that, or it could be a forced browsing attempt to bypass 
business logic and perhaps obtain goods without payment.

Secondly, the event could be clearly an intentional malicious activity. These types of actions 
will never occur as the result of a user’s mistake, are not permitted normal operations, and 
are therefore highly likely to be an attack against the application. This type of event will be 
referred to as an “Attack”. Examples of attack events are:

• Data is submitted for a parameter’s containing 0 OR 1=1--‘ in the value which is 
normally an integer – This is clearly a SQL injection attack regardless of whether it 
is successful or not, and would never occur as the result of some sort of user error.

• Hundreds of files are uploaded for a user’s avatar image in their profile – an 
individual user will never do this and it indicates some form of automated attack.

It is important to accurately classify detected events as suspicious or attacks so that the 
responsive action is not unjustly performed against a non-malicious user. Another way to 
think about these two categorizations is to ask the following questions:

• Is it impossible for the event to occur as the result of a typographic error, or a copy 
& paste mistake, or an inadvertent key press by the user?

• Does the user have to leave the normal flow of the application to perform the 
activity?



Part I : AppSensor Overview

22

• Are additional software tools or special knowledge needed to perform the 
identified activity?

If the answer to at least two of these is “yes”, it is almost certainly an attack event. 

User identification (attribution)

The AppSensor technique in general works best where the user can be identified, such as 
within the authenticated part of an application, or where the “user” is a defined external 
application, service or other systems. However, system trend type detection points (see 
later), do not track individual users at all – they track groups of users – and are therefore 
always candidates for use regardless of knowledge about an individual attacker’s identity.

But even in the case of a highly distributed attack, AppSensor could be used to identify if 
an attack is under way and will provide insight into the attack, making it a useful operational 
tool.

In general, the normal approach is to use passive identification techniques: 

1. Prioritize tracking exceptions by known users when possible (most granular) – this 
works in authenticated-only sections of the application

2. Consider tracking both known and unknown users in places where authentication 
is not required, but use the preference of user tracking – works in all locations

3. Utilize system user exceptions in cases where the action is not user-specific or it 
should be tracked across the whole system, not per-user.

Consider just doing the first of these initially, but design for the case of unknown and 
system users. Some frameworks may enforce a session identification value even for 
unauthenticated users. In other situations it may be possible to consider hardware 
identifiers, or certificates, or a combination of HTTP headers71 such as User-Agent Accept-
Language with the remote IP address (and possibly X-Forwarded-For or Via) for web 
requests, or user-agent fingerprinting techniques72,73. Some of these could be spoofed by 
the user. Also remember that for web systems, requests from a single user at a fixed 
location can be drawn randomly from a larger pool of IP addresses, and requests from a 
single user’s mobile device can change source network repeatedly due to switching between 
mobile network base stations and from mobile network to WiFi and vice versa.

Not all types of event detection always need to identify individual users (e.g. system trends). 
Additionally AppSensor does not necessarily need to be perfect – just good enough to 
identify an attack with an appropriate degree of certainty. This level of confidence will 
depend upon the type of application, degree of assurance required and the types of 
response actions possible. Ensure the user identification techniques proposed are permitted 
in the relevant jurisdictions and if user opt-in is required, or opt out allowed.



Part I : AppSensor Overview

23

Sensors

Detection points are instrumentation sensors, normally embedded directly within the 
application code. While it is possible, and sometimes very desirable, to have detection 
points in other systems, for the purposes of the current discussion this guide will mainly 
focus on in-code detection points.

AppSensor can be thought as an input validation pattern for applications. In traditional IDS 
information may come from network traffic and host logs. In AppSensor’s case, the 
information will typically originate from data input validation practices undertaken by the 
application. This input validation should be being undertaken anywhere trust boundaries 
are crossed. So if something is going to be consumed; it must be validated. During the 
input validation it either passes the criteria the programmer had in mind; or it fails and an 
exception is thrown – that exception being thrown contains valuable information.

The data/access validation code should often already exist in a securely coded application; 
it is then only necessary to add “instrumentation” to collect that information together, and 
act on it. For a whitelist input validation check for example, the primary logic already exists 
but would be modified to call the AppSensor components (modifications shown in bold).

Figure 2 PSEUDO CODE ILLUSTRATING THE ADDITION OF APPSENSOR DETECTION POINT LOGIC WITHIN EXISTING 
INPUT VALIDATION CODE

if ( Value in Whitelist ) then

    [existing normal process execution];

else

    [send event to AppSensor];

    [existing exception/error handling];

end if;

Some detection points may not exist in the existing code at all, as would be the case for 
many blacklisting input validation checks. In this case all the code would be new (bold).

Figure 3 PSEUDO CODE ILLUSTRATING THE ADDITION OF COMPLETELY NEW APPSENSOR DETECTION POINT LOGIC

if ( Value in Blacklist ) then

    [send event to AppSensor];

end if;



Part I : AppSensor Overview

24

The best detection points are custom ones, designed and optimized specifically for how the 
application works and the risks it faces. But AppSensor has identified over fifty examples 
which can be used as the basis for defining custom detection points, used “as is” or used as 
something to help stimulate ideas. The AppSensor detection points are defined with 
descriptions, considerations and examples on the OWASP website74, are reproduced in the 
Detection Points section of Part VI : Reference Materials.

Thresholds to determine an attack

As discussed above, attack determination must take into account whether each detected 
event is simply suspicious or actually an attack event. When developing a response policy, it 
is vital to determine the appropriate thresholds for response actions. The objectives are to 
select thresholds and response actions that:

• Deter malicious activity
• Prevent determined attackers from successfully identifying vulnerabilities
• Minimize the impact when any false positives are recorded (non-malicious activity)

In general, attack determination should use the approach:

• React immediately to malicious events
• Monitor suspicious events.

This means that every time a detection point that represents a malicious activity is activated, 
the response should be activated immediately (i.e. the threshold is “1 event”). And typically, 
a response should be undertaken for a small number of detection point activations that 
represent suspicious activity (i.e. the threshold is for example “3 events”). These always 
need to be customized to meet the specific needs of the organization and the application 
itself. The simplest implementation would be to consider the total number of activations 
across all detection points, but more granularity in response can be obtained when 
thresholds are be defined per detection point, per type of detection point or per group of 
detection points.

Response

Action and inaction

A response policy should be established which sets specific thresholds and response actions 
based on the detected actions of each user (or all users in a group, or all users). In 
AppSensor a response is a change in application behavior; it is not any form of retaliation. 
The term “countermeasures” could be used, but AppSensor used the term “response” to 
suggest a much wider range of actions than purely offensive ones. The response aims to 
defend the application, its users and everyone's data:



Part I : AppSensor Overview

25

• Organization data
• User data (sometimes including PII/personal data)
• Data belonging to other parties (e.g. suppliers, customers and partners).

Detection of events is not useful without an automated response to deter and prevent a 
successful compromise. Some of the most commonly implemented response actions and 
their pros and cons are shown below.

Table 1 PROS AND CONS OF THE MOST COMMONLY IMPLEMENTED RESPONSES

Responses Aspect
User Notification Description Provide a visual warning message to the user to deter further attack activity. For 

example “A security event has been detected and logged”.
Pros May deter a casual attacker by alerting them that their activities are being 

monitored.
Cons Will not deter a determined attacker and provides the attacker with some 

knowledge of what events are being detected as malicious.
Account Logout Description Log the account out.

Pros Causes difficulty with to most automated attack tools since the session will be 
interrupted after a small number of interactions. Logging out the user also 
provides a clear indication that the performed actions are being monitored and 
the application is responding to attacks.

Cons Automated tools can be modified to automatically re-authenticate to bypass this 
response action.

Account Lockout Description Lock the user account. The user account could be permanently locked, unlocked 
automatically after a pre-set period (e.g. 30 minutes), or unlocked manually after 
the user has contacted the help desk.

Pros Locking the account will cease the attack activity (if authentication is required).
Cons If the organization or application does not control the creation of accounts, then 

the attacker could generate numerous accounts and use each one until it is 
locked.

Administrator Notification Description Notify the administrator via email or other methods of the malicious activity.
Pros An administrator could take additional actions or enable additional logging 

capabilities in real time. Notification is especially effective for system trend 
events which require human analysis.

Cons If used too often, this notification could become another type of information 
overload which is mostly ignored.

Response selection

The definition of thresholds is inherently tied to the selection of response actions. The 
thresholds and response actions must be customized to meet the specific needs of the 
application, and normal user behavior. Two contrasting examples are:

• A highly sensitive application operating within a restricted environment may be 
configured such that even the most subtle suspicious activity is considered to be an 



Part I : AppSensor Overview

26

attack (all have threshold “1”) where lockout and administrative notification is 
appropriate

• A public website is regularly scanned by search engines each indexing hundreds 
pages/day and must not be blocked as it might otherwise affect customers arriving 
from natural searches, but some sort of limits need to be imposed to prevent 
competitors copying data off the site to undertake daily price comparisons; some 
source IP addresses might be excluded from response actions or have very high 
thresholds, whereas other sources of unauthenticated users have lower thresholds 
before rate limiting or blocking responses are activated.

The power of AppSensor is its placement within the application for detection, and its 
ability to respond to malicious activity in real time. The most common response actions are 
user warning messages, log out, account lockout and administrator notification as noted 
above. However, since AppSensor is connected into the application, the possibilities of 
response actions are limited only by the current capabilities of the application, or what it is 
extended to be able to do.

Other ideas for response actions are documented on the OWASP website75, are 
summarized in the Responses section of Part VI : Reference Materials. There is a useful 
description of US legal considerations of more invasive responses in the recently published 
book “Offensive Countermeasures: The Art of Active Defense”76. What is legal, moral, or 
culturally acceptable will be different in other jurisdictions, and also depends on an 
organization’s sector, regulations, industry standards, the type of application users and the 
purpose/functionality of the application.

The AppSensor pattern

The above ideas are summarized in the conceptual elements below.

Table 2 LIST OF CONCEPTUAL ELEMENTS IN THE APPSENSOR PATTERN

Element Description
Detection Point A specific point during the execution of a program that allows event generation
Event An observed occurrence in an application that is monitored and analyzed to determine 

attacks
Event Manager This collects event notifications from the detection points and polls the event analysis 

engine for any appropriate response actions to execute
Event Analysis Engine Used for the analysis and processing of incoming event data to compile, store and process 

them to determine if an attack has occurred
Event Store The storage mechanism for events
Attack Store Storage mechanism for attacks, which are produced by the analysis of events
Response The action taken as a result of attack recognition
Reporting Client An application that provides data visualization e.g. a dashboard



Part I : AppSensor Overview

27

The terms are defined more fully in the Glossary, and are illustrated in the figure below.

Figure 4 SCHEMATIC ARRANGEMENT OF APPSENSOR CONCEPTUAL ELEMENTS

Figures based on this schematic arrangement are included later in the guide.



Part I : AppSensor Overview

28



Part II – Illustrative Case Studies

29

Part II : Illustrative Case Studies

On the following pages examples of how AppSensor can be used for a range of different 
software application architectures and business risk.



Part II : Illustrative Case Studies

30

Chapter 5 : Case Study of a Rapidly Deployed Web Application

Table 3 PROPERTIES FOR THE CASE STUDY OF A MINIMAL APPSENSOR IMPLEMENTATION FOR A SMALL RAPIDLY-BUILT 
WEB APPLICATION THAT ALREADY HAS A STRONG INPUT VALIDATION MODULE

Background An entrepreneurial micro business has developed a web product to help financial 
service companies. All web application functionality requires the users to be 
authenticated. There are no public parts of the application except for the log in page.

The company will publish the web product to market as soon as possible but also needs 
to demonstrate robust defenses to its customers who will want to perform their own 
penetration testing.

The business’s own development team has created a parameter input validation 
framework that checks every single request’s URL, parameter names and parameter 
values. The web application’s entry points are known and are defined in an existing 
database table which is updated at each release. The team has decided to use 
AppSensor-like capabilities to warn them about forced browsing to invalid URLs, 
missing mandatory parameters, the submission of additional or duplicated parameters, 
and invalid parameter value data types.

Note that additional input validation exists, but initially this will not be linked into the 
attack detection and response system. Just URL, parameter names and value data types.

Objectives 1. Immediately identify any non-normal use of the application
2. Slow down an attack using compromised user credentials.

Detection points The detection points only need to be added within the existing global input validation 
module. The detection points selected are shown below. All exist within the application 
code.

Area ID Scope Detection Description AppSensor Refs
Request i Every request Invalid URL ACE3, IE2

ii Every request Invalid parameter names RE5, RE6
iii Every request Invalid parameter value type RE8, IE2

i also occurs for “404 not found” responses.

Response actions
and thresholds

All events share the same response. Thresholds are all one (i.e. immediately, so there is 
no need to undertake counts over time periods). Only one SMS alert will be sent per 
request/response cycle (i.e. not per parameter).

ID (from above) Threshold Response Description AppSensor Refs
i, ii, iii Any 1 event Log out authenticated user and 

send SMS alert to the dev-ops 
team

ASR-J, ASR-B

This will require the ability to:

• Initiate a response for each detection point event
• Terminate user sessions, log out users, and send SMS alerts
• Whitelist certain IP addresses to suppress the response actions (e.g. external 

vulnerability scanner, the company’s own penetration testers).



Part II – Illustrative Case Studies

31

Chapter 6 : Case Study of a Magazine’s Mobile App

An implementation that takes into account mobile-specific risks.

Table 4 PROPERTIES FOR THE CASE STUDY OF A MAGAZINE’S MOBILE APP TO IDENTIFY AUTHENTICATION ATTACKS, 
ACCOUNT-SHARING AND BLATANT XSS ATTEMPTS

Background A well-respected business magazine has developed a new mobile application with a 
native front end to support the needs of it's existing client base as well as reach new 
customers. Most application functionality requires the users to be authenticated, which 
is undertaken via server-side components. There is a small public portion of the 
application that shows a portal-style page with headlines from the top stories. 

This is the first mobile application written by the internal development team. The team 
is made up of a mix of web developers and back-office developers. The business 
customer has two serious concerns: 

• Loss of revenue due to users sharing accounts
• Loss of readership due to defacement of magazine content.

In addition, the development team has another concern: 

• The authentication and authorization framework used is new to the team 
since they are accustomed to the typical web session handling (cookie) 
model, whereas the new model uses access tokens. 

Authentication will require communication with the magazines internet-facing systems 
to minimize critical functionality in the application itself. Some magazine content is 
stored locally on the devices to improve response times. The team has decided to use 
AppSensor-like capabilities to warn them about account sharing, code injection 
attempts, and to monitor access to the authentication portion of the application closely.

Objectives 1. Detect attacks against the authentication component; the team intends to start 
with the authentication component, and add monitoring to the authorization 
component if necessary in the future

2. Identify account-sharing between users
3. Detect XSS attempts that could lead to defacement.

Table 4 continued...



Part II : Illustrative Case Studies

32

Detection points The detection points need to be added to the authentication component and within the 
existing global input validation module. The detection points selected are shown below. 
All exist within the application code.

Geo-location as a detection point has to be used carefully. There are many use cases 
where geo-location may change for a completely valid reason.

Area ID Scope Detection Description AppSensor Refs
i Every auth attempt Use of Multiple Usernames AE1
ii Every auth attempt Multiple Failed Passwords AE2
iii Every auth attempt High Rate of Login Attempts AE3

Authentic
ation

iv Every auth attempt Utilization of Common 
Usernames

AE12

v Every auth attempt Deviation from normal geo-
location

AE13

Request vi Every server request Cross-site scripting (XSS) 
attempt

IE1

Local 
cache

vii Every cache read Data integrity fault IE4

Response actions
and thresholds

The thresholds are set high enough to ensure the activity is likely malicious, and so the 
responses are more strict. Detection points monitoring events occurring at the 
magazine’s servers have more authority than events detected locally on the device 
hosting the app.

ID (from above) Threshold Response Description AppSensor Refs
Any 10 events Alert operations staff ASR-Bi, ii, iii, iv
Any 25 events Block IP address (and 

customer account if known) 
for whole site (manual reset by 
operational administrator)

ASR-L, ASR-K

Any 1 event within 
1 hour of previous 
access

Notify user of invalid usage, 
log user out

ASR-E, ASR-Jv

Any 5 events within 
1 month

Block IP address (and 
customer account if known) 
for whole site (manual reset by 
operational administrator)

ASR-L, ASR-K

1 event Block request ASR-G
Any 3 events Log user out ASR-J

vi

Any 6 events by 
user and/or 
individual IP 
address

Block IP address (and 
customer account if known) 
for app (manual reset by 
operational administrator)

ARS-L, ASR-K

vii Any 3 events Alert operations staff ASR-B

Non singular event thresholds refer to per user rolling 24 hour periods unless specified 
otherwise.

This will require the ability to: 

• Notify the operations staff via email/SMS
• Perform blocking of IP addresses
• Verify a user’s geo-location at a high level (maybe accurate within 200-300 

miles).



Part II – Illustrative Case Studies

33

Chapter 7 : Case Study of a Smart Grid Consumer Meter

Gas and electricity smart meters are beginning to replace traditional meters. These allow 
remote usage monitoring and configuration, and can offer some benefits to both the 
supplier and consumer.

Table 5 PROPERTIES FOR THE CASE STUDY OF A SMART GRID CONSUMER METER FOR THE DETECTION OF ATTEMPTED 
AND ACTUAL TAMPERING.

Background Remote connectivity may use an embedded SIM card to connect with a mobile network 
provider, or in the case of broadband-connected home, utilize the existing WiFi 
connection. Customers often have concerns about privacy, confidentiality of data, 
difficulties in changing their supplier, and health due to the use of mobile phone and 
WiFi technology.

Mobile technicians connect to smart meters using an infrared optical port which is 
more reliable in the many different locations that the meters can be installed in. The 
technicians use security codes to authenticate and then may alter the configuration or 
collect information. The long, highly random, security codes could be identified by 
brute force and dictionary attacks.

Identical functionality is available remotely, but the optical port is much more exposed.

Objectives 1. Identify attacks against authentication functions
2. Detect other extremely unusual activity.

Detection points The detection points must be built in to the meter’s logic.

Area ID Scope Detection Description AppSensor Refs
Optical port i Every auth attempt >10 attempts per minute AE3

ii Every auth attempt 6 failed security codes AE2
Configuration iii Each access Updated UT1
Configuration iv Every flash image Update received -
Communications v Each outbound 

connection
Connection made to unapproved 
destination

IE2

Cover vi Enclosure opened Physical tamper switch to detect 
enclosure removal

RP2

Response actions
and thresholds

The automated response actions must not disrupt consumers’ supplies under any 
circumstance. Logging an alert messages to the supplier’s head-end systems are the only 
response actions.

ID (from above) Threshold Response Description AppSensor Refs
(All) 1 event Log locally ASR-A
i, ii, iii, v Any 3 events Alert message to head-end system 

with copy of configuration and recent 
log items

ASR-B

iv, v 1 event Alert message to head-end system ASR-B

These require local logging and alert message signaling capabilities. Non singular event 
thresholds refer to rolling 24 hour periods. No more than one alert message to be sent 
in any 60 minute period.



Part II : Illustrative Case Studies

34

Chapter 8 : Case Study of a Financial Market Trading System

An example of detection capabilities for misuse of inherent application functionality.

Table 6 PROPERTIES FOR THE CASE STUDY OF A FINANCIAL MARKET TRADING SYSTEM FOR THE DETECTION OF 
COLLUSION BETWEEN TRADERS.

Background The operator of a financial trading tool is concerned about collusion between buyers, 
between sellers, and between buyers and sellers. They may attempt to manipulate prices 
to inflate them, perform insider trading, and undertake accommodation trading.

The company cannot track user-to-user communications through other channels (e.g. 
instant messaging, telephone, email and SMS) but has complete insight into the 
activities undertaken using a client-server software application developed internally.

By building detection capabilities directly into the software application, it reduces the 
requirement for centralized collection, logging and complex event analysis. 

Objectives 1. Detect signs of collusion for further investigation
2. User-specific monitoring but must take into account the actions of other users.

Detection points All detection points are related to trading activities. Detection point iii requires an 
examination of multiple group relationships to identify similar patterns.

Area ID Scope Detection Description AppSensor Refs
Trading i Every trade Unexpectedly low price -

ii Every trade Unexpectedly high price -
iii Every trade Similar actions taken by pairs 

or groups of users
-

iv Every trade High trading speed UT2
v Every trade Unexpected trading pattern UT4

Many other types of fraud detection could be implemented in a similar in-application 
manner.

Response actions
and thresholds

No disruption to trading is permitted. All actions are recorded to an audit trail.

ID (from above) Threshold Response Description AppSensor Refs
i, ii, iv Any 10 events Alert anti fraud team ASR-B
iii, v 1 Alert anti fraud team ASR-B

The thresholds can be adjusted on a per-user basis so that suspected misbehavior can 
be watched more closely. The compliance team also review the event data periodically.



Part II – Illustrative Case Studies

35

Chapter 9 : Case Study of a B2C Ecommerce Website

This example illustrates an initial standalone implementation where the development team 
have embedded the detection points into their own business-to-consumer (B2C) 
ecommerce website source code.

Table 7 PROPERTIES FOR THE CASE STUDY OF A B2C ECOMMERCE WEBSITE

Background The retailer’s ecommerce channel accounts for 25% of their turnover. The website is 
comprised primarily of a product catalogue, shopping basket and check-out system, 
customers must register to check-out and pay, but can then also manage their accounts, 
submit reviews and take part in focus group discussions. 

The website is custom built and maintained in-house. The application has been through 
a number of recent revisions to remove identified vulnerabilities. There are no 
centralized input validation and exception handling modules.

Objectives 1. Identify generic attacks as soon as possible so they can be monitored.
2. Detect specific attacks against the custom logic in the product catalogue, shopping 

basket, checkout and payment functions
3. Identify attacks against database content.

Detection points In this initial implementation, the development team want to limit the number of 
detection points to less than ten, albeit some of these will occur in multiple instances. 
For example all requests will have some generic blacklist detection points, and all 
database query results sets will be validated against expected record count ranges (e.g. 
always none, always one, 2-10, 11-100 and 101+). The detection points selected are 
shown below. All exist within the application code, except for the last one (ix) which is 
implemented as triggers in the database that initiate a special web service call to the 
application.

There are no site-wide (all user) thresholds.

Area ID Scope Detection Description AppSensor Refs
Request i Every request Invalid/incorrect HTTP verb RE1, RE2, RE3, RE4

ii Every request SQL injection attempt CIE1
iii Every request Cross-site scripting (XSS) 

attempt
IE1

Catalogue iv Product display Product value mismatch IE4
Basket v Basket handling Basket value mismatch IE4
Payment vi Payment 

authorization
Card authorization failure (Custom)

vii Order completion Price mismatch between order 
& payment

IE4

Database viii Every SELECT query Returned record set size 
incorrect

CIE2

ix - Database table integrity fault IE5

The events are recorded in a database application log table.

Table 7 continued...



Part II : Illustrative Case Studies

36

Response actions
and thresholds

The response actions were selected to block blatant abusers of the site and use alerting 
to operations staff for most other detected events. Threshold comparisons (per IP 
address and per user) will only include events in the previous 24 hours.

ID (from above) Threshold Response Description AppSensor Refs
i, ii, iii Any 1 event Block request ASR-G

Any 3 events by 
user

Log out authenticated user ASR-J

Any 6 events by 
user or and 
individual IP 
address

Block IP address (and 
customer account if known) 
for whole site (manual reset by 
website administrator)

ASR-L, ASR-K

iv, v Either 1 event Alert operations staff ASR-B
Any 2 events Block IP address for dynamic 

areas (1 day auto-reset)
ASR-I

vi 3 events Alert operations staff, and 
redirect back to shopping 
basket summary

ASR-B, ASR-G

vii 1 event Alert operations staff, put 
order on hold, and block future 
order check-out for the 
customer (manual reset)

ASR-B, ASR-D, ASR-I

viii 1 event Alert operations staff, abort the 
current process, display an 
error page, and block the 
customer account (manual 
reset)

ASR-B, ASR-G, ASR-E, 
ASR-K

ix 1 event Alert DBA and operations staff ASR-B
(All) 1 event Increase application logging 

granularity and indicate on 
monitoring dashboard

ASR-A, ASR-C

This will require the ability to:

• Count detection points events for each threshold per IP address, and per 
user, and do this for every request

• Change application logging level, raise alerts to operations staff, change the 
status of an order, terminate website user sessions, redirect responses, block 
individual requests, disable check-out functionality for individual users, block 
access to the whole website for an IP address and for individual IP addresses, 
reset blocks

• Display events on a monitoring dashboard.



Part II – Illustrative Case Studies

37

Chapter 10 : Case Study of B2B Web Services

AppSensor applied to a system that has a small number of strongly authenticated (system) 
user accounts.

Table 8 PROPERTIES FOR THE CASE STUDY OF B2B WEB SERVICES

Background A manufacturer exposes selected suppliers to its acquisition systems via web services.

The permitted web service request source locations are controlled by network firewall 
rules which are monitored and which have robust change control processes. 
Additionally customers must have a current, valid and non-revoked X.509 certificate.

Security requirements were defined at the start of the implementation of the services, 
and were verified during design reviews, static code analysis (code review), dynamic 
testing. An independent specialist security company undertakes penetration testing at 
each release. There is ongoing external and internal vulnerability assessment scanning 
daily.

Suppliers have strict security obligations placed on them and their development 
processes. However, the manufacturer is concerned about misuse of the web services 
by a rogue insider within any of the supplier organizations.

Objectives 1. Block clearly malicious requests to allow time for further investigation.

Detection points The detection points are primarily built into the application’s input validation module, 
but detection points i and ii rely on an internal logging module. Checking the result of 
the XML parser vi is a separate output validation step that had to be added.

Area ID Scope Detection Description AppSensor Refs
Requests i Every request Invalid API entry point ACE3, IE2

ii Every request High rate requests UT2
iii Every request Does not match schema IE4
iv Every request Invalid signature IE4

XML 
parsing

v Every request Invalid values/attributes IE2
vi Every request Parser error returned CIE2

Response actions
and thresholds

Suppliers are not allowed access to the production systems until their methods of 
interaction have been tested and approved. The threshold before response is therefore 
strict.

ID (from above) Threshold Response Description AppSensor Refs
(All) Any 3 events Terminate request, log user 

out, lock user account, raise 
syslog event, and send email 
alert to service owner and 
operations team

ASR-G, ASR-J, ASR-K, 
ASR-C, ASR-B

The threshold comparison reviews all events in the previous 7 day period.



Part II : Illustrative Case Studies

38

Chapter 11 : Case Study of a Document Management System

AppSensor applied to an internal client-server application containing very sensitive 
information, which could affect national security if compromised.

Table 9 PROPERTIES FOR THE CASE STUDY OF A DOCUMENT MANAGEMENT SYSTEM

Background A government agency gathers a large amount of information from disparate sources 
and stores this in a document management system, which is only available to known, 
strongly-authenticated users on an internal private network.

The information is tagged with a custom classification system and access rights are 
strictly enforced. However, the agency is still concerned with the amount of data and 
the possibility of rogue employees going beyond the needs of their assigned work, 
mining the data for personal gain, or on behalf of organized crime or other nation 
states.

The agency is confident in the authentication and authorization security controls 
enforced in the document management system, but have decided to add AppSensor 
functionality to detect suspicious usage of valid functionality.

Objectives 1. Monitor users behavior
2. Identify suspicious usage.

Detection points The detection points are added into the access control library.

Area ID Scope Detection Description AppSensor Refs
Access 
Control

i Every document 
access request

Rate of document access UT2

ii Every search Frequency of use UT4
iii Every document 

display
Frequency of use UT4

The agency has identified a potential detection point external to the application – an 
existing data loss prevention (DLP) system – but have decided to implement that in a 
later phase.

The events are logged to a high-integrity database.

Response actions
and thresholds

Only responses that are transparent to the employee are implemented. The 

ID (from above) Threshold Response Description AppSensor Refs
i 48 per hour Alert operations staff ASR-B
ii, iii +1,000% over 5 d Alert security staff ASR-B

Once the DLP integration is undertaken, it is intended use disabling of functionality 
(ASR-I) when an attack is detected to limit the impact as much as possible.



Part II – Illustrative Case Studies

39

Chapter 12 : Case Study of a Credit Union’s Online Banking

A statistical approach applied to customer-facing banking web applications where there was 
a significant concern regarding malware-infected customer desktop and mobile devices.

Table 10 PROPERTIES FOR THE CASE STUDY OF A CREDIT UNION’S ONLINE BANKING

Background A credit union is redeveloping its online banking systems. It has mature software 
development practices where security is considered at many stages of the development 
lifecycle, and has made a significant investment in infrastructure protection. In the 
redevelopment the credit union wants to take the opportunity to build in advanced 
attack impact-minimizing techniques to protect the web applications. The primary 
concerns are customers whose own computers have been compromised by malware 
(e.g. Citadel, KINS, SpyEye, Zeus), and secondly other fraudulent activity. The credit 
union maintains data flow diagrams for each business process and has identified all the 
state-changing steps deemed to be higher risk. This has been complemented by an 
analysis of known web security incidents from other banks77 in order to define 
placement of detection points that can feed event information into an existing fraud 
prevention analysis engine, developed by the credit union’s statisticians and actuaries, 
but which currently lacks the user and context specific information available from the 
online customer systems.

Objectives 1. Detect early signs of attacks
2. React in order to minimize the impact of the attack.

Detection points Request detection points are numerous and are of two main types; these are 
complemented by reputational data from other internal and external anti-fraud systems.

Area ID Scope Detection Description AppSensor Refs
Request - Every request Usage of a process step UT1

- Every request Per-request token integrity check IE4
- Every request Known trojanized browser attack IE3

Reputation - Every request Address, IP and card blacklists RP2
- Each session Customer profiling RP2
- Each session Third party fraud scoring RP2

The events are sent to the centralized fraud analysis engine that uses a highly 
customized stochastic model to identify malicious behavior. In this case, the events 
recorded are not only misuse, but also per-user usage patterns.

Response actions
and thresholds

The response action is determined in real time at each and every detection point 
activation whether to allow the process to continue, or to perform some other action. 

ID (from above) Threshold Response Description AppSensor Refs
Proceed ASR-P
Proceed but track ASR-A, ASR-D
Prevent transaction ASR-G
Log user out ASR-J
Flag for further investigation ASR-C

(All) (Probabilistic)

Redirect customer to free AV ASR-E



Part II : Illustrative Case Studies

40



Part III : Making It Happen

41

Part III : Making It Happen

This section describes the process of planning, implementing and operating application-
specific attack detection and response. The process is technology agnostic and attempts to 
be descriptive rather than prescriptive, providing awareness, describing the problem set, 
outlining different approaches at a higher level, and some generic approaches. Success 
comes down to many details and the process should be adapted to an organization’s own 
culture, its working practices and, most importantly, the risks it faces.



Part III : Making It Happen

42

Chapter 13 : Introduction

The process to implement AppSensor should not be long and complex, and it is important 
to focus on a minimal set up that provides sufficient detectability of attacks. There is no 
need to be overwhelmed by all the attacks possible. Keep in mind AppSensor should not 
be trying to detect all malicious behavior – AppSensor only needs to detect enough 
obviously behavior to make a decision about the intent of a user as to whether they are 
malicious or not.

The previous illustrative case studies in Part II can also be used as short-cut design patterns. 
Further inspiration is available in Chapter 1 : Application-Specific Attack Detection & Response - 
Technique adoption, and the examples in Part IV : Demonstration Implementations. The remaining 
content of this Part III provides information to build knowledge more about the concepts, 
to implement a more formal process, to gain a deeper understanding, and to learn from 
experience gained with actual production implementations.

Process, culture and technology agnostic

In this guide no particular development methodology is required or assumed. The 
suggested process can be adapted to local methods and culture, and to suit each 
organization's business processes. For many organizations, the steps can be built into 
applications through a process of continual improvement and are well-suited to Agile 
methodologies.

The methodology described here does not identify which technologies should be used. If in 
doubt, initially teams should use what they know best and are familiar with.

Begin with a pilot application

Organizations thinking about AppSensor often begin with a pilot application to learn the 
techniques and build up attack detection skills. This is sometimes an internal application 
only used by developers or created as a proof-of-concept trial. Consider utilizing non-
disruptive response actions only and log everything. However, do give consideration to the 
issues raised in the remainder of this Part III to help ensure a successful, and extensible, 
pilot.

Suggested method

Part I described how real-time detection and response to be built into applications. 
Whenever possible, AppSensor capabilities should be defined in project requirements from 
an early stage, but software can also be refactored or its capabilities enhanced. The 
additional coding should be subject to the same secure development process as another 
other software changes. This includes risk analysis, design, code review, testing, operational 
enablement, etc.



Part III : Making It Happen

43

The recommended approach is to include the following aspects within the organization’s 
own software development practices, in whatever way they are structured, ordered and 
practiced:

• Design
o Strategic requirements
o Detection point selection
o Response action selection
o Threshold definition

• Implementation
• Verification
• Deployment
• Operation.

This method leads to the creation of requirements, user stories and test cases. For more 
formal development practices and for procurement documentation, further reference 
materials may be required such as schedules of detection points, thresholds and responses.

AppSensor and security in the software development life cycle

If organizations already have, or are in the process of building, a comprehensive 
programme60,61 to include security throughout the development life cycle (SDLC), 
considerations for AppSensor should be addressed in the same program.

Some more common secure SDLC (S-SDLC) are cross-referenced in the four tables below. 
The mappings indicate where the use of AppSensor is likely to require changes to existing 
application security practices. At the time of writing this version of the AppSensor Guide 
the relatively new ISO/IET 2703450 is neither complete nor mature enough to provide a 
similar cross-reference.

Of course, these illustrative mapping are not the only activities that are needed to develop 
secure software – a requirement before even considering AppSensor (see Part I : AppSensor 
Overview - Chapter 3 : The AppSensor Approach - Stop! Develop and operate secure applications first).



Part III : Making It Happen

44

The most relevant activities from the Open Software Assurance Maturity Model (Open 
SAMM)41 version 1.0, that align with aspects for using AppSensor, are shown in the table 
below:

Table 11 APPSENSOR ASPECTS MAPPED TO OPEN SAMM ACTIVITIES

AppSensor OWASP Open SAMM
Aspect Function Security Practice Activity Code and Description

PC 1.A Build and maintain compliance guidelinesPolicy & Compliance
PC 2.A Build policies and standards for security and compliance

Governance

Education & Guidance EG 1.B Build and maintain technical guidelines
TA 1.A Build and maintain application-specific threat models
TA 1.B Develop attacker profile from software architecture
TA 2.A Build and maintain abuse-case models per project

Threat Assessment

TA 3.B Elaborate threat models with compensating controls
SR 1.A Derive security requirements from business functionality
SR 1.B Evaluate security and compliance guidance for 

requirements
SR 2.A Build an access control matrix for resources and 

capabilities
SR 2.B Specify security requirements based on known risks

Security Requirements

SR 3.A Build security requirements into supplier agreements
SA 1.B Explicitly apply security principles to design
SA 2.B Identify security design patterns from architecture

Design

Construction

Security Architecture

SA 3.A Establish formal reference architectures and platforms
Verification Design Review DR 1.A Identify software attack surface

Implementation Governance Policy & Compliance PC 2.B Establish project audit practice
Verification Construction Security Architecture SA 3.B Validate usage of frameworks, patterns, and platforms

DR 1.B Analyze design against known security requirementsDesign Review
DR 2.A Inspect for complete provision of security mechanisms

Verification

Security Testing ST 1.A Derive test cases from known security requirements
VM 1.B Create informal security response teamsVulnerability 

Management VM 2.A Establish consistent incident response process
OE 1.A Capture critical security information for deployment

Deployment Deployment

Operational 
Enablement OE 1.B Document procedures for typical application alerts

EH 1.A Maintain operational environment specificationEnvironment 
Hardening EH 3.A Identify and deploy relevant operations protection tools

Operation Deployment

Operational 
Enablement

OE 2.B Maintain formal operational security guides

The most relevant activities from the Building Security In Maturity Model (BSIMM)57 
version 6, that align with aspects for using AppSensor, are shown in the table on the 
following page.



Part III : Making It Happen

45

Table 12 APPSENSOR ASPECTS MAPPED TO BSIMM ACTIVITIES

AppSensor BSIMM
Aspect Domain Practice Activity Code and Description

Strategy and Metrics SM1.6 Require security sign-off
CP1.3 Create policy
CP2.3 Implement and track controls for compliance
CP2.4 Paper all vendor contracts with software security SLAs
CP3.2 Impose policy on vendors

Governance
Compliance and Policy

Attack Models AM1.1 Build and maintain a top N possible attacks list
AM1.3 Identify potential attackers
AM1.4 Collect and publish potential attack stories
AM2.1 Build attack patterns and abuse cases tied to potential 

attackers
AM2.2 Create technology-specific attack patterns
SFD1.2 Engage SSG with architectureSecurity Features and 

Design SFD3.1 Form a review board or central committee to approve and 
maintain secure design patterns

SR1.1 Create security standards
SR1.3 Translate compliance constraints to requirements
SR2.2 Create a standards review board
SR2.5 Create SLA boilerplate

Design

Intelligence

Standards and 
Requirements

SR3.2 Communicate standards to vendors
Intelligence Security Features and 

Design
SFD1.1 Build and publish security features

AA1.1 Perform security feature review

Implementation

SSDL 
Touchpoints

Architecture Analysis
AA1.2 Perform design review for high-risk applications

Architecture Analysis AA2.1 Define and use AA processVerification
Code Review CR2.2 Enforce coding standards

ST1.1 Ensure QA supports edge/boundary value condition 
testing

ST1.3 Drive tests with security requirements and security features

SSDL 
Touchpoints

Security Testing

ST3.5 Begin to build and apply adversarial security tests (abuse 
cases)

Software Environment SE2.2 Publish installation guidesDeployment Deployment
Configuration Mgmt 
and Vulnerability Mgmt

CMVM1.1 Create or interface with incident response

Governance Compliance and Policy CP3.3 Drive feedback from SDLC data back to policy
Intelligence Attack Models AM1.5 Gather attack intelligence

Software Environment SE1.1 Use application input monitoring
SE3.3 Use application behaviour monitoring and diagnostics
CMVM1.2 Identify software defects found in operations monitoring 

and feed them back to development

Operation 

Deployment

Configuration Mgmt 
and Vulnerability Mgmt

CMVM3.3 Simulate software crisis



Part III : Making It Happen

46

The high-level areas from the BITS Financial Services Roundtable Software Assurance 
Framework45 January 2012 version, that align with aspects for using AppSensor, are shown 
in the table below.

Table 13 APPSENSOR ASPECTS MAPPED TO BITS SOFTWARE ASSURANCE FRAMEWORK AREAS

AppSensor BITS Framework
Aspect Area
Design Threat Modelling

Security Software Assurance Development StandardImplementation
Coding Practices

Verification Security Testing
Deployment Pre-Implementation Practices
Operation Post Implementation Phase Controls

The high-level processes from Microsoft Security Development Lifecycle (MS SDL)55 
Process Guidance version 5.2, that align with aspects for using AppSensor, are shown in 
the table below:

Table 14 APPSENSOR ASPECTS MAPPED TO MS SDL PROCESSES

AppSensor MS SDL
Aspect Phase Process
Design Requirements Establish security requirements

Security and privacy risk assessment
Design Analyze attack surface

Threat modelling
Implementation - -
Verification Verification Attack surface review
Deployment Release Incident response plan
Operation Response Execute incident response plan

Next steps

The following two chapters describe the most typical AppSensor implementations. The 
following chapters can also be read to provide additional ideas and considerations for a 
more formal approach and/or complex AppSensor deployment.

Implementation issues are also discussed in the comparative research and experiment 
undertaken independently by Pål Thomassen “AppSensor: Attack-Aware Applications 
Compared Against a Web Application Firewall and an Intrusion Detection System”33. This 
paper also includes a large number of useful references for further reading.



Part III : Making It Happen

47

Chapter 14 : Design and Implementation

The design stage includes identifying strategic considerations, sensor selection and 
positioning, and determination of the appropriate type of response to block or mitigate 
attacks based on an analysis of business risk, process criticality and user experience 
requirements.

Management support

The implementation of AppSensor should not be undertaken in isolation from other 
information security initiatives. Consideration should be given to the effects on all users 
and especially any legal, regulatory and contractual obligations. Clearly low-risk, internal 
only applications with a small user base may well have many fewer considerations, but even 
with these aspects like monitoring of staff could be an issue. In all cases the event data is 
likely to be valuable and could contain intellectual property.

Existing change management processes that include security, privacy and compliance risk 
assessment should be leveraged to gain management understanding and support. After all, 
implementing AppSensor should be a success story so give everyone a chance to be part of 
the success story.

Organizational policy

It is helpful to agree some sort of high-level guidance on what automated actions are 
deemed to be acceptable – determined by a range of appropriate stakeholders such as 
business and product managers, development management, software architects, lead 
developers and legal/compliance officers. The stakeholders could include representatives 
from human resources, customers or partner organizations depending upon the types of 
users. This is necessary even if a very Agile development method is used. The “policy” 
should consider the organization's risk tolerance and the desired user experience (e.g. 
acceptability of changes to service level and function availability, changes to usability, 
legality).

Remember "users" are not always people and can be other information systems. The 
selected response actions will also depend on the purpose of the application such as 
whether it is a sales channel, a marketing asset, a service for citizens, a high-availability 
process or safety critical system.

The important point to re-emphasize is that AppSensor-like functionality must never affect 
normal users. This is quite difficult for conventional defensive mechanisms, and should be 
straightforward for applications. Therefore any concerns about the effect on (normal) users 
can often be discounted, to allow the group to focus on what the business considers is 
unreasonable and at what point it should take action and how. An organization’s 



Part III : Making It Happen

48

information security policy and incident response plan may help determine the approach, 
but often consideration of application response is unlikely to have occurred previously.

A policy is mainly focused on the acceptable responses, but in turn this can help define 
what type of attack detection is required. Here are some different, and sometimes 
contradictory, points of view various organizations may have:

• Only allow a few security events that are obviously attacks or several minor events 
which are just suspicious

• Do not prevent users doing anything, but log, monitor and alert fervently
• Never log out or lock out site administrators, but ensure they are aware of all 

suspicious and attack events, and know that their own activity is being recorded in 
tamper-evident audit logs with any AppSensor alerts being sent to their supervisors

• Any two attacks each with more than 75% certainty that it is an attack must log the 
user out and lock their account immediately, and this can only be reset by two 
administrators from different locations acting together

• Never disable any functionality
• Authenticated administrators who have access to the most functionality and the 

greatest data access permissions should have the strictest thresholds before a 
response action is undertaken

• Active (against the user) responses will only be used for (malicious) users external 
to the corporate network

• Active responses will only be used for (malicious) users internal to the corporate 
network

• Application functionality will not be changed unless the user's source location is in 
a higher-risk country

• Ensure the (malicious) user is oblivious to the response actions being taken
• Nothing must be done which might affect WCAG 2.0 Level AA Conformance
• Public unauthenticated users are the least trusted and should have the most strict 

thresholds (i.e. lowest number of events before an attack is determined).

Some AppSensor policy requirements can usually be gleaned from existing application 
requirements. For example, it may be necessary to ensure that the response actions do not:

• Undermine advertising claims about service provision (e.g. capacity, rate of use)
• Contradict the organization’s culture, mission or approach
• Contravene contractual obligations such as service level agreements (e.g. uptime)
• Conflict with a corporate policy or other mandate
• Break a regulatory requirement
• Perform any illegal act in the jurisdiction of the application and/or the users.



Part III : Making It Happen

49

It can be productive to discuss the examples above in a workshop-style discussion to help 
define some high-level policies before attempting to specify appropriate detection points, 
responses and related thresholds. The facilitator should be able to steer the group so that 
relevant aspects are covered.

Another approach to developing a high-level policy is to work through the main entry 
points or functionality for the target application(s) and, from the perspective of each user 
role, write some general rules for response that are allowed and appropriate. Take into 
consideration the effect the response actions might have on users and other systems, as 
well as the particular application. At this stage it is better to focus less on technical issues 
such as “how do we do this”, and more on user experience and business risk viewpoints. 

Try to define 10-15 rules that apply to all users. However it is likely there will be demands 
for greater granularity in the response actions, and architects and developers may want to 
allow for this in their specifications and designs.

Architecture

Another factor in what is achievable using AppSensor is how the functionality can be 
implemented. The architecture of the target application(s), environments, and availability of 
source code all influence what is possible. Code can be completely custom-built or it could 
consume demonstration code produced for the OWASP AppSensor Project. For a new 
application, AppSensor functionality can be defined in requirements documentation for in-
house (e.g. functional specifications) or out-sourced development using an invitation to 
tender (ITT), request for proposal (RFP), functional specification associated with a draft 
contract, etc.

The key components required are:

• Detection points within the execution path of an application’s program that allows 
event generation when a tracked observable occurrence takes place

• Event store to record events
• Event analysis engine that analyses incoming event data to determine whether an 

attack is taking place, based on a specified policy (of detection point activity and 
related time-dependent thresholds)

• Event manager that monitors the event analysis engine for any appropriate 
response actions to execute

• Responses taken as the result of attack recognition
• Reporting client for presentation of data stored in the event analysis engine.

The detection points generally need to be located within the application code base, and 
where there are existing modules performing centralized input valid and output validation, 
this can reduce the impact of additional code. In certain cases there may be sufficient event 



Part III : Making It Happen

50

information in application logs, and those could be used for attack determination by an 
event analysis engine. But the use of existing logs alone is unusual and if the granularity of 
event information is so good, the detection points probably already exist. 

Attack determination logic will need to be developed. This would typically be in local code, 
using a standalone service engine or using some form of events and log management 
system such as for Security Information Event Management (SIEM), threat information 
store, other continuous monitoring systems, or fraud detection systems. If source code is 
not available or cannot be changed, consider whether application logs can be used as a 
source of event data – but these are not normally adequate. Otherwise consideration could 
be given to externalizing the detection to a proxy (e.g. a proxy such as a web application 
firewall, filter or guard). For more inspiration see the example implementations in Part IV : 
Demonstration Implementations.

When an application is deployed using multiple hosts and there is a centralized analysis 
engine, consideration about how events from multiple hosts are aggregated, correlated and 
analyzed.

Where necessary, integration with other systems must be considered as early as possible. 
These may include:

• Network firewalls and used for blocking response actions
• Intermediate network points (e.g. local stations, aggregators, collectors, proxies, 

traffic and load balancers)
• Application firewalls as detection points and/or response actions
• Electronic mail and other messaging systems for alerts
• Systems providing information as reputational detection points
• Related applications as detection points
• Security vulnerability information, reporting, virtual patching78,79 and related 

management systems
• Other operational logging, monitoring and management information systems.

For inter-system communication, ensure there is adequate system identification assurance 
and that sufficient protection exists for the confidentiality and integrity of messages.

Detection point selection

A full list of example detection points is included in Table 30 in Part VI : Reference Materials - 
Detection Points - Listing. At first consider implementing just 5-10 detection points for most 
applications. In many cases a “single” detection point could actually monitor many different 
URLs (e.g. input validation exception in a centralized module that checks every parameter 
name and value). In other cases a single generic type of detection point may need to have 
multiple specific instances (e.g. validating the output of database queries).



Part III : Making It Happen

51

The six best detection point types

Detection points for the following six types of event are considered to be very good attack 
identifiers and should be considered first:

• Authorization failures (e.g. resource or action requested with insufficient privileges)
• Client-side input validation bypass (e.g. data format mismatch or missing 

mandatory values)
• Whitelist input validation failures (e.g. invalid data type or data length/range)
• Authentication failures (e.g. password change failures, re-authentication failure)
• Blatant code injection attack (e.g. common SQL injection strings)
• High rate of function use (e.g. requests/pages/views/windows per 5 minutes).

Part II : Illustrative Case Studies provides additional inspiration for detection points. Many 
additional ideas for detection point selection are provided in Chapter 16 : Advanced Detection 
Points.

Document the aims and requirements of each detection point selected, like any other 
software requirement.

Thresholds and responses

If possible, begin implementation of AppSensor in areas of the application where users are 
already authenticated such as customers, clients, colleagues or citizens. By default, use the 
following attack detection thresholds:

• 3 events due by any detection points activated by a single user in a 24 hour period
• 6 events due by any detection points activated by a single user in a 4 hour period

And, initially perhaps only consider the following responses:

• Account log out
• Account lock out for a fixed time period
• Administrator notification

The thresholds and actions can then be combined. For example:

• If any 3 detection points are activated in 24 hours, create a support event ticket and 
send an email alert to operations team

• If any 6 detection point are activated in 4 hours, log the user out and lock the 
account for 2 hours



Part III : Making It Happen

52

To begin with operate only with alert responses until the number of such situations 
becomes known and confirmed that it does not affect any normal application usage.

Part II : Illustrative Case Studies shows other thresholds and responses. Many additional ideas 
and considerations are provided in Chapter 17 : Advanced Thresholds, where the use of existing 
application functionality for responses is also discussed.

Planning for operation

In whatever way the threshold and response selection are implemented, ensure they can be 
easily customized through future configuration changes rather than code modification. 
Example alterations that should be allowed for are:

• Amending an existing attack detection threshold (e.g. the number of events and/or 
the time period)

• Amending the response action of an existing threshold (e.g. to another one or 
more supported actions)

• Adding new thresholds across single, all or any group of detection points (e.g. any 
N events across detection points A and B only in period P)

• Deleting an attack detection threshold.

It may also be necessary to clear or reset all event data. Some broader questions to consider 
when considering the implementation are:

• Should there be an option to overrule all responses so that they log only?
• Could this "log only" option for certain source locations (e.g. an IP address) which 

applies to only certain strongly authenticated users and is of limited time duration, 
raises administrative alerts when set, removed or expires, and includes a process for 
management approval?

• Can AppSensor data be exported into risk management and vulnerability 
management systems?

• Can AppSensor data be exported in real time to security integration manager (SIM) 
systems?

An AppSensor implementation that detects attacks in real time is likely to cause significant 
difficulties for functional and security testing. The “log only” concept mentioned above 
could be utilized for these situations. Further considerations are discussed in the advanced 
discussions in Chapter 16 : Advanced Detection Points and Chapter 17 : Advanced Thresholds.

Implementation

Altering existing code always introduces risks, and future maintainability must be 
considered. Where possible build for an extensible architecture so that the minimum 
amount of effort is used for changes to other applications or during the design and 



Part III : Making It Happen

53

implementation of AppSensor for new applications. Consider if a service-orientated 
approach can be designed, such as illustrated in the example implementation described in 
Chapter 20 : Web Services (AppSensor WS).

The implementation is always application, framework, language, deployment and 
architecture specific. The detection points are usually highly integrated within the 
application, but the event store, event analysis engine, attack detection and response 
selection may be less so. The types of response actions chosen may mean changes to the 
application code unless they are all externalized (e.g. to network devices).

For all code modifications, ensure these follow the same software development life cycle 
practices as other application code, including secure coding practices. In particular, assume 
tuning of all settings and thresholds will be required. Develop test cases or unit tests for 
each detection point, threshold activation and response.

For outsourced development, identify who owns code and any intellectual property.

Threshold and response selection configuration settings must have sufficient protection to 
prevent them being modified by the application itself or by unauthorized users. Consider 
restricting knowledge about the precise detection points and configuration.



Part III : Making It Happen

54

Chapter 15 : Verification, Deployment and Operation

Introduction

This chapter looks at the key steps for a successful deployment of AppSensor to a 
production environment.

Verification

Like for all software development, ensure AppSensor's correct implementation is verified 
(the correct detection points are activated, event data are recorded, attack detection occurs 
as planned and the correct responses take place) through the use of testing processes in 
development, in QA, at deployment, at launch and periodically thereafter. AppSensor is 
part of the application’s codebase. If possible unit tests be created during the specification 
or design stages, but a mixture of approaches is recommended:

• Unit tests written for the AppSensor functionality
• Using example attacks
• Running an application security scanner against the application
• Mimicking the behavior of desirable search engine robots
• Replaying actual valid application traffic (if existing).

AppSensor functionality should be included in integration and system test plans. Any 
settings that can be used to change or override AppSensor behavior (e.g. to set all actions 
to “log only”) must also be tested.

It is also useful to have AppSensor enabled during usability testing so that any concerns 
about the impact on normal application usage can be addressed, and evidence gathered to 
document these concerns to be unwarranted.

Do not attempt to verify AppSensor by testing the implementation with known one-shot 
attacks (e.g. exploits of known weaknesses). Fix the issue instead, or otherwise mitigate it. 
AppSensor does not protect vulnerable applications. Its purpose is not to detect every 
attack possible, but only to detect enough to identify a user as an attacker, and then 
respond in an appropriate manner.

Deployment

Utilize existing change control processes for deployment. Build in time to allow tuning of 
the system, especially to configure response thresholds. AppSensor event timestamps must 
be synchronized with trusted time sources to allow cross-system event correlation and to 
support incident investigations. Additional defenses in production environments may 
change or could mask information that would be identified as malicious events by the 



Part III : Making It Happen

55

AppSensor detection points. Therefore, re-run verification checks to ensure the deployed 
application responds in the same manner as in non-production systems.

Operation

Logging, signaling, monitoring and reporting

Where possible event and attack data should be incorporated into centralized logging and 
monitoring systems. These data can complement other event logging information from 
network and host devices. 

It is recommended that standards-consistent logging formats are utilized whenever 
possible. But where nothing exists, or application-specific logs are required. See Part III : 
Making It Happen - Chapter 18 : AppSensor and Application Event Logging.

Signaling may also be required to forward event, attack and response data to other devices 
such as network firewalls, application firewalls, traffic management devices, and other 
business systems including management reporting, CRM and correlation engines (e.g. fraud 
management). Furthermore signaling of information can be used to share attacker data 
within industry exchanges, or with regulators, or open Computer Emergency 
Response/Readiness Teams (CERTs).

The data format suitable for signaling is context-specific but for compatibility could use 
industry and government formats such as one of the following.

• Common event format (CEF)80

• The XML schema Incident Object Description Exchange Format (IODEF)81 and 
email format X-ARF (Extended Abuse Reporting Format)82 for sharing computer 
security incident information by Computer Security Incident Response Teams 
(CSIRTs)

• Structured Threat Information eXpression (STIX)83 for cyber threat intelligence 
information, sponsored by the office of Cybersecurity and Communications at the 
U.S. Department of Homeland Security

• The schema Cyber Observable eXpression (CybOX)84 for the specification, 
capture, characterization, and communication of events or stateful properties that 
occur in the operational cyber domain, also sponsored by the office of 
Cybersecurity and Communications at the U.S. Department of Homeland Security

• Industry-specific standards (e.g. ANSI C12.2285 message services for smart grids, 
Automated Copyright Notice System86 for copyright infringement notices)

• Vendor-specific standards (e.g. Vocabulary for Event Recording and Incident 
Sharing87 common language for describing security incidents).



Part III : Making It Happen

56

The protocol/format selected should be compatible with an organization’s own standards 
and the receiving systems, or allow automated conversion using a filter into such a format. 
Consideration must be given to the adequate identification of event and attack data sources, 
and to prevent modification, interception, deletion and replay of data. The sensitivity of 
data included in the signaled information should also be considered to determine the 
necessary measures to prevent unauthorized access while in transit and at rest.

Organizations that deploy AppSensor-like capabilities are encouraged to tag event data with 
the example detection point and response types, so that data has greater future inter-
operability.

AppSensor has defined the following formats for signaling:

• Events:
o JSON – AppSensor Event Format (AEF)
o AppSensor event data using Common Event Format (CEF)

Attacks and responses may be defined in the future. The syntaxes are enumerated in Part 
VI : Reference Materials - Data Signaling Exchange Formats.

AppSensor event and attack data should arise infrequently in a well-designed and properly 
verified implementation. Thus the requirements for logging, monitoring and reporting on 
these data may be different than other sources of security event data:

• Usage by normal users should not generate any event data
• Attack event data has a very high degree of confidence

Consequently there is no need to examine large quantities of data to identify attacks. This 
alters the requirements for reports and visual dashboards. Combining AppSensor data with 
other noisier source may mask important information. However, combining data provides a 
wider view of all types of attack (network, host and application).

Dashboards

By its nature, the high-confidence attack data and application insight available using 
AppSensor tends to be a different from many other types of security event data. A pure 
AppSensor-only dashboard for a single application ought to look like the mock-up shown 
in Figure 5 below i.e. empty. This is because the actions of normal users, even non-malicious 
users making mistakes, should not usually be AppSensor events.

Figure 6 illustrates how specific an AppSensor attack determination event should be. And 
Figure 7 shows how data could be shared with other applications such as a CRM in real 
time.



Part III : Making It Happen

57

Figure 5 AN IMAGINARY APPSENSOR DASHBOARD UNDER NORMAL OPERATIONAL CONDITIONS I.E. BLANK

Figure 6 THE IMAGINARY APPSENSOR DASHBOARD WHEN A USER IS IDENTIFIED AS AN ATTACKER

Figure 7 THE IMAGINARY APPSENSOR DASHBOARD DEMONSTRATING APPSENSOR CROSS-SYSTEM INTEGRATION



Part III : Making It Happen

58

These present very clear information and no drill down is required. Actions have already 
been undertaken automatically to the defined policy. Of course, some ability to view 
multiple and past events is needed. This is quite different to the usual view of security event 
dashboards, where large volumes of data need to be aggregated, collated, analyzed and 
presented in an understandable manner.

However, AppSensor dashboards can be created using the functionality built into popular 
security event management tools and log visualization tools like Logstash with Kibana, 
OSSEC with Analogi, Loggly, Solar Winds and Splunk. OWASP does not endorse or 
recommend any commercial products or services and most products classified as Security 
(Incident) Event Management (SIEM) systems are also capable of consuming AppSensor 
event and attack data when suitably formatted and sent. See Part V : Model Dashboards - 
Chapter 27 : Security Event Management Tools for some examples. But as mentioned above, it 
may be necessary to segregate AppSensor data from the noise of other less-specific event 
data. Some organizations use AppSensor data primarily to enhance the analysis of other 
security event data.

Application-specific dashboards rendering AppSensor data have already been created and 
demonstrated. Furthermore, where event and attack data are being gathered primarily using 
the ModSecurity web application firewall, or that format has been used to log such data 
elsewhere, the jwall.org Audit Console88 or WAF-FLE89 could be used. For ideas about 
using these, see Part V : Model Dashboards.

Bug, defect and vulnerability tracking systems can also be used to expose knowledge from 
AppSensor data. See Part V : Model Dashboards - Chapter 29 : Application Vulnerability Tracking 
for further ideas.

Operational tuning

Attack detection thresholds and responses will need to be amended during operation. This 
may be due to selecting incorrect values during planning, or due to unknown information 
related to the application and its users, or due to changes in the application’s functionality 
or usage over time. See the advanced discussions in Chapter 16 : Advanced Detection Points - 
Optimization and Chapter 17 : Advanced Thresholds and Responses - Threshold tuning.

The work to ensure the thresholds and response configuration can be configured separately 
from the code will be vital here. All changes must of cause go through relevant risk 
assessment and change management processes to ensure they do not have an adverse effect 
on normal users, the security of the application and its data, any compliance or other 
business mandates. Where possible, real application usage should also be replayed through 
test systems to assess the changes. Even with complete regression testing of an application, 
it is still advisable to allow new and updated AppSensor detection points to only use non-
disruptive responses initially (e.g. logging changes, alerting administrators), or consider only 
applying them to a subset of users to confirm the dynamics in production systems.



Part III : Making It Happen

59

Review, change control and remodeling

There should be a periodic review of the AppSensor implementation to ensure it is 
operating correctly. Consideration of AppSensor should be built into change management 
practices so that software releases do not adversely impact upon AppSensor and that 
opportunities for additional detection points can be considered.

Control validation

Periodically run AppSensor unit tests against the production environment to ensure the 
defensive measures are in place, working as expected and that event information flows 
through to the appropriate operational and management reports.

Incident management

Consider how event and attack data from AppSensor should be incorporated into 
centralized incident identification and management processes, and update the incident 
response plan to take into account the automatic actions undertaken by AppSensor. Build 
AppSensor-sourced events into incident response plan scenarios and tests.

When application security incidents occur, consideration should always be given to how the 
root cause could have been prevented or the “kill chain” broken. The first reaction should 
not be to alter AppSensor detection points, thresholds and responses to match a particular 
attack. It is certainly valid to consider how the incident circumvented all controls, and 
whether the attacker could have been detected sooner, but the root cause is usually related 
to activities earlier in the SDLC.



Part III : Making It Happen

60

Chapter 16 : Advanced Detection Points

Introduction

This chapter examines a more formal approach to the selection and definition of detection 
points.

Approach

In more advanced AppSensor implementations, the aim should also be for simplicity, not 
complexity. It is important not to be overwhelmed by the many choices available; the ideas 
in Part II : Illustrative Case Studies show how detections points can be used in practical 
implementations.

Additional code increases complexity. However if an existing application has already been 
developed with security built in, obvious locations for detection points are likely to already 
exist (e.g. input validation, exception handing, logging) and similarly some local response 
actions may already be being used (e.g. reject the input, ask the user to re-enter text, log the 
user out, etc).

At first, consider the detection requirements to create an initial model, and then look at 
how to optimize this model and check it using attack analysis before considering the 
response actions in Chapter 17 : Advanced Thresholds and Responses.

The analysis is suitable both for consideration during procurement, as well as development 
processes. Outsourced development and services could be asked to implement AppSensor 
and provide access to the event data.

Inspirational detection points

Many standard example detection points have been documented. The detection point IDs 
and titles are summarized in Table 30 in Part VI : Reference Materials - Detection Points - Listing. 
They are also arranged there in various categorizations.

Each example detection point type is described in more detail in the subsequent tables. 
Some of the terminology, considerations and examples tend to be web application biased 
due to the significant proportion of software applications that are now delivered in this 
manner. However, the approaches can be used in many other sorts of architectures and 
technologies, and just need to be viewed in an alternative manner.

The reputation detection points could be treated in one of two ways.

• Like any other detection point contributing to the count of suspicious events 
• Used to alter threshold levels, or associated response actions such as logging level. 



Part III : Making It Happen

61

The former should be used with caution since they could lead to event data collection 
where the confidence in knowing these are attack events is reduced.

Detection point requirements

Given the strategic requirements such as a policy and architectural approach (discussed 
previously), the scope of the application(s) must be understood. Existing applications 
should have documentation relating to their structure and functionality; these may be some 
of the artifacts produced during design and/or risk assessment processes. Where possible 
ensure the following are known:

• The different roles users fall into, and how these are allocated
• All the valid application entry points (e.g. for desktop applications all user interface 

controls, for web applications whether POST and/or GET should be used and 
whether SSL/TLS is mandatory, optional or prohibited)

• Which of the entry points change state
• Which users/roles have access to these entry points
• The broad functionality blocks and trust boundaries (e.g. data flow diagrams)
• The various inputs for each entry point (form, URL query string and path 

parameters, HTTP headers including cookies), and their data types and acceptable 
values

• Which of the inputs may be manipulated by users and whether the interface for 
doing that is constrained (e.g. radio buttons and select elements) and whether there 
is any client-side validation for any of the elements

• Whether there is functionality relating to authentication and session management.

Additionally, access to source code of an existing application can aid detection point 
selection and positioning, since there will be greater knowledge about data flow and security 
mechanisms that already exist.

Firstly it is necessary to identify possible (candidate) detection points. The candidate 
detection points can be selected using application risk classification, threat assessment (e.g. 
attack surface modeling, threat analysis, misuse/abuse cases, common attack patterns) or 
combinations of these.

A broad-brush approach to select candidate detection points is to base it solely on the 
category types most appropriate for various application risk ratings. For example: “All Class 
X applications will have whitelist input validation detection points”. Risk is organization 
dependent and may change as threats alter. However, this type of approach is not 
recommended until a number of applications have been "instrumented" so that the 
organization has sufficient experience, and has been able to adjust the detection points to 
match its own risk needs. The knowledge can then be applied to target other applications in 
the organization’s portfolio with a similar risk profile. It is a good way to extend a tried and 
tested approach.



Part III : Making It Happen

62

The actual threats, possible vulnerabilities and the potential impacts can also be used to 
select candidate detection points. Remember it is not always the best approach to use 
AppSensor to detect individual specific attacks - keep in mind the need to look for clearly 
malicious general behavior (before an actual vulnerability is discovered and an exploit 
created). In an earlier implementation guide90 there is a multi-part chart cross-referencing 
the detection points with two well-known classifications:

• Web Application Security Consortium (WASC) Threat Classification91

o Attacks
o Weaknesses

• OWASP Top Ten 2010 - The Ten Most Critical Web Application Security Risks.

These can be used with individual application threat assessments and other forms of risk 
analysis to identify candidate detection points from the standard examples. Consideration 
should also be given to additional custom detection points for specific business logic 
threats that have been identified.

The OWASP Cornucopia92 card game, which helps enumerate security requirements, has 
cross-references between the requirements, AppSensor detection points and other 
information sources.

Further ideas can be found in the recent book “Web Application Defender's Cookbook: 
Battling Hackers and Protecting Users”93 which discusses how ModSecurity can be used to 
protect applications.

Model creation

Once there is a list of candidate detection points, they should be specified further to define:

• Purpose 
• General statement of its functionality
• Details of any prerequisites
• Related detection points.

The examples and considerations in the schedule of example detection points (Part VI : 
Reference Materials) can be used as a guide here. Each application may require multiple 
versions of the same detection point e.g. IE3 whitelist validation of parameter names, IE3 
whitelist validation of IP addresses, etc.

For each point begin a specification sheet like the examples in Figure 38 and Figure 39 in Part 
VI : Reference Materials - Detection Points - Detection point specification sheets. These should identify 
the AppSensor identity code and the more specific purpose for the particular application.



Part III : Making It Happen

63

The "Series" number in the figures will be used as the starting point numbering for 
sequential numbering of each detection point instance e.g. IE1-1001, IE1-1002, etc. It is 
possible to have identical AppSensor detection point identity codes (e.g. IE1) but with 
different purposes (e.g. the whitelist is source IP addresses rather than parameter values) 
and those should have a different series numbering e.g. 1000, 2000, etc. Where data will be 
aggregated by some other system, rather than just locally, it will be necessary to differentiate 
the event sources, and some form of identity standard should be considered. The 
shorthand might be IE1-1012, but the full identity might include the host, application name 
as well. For example, “WEB05-WEBSHOP-IE1-1012”.

At this stage, these specification sheets should be independent of where the detection 
points will be located, and should not include any consideration of response actions.

Aggregating detection points need slightly different specification. The trend and 
comparison period for each detection point must also be identified. For example these 
might include both technical and business tests:

• 5 different usernames tried in 30 minutes (AE1)
• The source location changes to any other continent (SE5)
• Number of orders placed in 1 hour (UT1)
• Number of logouts in 5 minutes (STE1)
• Number of new site registrations in 15 minutes (STE3)
• Number of shopping carts abandoned in 1 hour (STE3).

Once the draft specification sheets are complete, it can be useful to also create a high-level 
overview of the application showing the main processing blocks/functionality perhaps in 
the style of a data flow diagram. Then, using a list of the site's functionality and/or different 
usage scenarios together with the specification sheets, mark up the approximate positions 
of the various detection points identified. Many usage scenarios will have very similar data 
flows and can be grouped together.

Identify other systems the application exchanges data with and optionally include an 
indication of known trust boundaries. Examine the charts and look for additional detection 
point requirements. For example, consider input validation and the number of returned 
records (CIE2).

These should begin to show how it makes sense to undertake the discrete generic pre-
processing detection points in centralized functionality since it will be common to almost 
all requests. The discrete business layer detection points will be associated with particular 
application functions.

Create a summary sheet that defines the proposed detection point locations for each type 
such as the examples in Figure 40 and Figure 41. In these, whitelist input validation (a 



Part III : Making It Happen

64

discrete business layer detection point) may occur in very many locations in the application 
code, and discrete generic pre-processing detection points are likely to exist in very much 
fewer, and possibly a single, locations. The content of these schedules is entirely dependent 
on what is necessary for the particular organization, and in some cases not everything will 
be finalized at this stage.

This is the initial AppSensor model for an application, comprising the specification sheets 
and optional diagrams.

Optimization

The candidate detection points should now have initial specifications. It is necessary to 
make sure the purposes and descriptions created perform correctly. Beginning with the 
specification sheets and data flow diagrams, optimize the detection point model in three 
ways:

• To maintain a high confidence in attack identification through adjusting the 
sensitivity

• To consider relationships with other systems and the effects these may have on 
detection points

• To determine if any detection points can be removed to eliminate overlaps and 
duplicates.

High confidence in attack identification

During this stage, consider what could go wrong with input data. Ensure that the detection 
points are tuned to detect malicious behavior and not just user errors – some could be 
specified in a way that leads to events occurring due to normal behavior. In Figure 1 the 
range of user behavior was used to illustrate that malicious attacks are different to normal 
application use. Figure 8 below shows how this approach can be applied to individual input 
values where the type and format of an acceptable value may have some tolerance between 
what is acceptable and what is unacceptable:

Figure 8 THE SPECTRUM OF APPLICATION ACCEPTABLE USAGE ILLUSTRATING HOW NORMAL USE REQUIRES INPUT 
VALIDATION TO CATER FOR A RANGE OF USER-PROVIDED INPUT



Part III : Making It Happen

65

Some "invalid" user data examples are shown in Figure 9 on the following page. Users may 
copy and paste information into form fields, or put the data in the wrong field, or use an 
unexpected format such as when entering a phone number. Applications should allow 
some degree of variation in user behavior and thus allow for normal user error. It is 
necessary to check the proposed detection points will not inadvertently flag what might be 
normal behavior as an attack. For each detection point, examine possible scenarios where 
the detection point might be fired by normal, or non-malicious use. This will help tune the 
system helping us choose appropriate response actions. For each detection point consider:

• Automated non-malicious systems (e.g. web crawlers)
• Human error (misunderstanding, typographical)
• Input device errors (e.g. conversion of voice to text, truncation of a URL in a link)
• Specificity of error threshold (e.g. space, hyphen and parentheses characters in a 

telephone number, past/future application changes such as old URLs, forms)
• Network configuration and architecture.

For example, an application's entry points are well defined and a detection point is chosen 
to be activated when a request is made for any other URL (e.g. force browsing, URL 
whitelisting). The application may be able to monitor HTTP “not found” (response status 
code 404) errors and other invalid URLs using an internal module or it could consume such 
data from another device (e.g. web server logs or a web application firewall) if this can be 
done in real time. But a public web application is likely to receive a large number of non-
malicious 404s and these will not normally be attacks. The ability for AppSensor to 
maintain a high degree of confidence in attack identification in this example this depends 
upon the way the detection point and response are specified.

Another example would be an invalid ID parameter. If the options are provided to the user 
in a constrained interface element like a form select element, it is more suspicious than if 
there are some unexpected characters in a form text element.

Figure 9 THE SPECTRUM OF APPLICATION ACCEPTABLE USAGE SHOWING HOW SOME UNACCEPTABLE DATA INPUT ARE 
MUCH MORE LIKELY TO INDICATE A MALICIOUS USER



Part III : Making It Happen

66

Some examples for detection points which could be susceptible to these types of sensitivity 
problems are expanded upon in Part VI : Reference Materials - Detailed descriptions of detection 
points. Consider these in the target application(s) and the way in which the input aspect 
(URL, headers, parameter name or value) might conceivably be provided by the user.

The actual context is also important. If a data entry form has some presentation-layer 
(client-side) validation in addition to equivalent matching server-side validation, and the 
submitted data includes problems which the presentation-layer validation should have 
caught, the acceptability of the inputs may be different. If there is also type and format and 
lengthy validation on the client side, the above diagram changes considerably as shown in 
Figure 10 below.

Figure 10 THE SPECTRUM OF APPLICATION ACCEPTABLE USAGE SHOWING HOW APPLICATION-SPECIFIC KNOWLEDGE 
INCREASES THE ABILITY TO DIFFERENTIATE BETWEEN NORMAL AND MALICIOUS INPUT

Relationships with other systems

Similarly, if a request or data are received from a trusted information system, the standard 
of tests to validate the data could be stricter. XML data which has been validated by an 
XML Firewall should be of higher quality, and less prone to human errors, than that in an 
RSS feed pulled directly from another website. Do not trust either source completely, but 
consider the seriousness of a detection point being activated from a more reliable source.

Therefore consider the original source of data being processed. Was it user-generated 
content, or was it retrieved from a reliable source; if the latter what verification has already 
been performed? This analysis may lead to the creation of additional detection point 
instances of the same detection point identity code, but they have different requirements 
and are used on different types of input.



Part III : Making It Happen

67

Overlaps and duplicates

Finally, it is necessary to remove any duplication of effort - using the same detection point 
more than once on the same input or using another detection point which does not add any 
further value.

This process is undertaken by examining the model to check that detection points with the 
same functionality are not being repeatedly called on the same data. Note that the same 
detection points may correctly occur many times within the processing of a request such as 
when each parameter value is checked against a whitelist.

It is also possible that some detection points have been specified in a manner which negates 
the need for others. Check whether a very specific detection point is already tested in a less 
specific detection point. For example if AE10 (adding additional POST variables) is 
proposed for the application's authentication module and broad request validation includes 
RE5 (additional/duplicated data in request) it may be possible that AE10 is not adding any 
further detection. Provided these are given identical priority, there is no need for both, or 
the RE5 could be modified to capture the functional area or purpose, which might them be 
used to affect the response action. But note it may still be useful to record that the action 
was the more specific AE10 (as well as RE5), and another option would be to alter the 
specification for RE5 so it can activate AE10 type events at the same time, if it knows it is 
an authentication request.

Figure 37 (in Part VI : Reference Materials - Detection Points - Related types) uses link arrows to 
show possible inter-relationships between detection points. Depending upon how the 
detection points have been specified, the source of a link arrow might be a more generic 
version of the destination of the link arrow. This does not mean the source necessarily 
caters for all possibilities, but can be useful in avoiding duplication. But check that 
removing a detection point does not mean that an aspect is left uncovered in another 
attack. Then update the specifications and charts with any changes required.

Next create test cases for requests that should activate the detection points. Try to create 
separate tests for each detection point, and this may mean hundreds of test cases since they 
will include at least one for every parameter submitted in requests.

Lastly, review application design/functionality that changes the flow through code and 
especially any blocking actions (e.g. redirects, session termination, custom error page 
display). Check whether any of these circumvent or prevent detection points from being 
activated. For example the application might already lock an account for 20 minutes after 
three invalid passwords are provided in a 24 hour period but AE2 (multiple failed 
passwords) may have been specified requiring a different number.



Part III : Making It Happen

68

Attack analysis

The last stage recommended for detection point selection is to undertake an attack analysis. 
Although this step can be bypassed, it is useful to work through what will happen in real 
attack situations. Select attacks that have been identified from threat assessments, or if this 
is not available consider those from, for example:

• Common Attack Pattern Enumeration and Classification (CAPEC)68

• WASC Threat Classification v2.091

• Studies of attack methods69,92,94,95,96,97,98.

Use both likely attacks identified during risk assessments as well as feasible but much less 
likely attacks. Remember, AppSensor is concerned with identifying and stopping attacks 
against unknown vulnerabilities such as:

• SQL injection point introduced during a change to the application which was 
missed due to insufficient testing

• Zero day vulnerability in a code library used by the application.

For each attack, consider a range of valid and invalid application entry points, and check 
the model through using the real attacks. Examine all the detection points which might be 
activated, ignoring for the moment what their response may be. List all the detection points 
for each attack scenario and determine whether these are reasonable, and provide sufficient 
coverage. Then consider if it is possible for human or transmission errors to generate the 
same situation. If so, re-assess the detection points proposed.

If necessary, re-iterate through detection point selection steps to finalize the selection of 
detection points. This process creates the following artifacts:

• Detection point specifications
• Schedule of detection point locations
• Test cases.

See also the comments about testing in Chapter 15 : Verification, Deployment and Operation.

The attack detection thresholds and responses can now be defined.



Part III : Making It Happen

69

Chapter 17 : Advanced Thresholds and Responses

Introduction

This chapter presents additional detail on defining attack determination thresholds and 
choosing responses appropriate to the business and the application users.

Approach

In AppSensor a response is an action taken as the result of attack recognition i.e. a change 
in application behavior; it is not any form of retaliation. The response aims to defend the 
application, its users and everyone's data:

• Organization data (e.g. business data, intellectual property, source code)
• User data (sometimes including PII/personal data)
• Data belonging to other parties (e.g. suppliers, customers, clients, partners).

Having defined a policy (see Chapter 14 : Design and Implementation), this should include a 
small number of high-level rules, and the type of acceptable response actions will already be 
largely defined.

Conventional defenses vs. AppSensor defenses

Traditional defensive mechanisms are often much more limited in the types of automated 
response actions possible. They might only include simple allow or deny:

• No change (e.g. continue logging/monitoring)
• Process terminated (e.g. reset connection).

The capabilities of AppSensor are potentially much wider – whatever the application does 
or could be coded to do. A full spectrum of responses might very feasibly include:

• No change (same as traditional defenses)
• Logging increased
• Administrator notification
• Other notification (e.g. other system)
• Proxy
• User status change
• User notification
• Timing change
• Process terminated (same as traditional defenses)
• Function amended



Part III : Making It Happen

70

• Function disabled
• Account log out
• Account lock out
• Application disabled
• Collect data from user.

Additionally, since an application has knowledge about the user’s roles and permissions, it 
is entirely possible to define response actions that target individual users, groups of users or 
all users. There could even be multiple tiers of response, dependent upon the user's actions 
over periods of time.

AppSensor can be used flexibly and does not need to do everything itself. Response actions 
could be undertaken by:

• Application itself
• Another system (e.g. application firewall, network firewall, another application).

While the process is primarily interested in real-time responses, the (actual or planned) 
capabilities of the application and related system components should be considered first. It 
may be possible to leverage these existing capabilities, or extend them, to provide the 
selected response actions.

The recommended approach is to consider the general countermeasures required, rather 
than the specifics for each detection point. Threshold definition (later) can link multiple 
detection points with multiple response actions.

Built-in potential

Many applications already have discrete (unconnected) security control responses built in. 
This might include functionality such as:

• Terminating a request when blacklisted inputs are received
• Fraud detection
• Adding time delays to each successive failed authentication attempt
• Locking a user account after a number of failed authentication attempts
• Application honey pot functionality
• Logging a user out when they utilize the browser's “back” button
• Terminating a session if a user's geo-location changes
• Blocking access by certain IP addresses when malicious behavior is detected
• Recording unexpected actions.



Part III : Making It Happen

71

But these are usually implemented as isolated processes and some may be undertaken 
reactively to events, or using post transaction processes, or performed largely in a manual 
way. AppSensor needs to focus and formalize these approaches.

The above functionality might be able to be used, or converted into modules which a 
centralized analysis engine could call to invoke response. Therefore, do try to identify the 
following capabilities in functional specifications and deployed code:

• Application logging (e.g. security events, audit trails)
• Changes to logging level
• Alerting (e.g. email, SMS)
• User messages
• User logout
• Account lockout
• Redirects (web).

Other things like disabling individual functions or disabling the whole application are much 
less likely to exist.

Inspirational responses

Table 45 in ( Part VI : Reference Materials - Responses) lists examples of some common 
AppSensor responses categorized by their effect on the user i.e. from the user's viewpoint. 
These range from responses which are transparent from the user's point of view, to passive, 
and then to more disruptive active responses, and ultimately intrusive. 

The subsequent Table 46 categorizes these by their general purpose (logging, notifying, 
disrupting, blocking). It also shows the broad purposes, whether the target of the response 
affects a single user or all users and the duration of the action. The full definitions are 
maintained on the OWASP website99, and are reproduced in the Responses section of  Part 
VI : Reference Materials. 

Many other actions can be mapped to one of the example responses listed, but there may 
be other special types of action a particular application, or related system, can perform.

Attack identification threshold definition

Initially exclude the consideration of detection points in the modifying class, since these are 
normally used to adjust default thresholds and actions. Thresholds need to be set for how 
many events are allowed to be created before an attack event is confirmed and the 
predefined response is made. There are other considerations for thresholds, discussed 
below, and in practice a mix of threshold settings will usually be required.



Part III : Making It Happen

72

For initial implementations, such as for a pilot, simply set an overall threshold for a count 
of all detection point events over a time period. It is also possible to set thresholds for 
individual responses for single or groups of detection points. 

Threshold period

Any threshold of more than “1” only has meaning over a certain time period. For example 
with a threshold of “3” events, if a user performs three suspicious actions in a short period 
of time, this might be significant and a response undertaken. But if these three actions 
occur over the course of several days, it may be considered a much lower risk.

Therefore for each threshold greater than “1”, define the period. For user-specific 
detection points (as opposed to application-wide “all user” ones), normally use “previous 
24 hours” as the threshold period. Beware of using terms like “today” or “this week” in 
threshold definitions because events just before the period rollover (e.g. just prior 
midnight) might not be counted against the threshold. The time period over which each 
threshold applies needs to be long enough to cater for slow attacks, but will need to be 
selected with consideration of any active responses that have time factors such as lockout 
period.

Note that it may make sense to use other time periods in each application. If a threshold 
period is tied to session length, a log out response (if used) will reset the period. Also 
consider how/when session-related data are stored and cleared in the application.

Tiered responses

Some AppSensor implementations set a number of different response actions to occur, 
even for a single detection point activation. For example, it might make sense to display a 
warning message to the user each time this occurs (i.e. at “1 event”) and log them out the 
fifth time it occurs (e.g. at “5 events over the last 14 days”).

Overall user threshold (“One user”)

If a user activates many different detection points, it might be they do not trigger any 
individual detection point threshold (assuming they are all greater than “1”). Consider 
setting another threshold (more than 1) for all cumulative detection point activations for 
each user. For example “Any 12 events over the last 24 hours”.

Fuzzed responses

Some attackers may try to avoid attack detection capabilities built into applications. This 
may not be an issue if the detection points provide sufficient coverage, but another 
approach is to introduce some degree of randomness into the response selection so an 
attacker cannot necessarily determine whether they have been detected.



Part III : Making It Happen

73

Beware of complexity

The following discussion mentions many possibilities and considerations. Overly complex 
response rules and interactions are:

• Difficult to understand
• Cause unforeseen side-effects
• Can lead to bypass situations.

Response threshold definition defined on a per detection point basis, or detection point 
type basis, allows for more fine-grained tuning. 

Thresholds for aggregating detection points

Some detection points require multiple user interactions to occur before they can be 
activated, such as:

• Use of Multiple Usernames (AE1)
• Multiple Failed Passwords (AE2)
• Detect Large Number of File Uploads (FIO2)
• Speed of Application Use (UT2)
• High Number of Logouts Across the Site (STE1)
• etc.

These were referred to as “aggregating” detection points previously. These should all have a 
response threshold of “1”, but within the detection point itself some view needs to be 
taken of what “multiple”, “large number”, “speed”, “high number”, etc mean – and over 
what sampling periods.

Unless the application has only a few users, system trend detection points monitoring “all 
users” (e.g. STE1, STE2, STE3) are usually best defined with percentage changes over a 
particular time period (e.g. “200% increase over one hour”). Such trend monitoring will not 
be useful without an automated response, as the value of this monitoring is in actively 
identifying and stopping an attack. It will be necessary to collect usage data over a period of 
time before setting the thresholds, and the thresholds may need to change as use of the 
application varies due to interest, time of day, seasons and external events.

Thresholds for user event and user trend detection points

It is important to separate the application's own responses from those of AppSensor. An 
application may lock accounts due to multiple failed authentication attempts or it might 
block requests using a disallowed HTTP method. But AppSensor still needs to record and 
monitor these to undertake responses in addition to the application's normal behavior.



Part III : Making It Happen

74

Two approaches need to be considered:

• Whether the responses are dependent upon user role (e.g. authenticated versus 
unauthenticated)

• Whether responses are set on a per-detection point basis, or a per application basis.

The high-level rules should provide guidance on the first of these. If AppSensor is only 
implemented for the authenticated part of an application, or there is only one role, this 
question needs no further consideration. Applying different thresholds to different roles 
does create additional complexity, and some detection points and responses may not be 
valid for certain roles (e.g. authentication and session management exception types).

Further to the previous discussion, consider using the rule that three suspicious events is 
equivalent to a single attack event. This weighting could be altered for each detection point, 
rather than just on suspicious versus attack, but the recommendation is not to alter 
weightings and instead alter thresholds (number and period) only.

It may be undesirable to repeatedly count identical events over time. Some example could 
be:

• Multiple use of the same wrong password for a single account name
• Repeated reload of the same web page with exactly the same invalid data.

Each detection point will have its own threshold of a small number of security events 
before a response action is taken. Then also consider the total number of security events 
generated by all detection points – the latter should normally all be set with the same period 
e.g. one day. Sample individual and overall thresholds are shown in Table 15 and Table 16 
below.

Table 15 EXAMPLE THRESHOLDS AND RESPONSES FOR INDIVIDUAL PER USER DETECTION POINTS

Detection Point Role Threshold Period Response Response Code
Authenticated 2 1 hourRE1-001

Public 5 1 day
Request terminated + Account 
lockout 30 minutes

ASR-G, ASR-K

RE6-102 Authenticated 10 5 minutes Security violation message + 
Account logout

ASR-E, ASR-J

CIE1-001 Authenticated 3 15 minutes Security violation message + 
Function disabled

ASR-E, ASR-I

HT3-005 Authenticated 1 NA Admin alert + Proxy to alternative 
system

ASR-B, ASR-N



Part III : Making It Happen

75

A threshold of "1" or a percentage comparison, such as shown for the HT3 detection point 
in Table 15 above, means the threshold is reached immediately, and no time period needs to 
be defined. The longer the period, the stricter is the policy.

Response threshold definition based on a per detection point basis allows more fine-
grained tuning. However it is usual to have both thresholds for each detection point and an 
overall limit on the total number of any detection points activated in a time period. The 
time period over which each threshold applies needs to be long enough to cater for slow 
attacks, but will need to be selected with consideration of any active responses that have 
time factors such as lockout for a period. Having the overall limit can help allow the 
individual thresholds to be much more tightly set.

Table 16 EXAMPLE MULTIPLE THRESHOLDS AND RESPONSES FOR THE OVERALL NUMBER OF EVENTS PER USER IN A 
SINGLE FIXED TIME PERIOD

Detection Points Threshold Period Response Response Code
(All) 5 24 hours Security violation message ASR-E
(All) 30 24 hours Security violation message + Account logout ASR-E, ASR-J
(All) 45 24 hours Security violation message + Account lockout 5 

minutes
ASR-E, ASR-K

(All) 60 24 hours Security violation message + Account lockout 30 
minutes

ASR-E, ASR-K

(All) 100 24 hours Security violation message + Account lockout 
indefinite

ASR-E, ASR-K

Consideration also needs to be given to situations where multiple detection points are 
activated with a single user action (“event landslides”). This is not unlikely and two 
examples are:

• A SQL injection attack leads is detected as a Command Injection exception 
(CIE1), but also fails Input Exception whitelist checks (IE2) and Request 
Exception due to other missing parameters (RE6) 

• Separate Input Exception validation checks may identify problems with many 
different parameter values (e.g. IE2, IE2, IE2, IE3, IE4, IE4).

In these cases, one request could lead to an individual detection threshold being exceeded 
more rapidly than expected or even the overall threshold being reached very quickly. It is 
important to record every event, but for some applications one mitigation against event 
landslides could be to limit the contribution to the overall threshold as only one security 
event per user interaction (e.g. request/response cycle, key depress, process activation, 
message). If possible, make this a configurable setting.



Part III : Making It Happen

76

In a more advanced implementation may be able to track the exact event details, so that 
duplicate suspicious security events are not necessarily counted twice. For example, if a user 
submits an authentication form with the same wrong password twice, that doesn't usually 
provide twice as much evidence of an attack i.e. if AE5 (Unexpected Quantity of 
Characters in Password) is activated twice with the same value, this may be less significant 
than two AE5 activations by the same user but with different values.

Security event logs may include a confidence rating, defining how certain the event 
identification is. In AppSensor, the detection points should have been selected and their 
sensitivity tuned so that the confidence is very near 100% all the time. In other words, 
weighting based on confidence should not be required.

It may therefore be appropriate instead to define multiple overall thresholds, each with 
different time periods. 

Table 17 EXAMPLE RESPONSE THRESHOLDS FOR THE OVERALL NUMBER OF EVENTS PER USER FOR A RANGE OF TIME 
PERIODS

Detection Point Threshold Period Action Response Code
(All) 5 1 day Security violation message ASR-E
(All) 6 2 days Security violation message ASR-E, ASR-J
(All) 8 1 week Security violation message + Account lockout 

indefinite
ASR-E, ASR-K

Different thresholds and response actions could be based on the application's risk 
classification.

These might also have permutations for different roles. Initially keep thresholds simple, but 
allow for multiple thresholds over different time periods for different user roles, even if 
they are not implemented initially.

Thresholds for system trend detection points

It is difficult to provide general guidance on system trend response actions. But having an 
automated response to a sudden significant shift in system activity is one of the benefits of 
using AppSensor. “Significant” is application, business, environment dependent. It may 
also be time and season dependent.

The thresholds to initiate a response need to be considered once the range of normal 
behavior has been examined over a period of time. This also needs to consider special 
situations that could alter the normal patterns of usage such as vacations, time of day, 
newsworthy events and marketing activities, so that benign but variable site usage is not 
flagged as an attack. Therefore thresholds would usually include administrator notification 



Part III : Making It Happen

77

levels before disabling a particular feature or the whole site. The existing AppSensor 
documentation provides a good example of this:

Table 18 EXAMPLE RESPONSE THRESHOLDS FOR A SYSTEM TREND DETECTION POINT MONITORING THE USAGE RATE 
OF AN APPLICATION'S "ADD A FRIEND" FEATURE

System Trend Delta Action Response Code
+1000% (5 minutes) Administrator notification ASR-B
+200% (15 minutes) Administrator notification ASR-B
+200% (60 minutes) Administrator notification ASR-B
+500% (15 minutes) Administrator notification ASR-B
+1000% (15 minutes) Temporarily disable Add a Friend feature ASR-I

System trend events should not be included in the overall (user) threshold mentioned 
above. By their nature they are very specific and will rarely add anything to knowledge 
about an individual user. Similarly there is no need for an overall system trend threshold.

Thresholds for modifying detection points

The reputational detection points (RP1-4) can be used to dynamically alter thresholds in 
real time. For example if an organization tracks the national terror threat level and such 
aspects are considered relevant to the application, the thresholds could alter in response to 
this (RP4). However, the degree of trust in the source, availability and accuracy of 
information needs to be considered with each detection point. Some (like the national 
terror threat example) would require a threshold of "1" if the intention is to make a change 
in AppSensor's response as soon as the event occurs.

Any change that disables a user, feature or the whole application could be used to perform 
a denial-of-service attack, and therefore responses to activation of detection points in the 
modifying class should be chosen conservatively.

Overall summary

For all thresholds, define whether counts are ever reset, e.g. at the end of a session, when 
an application is restarted.

Figure 44 in  Part VI : Reference Materials - Responses shows part of an example schedule 
documenting the application's threshold settings. This shows that some of the session 
management exceptions only have meaning for a period that equals the session length, and 
that some aggregating detection points will have thresholds of "1" where they act like an 
off/on switch.



Part III : Making It Happen

78

Threshold tuning

Once the thresholds and actions have been determined, final tuning of the model should be 
undertaken to ensure that the combined model behaves as required. Tuning is usually best 
accomplished by facilitating a discussion which includes members from various parties 
concerned with the application.

For each of the attacks defined in threat models, or the attacks reviewed when defining 
detection points, examine whether the responses are as desired.

1. Examine typical user activities and introduce all types of input which could be 
accidental to check how much tolerance there is for:

a. Misunderstandings
b. Typing errors
c. Copying and pasting formatted text
d. Navigation changes such as using bookmarks, partial links or the back and 

forward buttons
2. Consider slow and fast use of the application, and how often each function might 

be requested
3. Consider the response to static content (e.g. RSS feeds, style sheets, video, images, 

JavaScript files, HTML files) requests
4. Consider requests for missing content
5. Examine carefully activities that can lead to active responses that disable part or all 

the application
6. How do the range of available responses affect the wider system and related 

systems (interdependencies and interoperability)?
7. Identify situations where multiple detection points might all occur with a single 

users interaction (e.g. a single web request, an individual button click) and ensure 
the response actions are appropriate

8. Consider the effect of the planned responses on other metrics such as uptime of 
the application and other systems, application response times, user satisfaction, 
throughput requirements and other business measures.

Some organizations may be able to use information from usability testing studies to assist 
with the second item. For example, disabling the whole application could stop further 
recording of security events and even prevent an administrator from re-enabling the 
application if that function is usually undertaken using a web interface that is part of the 
application.

Modify the detection points, attack thresholds and responses if necessary.

See also the comments about testing in Chapter 15 : Verification, Deployment and Operation.



Part III : Making It Happen

79

Chapter 18 : AppSensor and Application Event Logging

Introduction

Application security event logging and audit trails are not a requirement to adopt 
AppSensor, but they should already be present in securely designed applications. For 
further information see the OWASP Application Logging Cheat Sheet100.

AppSensor is not directly concerned with the wider needs for application event logging. It 
is not necessary to have application logging to implement AppSensor. However, there is 
some synergy in that well implemented application event logging could be used or extended 
to be an AppSensor event store.

Application event logging is necessary but not equivalent to its AppSensor counter part. 
Another way of thinking about this is that if the application throws an exception it logs it 
and continues execution. Where AppSensor differs is that it analyzes these exceptions and 
potentially alters the application’s behavior. In AppSensor there is already a very high 
confidence in the events because they are baked into the application. Event logs of these 
activities contain high-value information for centralized logging and monitoring systems.

Application event logs

Application logs sometimes neither record sufficient security events nor adequate detail 
about these. Whenever a detection point is activated it is necessary to capture and record 
that information. The minimum information that should be collected for each event is:

• Date and time
• Entry point (e.g. the event activated by a user such as clicking a button, URL for a 

web application)
• User identity (e.g. authenticated user ID, location, IP address, token)
• Any data submitted
• Malicious activity
• Whether it is suspicious or an attack.

In practice, a wider range of information can be beneficial both for attack determination, 
and for other operational activities such as user experience, performance monitoring, error 
investigation and incident response. Some suggestions for comprehensive combined 
application security event logging with AppSensor detection point information capture is 
shown in Table 19 below. Further explanation and guidance is available101,102,103,104,105,106.

It is useful to ensure events can be grouped by request (multiple events may occur for a 
single request/response) by recording a unique action/request ID in the logs, including 
details of which AppSensor detection points were activated if applicable (code location and 



Part III : Making It Happen

80

instance) and including any AppSensor response actions taken and the final status. These 
might be added to the normal application security event logging, or be recorded in 
supplemental files/data stores. For a web application, the fields might be as shown below 
(see the references at the end of the previous paragraph for a description of these fields).

Table 19 TYPICAL EVENT LOGGING PROPERTIES FOR WEB APPLICATIONS

Logged information Property Logged information Property
Event date/time Sensor IDWhen
Log date/time Sensor location
Type AppSensor Detection Point ID(s)
Severity Description
Confidence

AppSensor detection

Message
Custom classification(s) Request headers

Security event

Owner Request body
Host Response headers
Service/application name Response body
Port Error stack trace
Protocol Error message
HTTP method

Optional supporting 
details

Other system response
Entry point Status

Location

Request number Reason for status
Purpose HTTP status codeRequest
Target AppSensor Result Response ID(s)
Source Description
Identity

Result (including 
AppSensor response)

Message
HTTP user agent Identity

User

Client fingerprint
Record integrity

Hash

Similar properties could be defined for other types of application.

With such logged event data, and suitable detection points calling the logging mechanism, 
these could then be analyzed to determine attacks. See also Chapter 15 : Verification, 
Deployment and Operation - Operation - Logging, signaling, monitoring and reporting.

For AppSensor event data, where there is a high level of knowledge about the event, 
consider also recording additional Security Content Automation Protocol (SCAP)107 meta 
data:

• Common Weakness Enumeration (CWE)108

• Common Configuration Enumeration (CCE)109

• CAPEC68 attack identifiers,
•  Common Misuse Scoring System (CMSS)110.



Part III : Making It Happen

81

Additionally perhaps use Software Identification (SWID) Tags111,112 to assist source 
labeling.

Web server logs

On the topic of existing logs, the question of using web server logs is often raised since 
these are often enabled by default. Common Log File Format113 includes insufficient 
information, but Extended Log File Format114 is widely supported by web servers are will 
usually be configured to provide the following information for each request:

• Event date/time
• URL path
• HTTP method
• Source IP address
• Source user agent
• Query string
• Bytes transferred
• Response status code.

Given only this data, and without adding any further detection points, it may be possible to 
implement a subset of AppSensor detection point categories simply by mining the web 
server logs. The detection points that could be implemented in this manner, without any 
further knowledge of the application, are shown in Table 20.

Table 20 POSSIBLE DETECTION POINTS IF THE ONLY EVENT SOURCE ARE WEB SERVER LOGS

Detection Point Category ID Title
RE1 Unexpected HTTP CommandRequest Exception
RE2 Attempt to Invoke Unsupported HTTP Method

Authentication Exception AE3 High Rate of Login Attempts
FIO1 Detect Large Individual FileFile IO Exception
FIO2 Detect Large Number of File Uploads
STE1 High Number of Logouts Across The Site
STE2 High Number of Logins Across The Site

System Trend Exception 

STE3 High Number of Same Transaction Across The Site

The main difficulty is the lack of attribution to user identity apart from IP address and 
possibly a fingerprint that includes the user agent. By tuning the application to use specific 
status codes for different events it may be possible to extend the use of web server logs 
further, but if the application is to be modified, implementing application event logging 
would be a better approach.



Part III : Making It Happen

82

Additionally web server logs are generally voluminous. This combined with the lack of 
detailed application-specific attack intelligence makes them generally very unsuitable for 
AppSensor-like attack detection. Therefore this method is not discussed further in this 
guide.



Part III : Making It Happen

83

Chapter 19 : AppSensor and PCI DSS for Ecommerce Merchants

Introduction

Merchants with web-facing ecommerce applications need to protect cardholder data, 
whether or not a hosted payment page solution has been implemented.

Requirement 6.6

The Payment Card Industry (PCI) Security Standards Council requires in-scope public 
facing web applications to address new threats and vulnerabilities on an ongoing basis PCI 
Data Security Standard (DSS) in requirement 6.6. One of the two options to meet this 
requirement is to undertake reviews using manual or automated application vulnerability 
security assessment tools or methods, at least annually and after any changes. The other 
option is to detect and prevent attacks continuously. In PCI DSS version 2.0 (issued 
October 2010), this method was worded as follows:

[by] Installing a web-application firewall in front of public-facing web applications

In PCI DSS version 3.0115 (issued November 2013), the wording was updated to:

[by] Installing an automated technical solution that detects and prevents web-based attacks (for 
example, a web-application firewall) in front of public-facing web applications, to continually 
check all traffic.

In the related document Summary of Changes from PCI DSS Version 2.0 to 3.0115, this 
change is described as a clarification and:

Increased flexibility by specifying automated technical solution that detects and prevents web-based 
attacks rather than “web-application firewall.” Added note to clarify that this assessment is not 
the same as vulnerability scans required at 11.2.

This does suggest that a web application firewall (WAF) is not the only option to be 
considered to meet this requirement, and that it is possible that AppSensor-like approach 
could also be used. The relevant testing procedure is stated as:

Examine the system configuration settings and interview responsible personnel to verify that an 
automated technical solution that detects and prevents web-based attacks (for example, a web-
application firewall) is in place as follows:
- Is situated in front of public-facing web applications to detect and prevent web-based attacks.
- Is actively running and up to date as applicable.
- Is generating audit logs.
- Is configured to either block web-based attacks, or generate an alert.



Part III : Making It Happen

84

The choice of WAF, AppSensor or a synergistic combination should be discussed with the 
merchant’s acquiring bank, PCI Qualified Security Assessor116 (QSA), or Internal Security 
Assessor (ISA). All the above features of running, being up-to-date, generating logs and 
configured to block and/or alert would also be a required part of the implementation.

SAQ A and SAQ A-EP

The PCI DSS self-assessment questionnaires (SAQs) A and A-EP are sometimes used by 
ecommerce merchants where cardholder data functions are fully or partially outsourced 
respectfully.

AppSensor may be the best way to detect malicious behavior in and around payment forms, 
during checkout, on payment pages and even on payment service provider’s hosted 
payment pages.

Regardless of the eligibility criteria and which SAQ is appropriate, AppSensor can help 
provide additional assurance about the website’s integrity and give early warning of attacks, 
possibly before they become anything more serious. AppSensor is a valuable application 
security measure regardless of its compliance contribution.



Part IV : Demonstration Implementations

85

Part IV : Demonstration Implementations

A large proportion of this guide has been dedicated to a description of the concept to 
provide analysts, architects, designers and developers with the knowledge to implement this 
approach in their own systems. This is because the approach is application-specific and 
therefore, there is no single implementation method or single best-suited out-the-box 
solution. Part IV provides practical examples of how the concept can be deployed, 
including some standalone components that could be utilized within an organization’s own 
deployments, or to act as inspiration. The OWASP code portion of the project described in 
the next two chapters aims to build a reference implementation that can be used to 
implement the concepts conveyed in this guide.



Part IV : Demonstration Implementations

86

Chapter 20 : Web Services (AppSensor WS)

Introduction

This is a reference implementation and is a development branch included within the scope 
of the OWASP AppSensor Project called “AppSensor WS”. This more recent 
implementation introduces a service-based model, using either XML/SOAP or 
JSON/REST, instead of both the detection/response and attack analysis code being 
combined as in the initial “AppSensor Core” (version 1) demonstration implementation - 
see Chapter 21 : Fully Integrated (AppSensor Core) below.

AppSensor WS was begun as part of the Google Summer of Code (GSoC) 2012117,118 by 
Rauf Butt with mentoring by John Melton and Kevin W Wall, building upon the code for 
“AppSensor Core”. The OWASP GSoC119 initiative was promoted and administrated by 
Fabio Cerullo and Jason Li. Subsequently it has been developed further by John Melton.

Description

The application being protected is the client application. It detects events and/or attacks 
and sends them to the analysis engine using web services. It then receives responses (either 
via polling or some push mechanism like websockets) to execute.. The detection points, 
event monitor and responses have to be built into the client application at appropriate 
points in the logic. Code from AppSensor WS is executed on demand when the web 
services are called.

The web services are:

• /events 
o POST with JSON event data
o GET with query string “earliest=[SOME_TIMESTAMP]”

• /attacks 
o POST with JSON event data
o GET with query string “earliest=[SOME_TIMESTAMP]”

• /responses
o GET with query string “earliest=[SOME_TIMESTAMP]”

The format for the JSON event data is described in  Part VI : Reference Materials - Data 
Signaling Exchange Formats.



Part IV : Demonstration Implementations

87

Figure 11 SCHEMATIC ARRANGEMENT OF THE APPSENSOR WS REFERENCE IMPLEMENTATION

There is also a "local mode" for java projects that does not use web services, but rather 
native API calls within the JVM. The analysis engine could be ported to other languages, 
but the intention is for the analysis engine to stay in Java and be accessed using web 
services by any language that can do JSON/REST and/or XML/SOAP. The intention is to 
build reference code in a few popular languages showing how this works.

AppSensor scope

Like AppSensor Core (described in the next chapter), the selection of detection points, 
where they are added, and how the software responds, are (client) application and 
organization dependent. The client application determines the detection point and signals 
us that it has occurred. The analysis engine simply evaluates this against the policy and 
generates attacks/responses as appropriate. Thus all detection point and response 
categories are potentially supported by the analysis engine web services (the server). See 
Table 30 and Table 45 in  Part VI : Reference Materials for the complete listing.

Source code

The code is currently being developed and further extended. The latest source code is 
available from:

https://github.com/jtmelton/appsensor

The previous source code and appsensor.jar file are available from:



Part IV : Demonstration Implementations

88

http://mvnrepository.com/artifact/org.owasp.appsensor/AppSensor/0.1.3
.5

http://repo1.maven.org/maven2/org/owasp/appsensor/AppSensor/0.1.3.5/A
ppSensor-0.1.3.5.jar

The version at the time of writing is 0.1.3.5 and is issued under the BSD 3-Clause License120

.

Implementation

A developer guide has been provided at:

https://www.owasp.org/index.php/AppSensor-WS_Developer_Guide

Considerations

This Java implementation has the following dependencies:

• JUnit Java unit testing
• Mockito Java mocking framework

This AppSensor implementation is currently under development and is subject to change.

Related implementations

Chetan Karande has begun development of a node.js web services client. The code is 
located at:

https://github.com/ckarande/appsensor/tree/master/sample-apps/simple-
nodejs-ws-rest-client

.



Part IV : Demonstration Implementations

89

Chapter 21 : Fully Integrated (AppSensor Core)

Introduction

Prior to the development of the version 2 demonstration implementation (see previous 
chapter), Michael Coates and John Melton created a pure integrated Java version. Like the 
more recent “AppSensor WS”, this is a reference implementation and is a development 
branch included within the scope of the OWASP AppSensor Project called “AppSensor 
Core”.

Description

AppSensor Core handles the collection of event data, and selection of appropriate 
responses based on a policy defined as a Java properties files. The detection points and 
responses have to be built into the application at appropriate points in the logic. Code from 
AppSensor Core is then executed during run time as events occur.

Figure 12 SCHEMATIC ARRANGEMENT OF THE APPSENSOR CORE REFERENCE IMPLEMENTATION

AppSensor scope

The selection of detection points, where they are added, and how the software responds, 
are application and organization dependent. However, the following detection point and 
response categories are supported:



Part IV : Demonstration Implementations

90

Table 21 LIST OF DETECTION POINT CATEGORIES SUPPORTED BY APPSENSOR CORE

Category Detection Point
Description ID Title
Request Exception RE1 Unexpected HTTP Command

RE2 Attempt to Invoke Unsupported HTTP Method
RE3 GET When Expecting POST 
RE4 POST When Expecting GET 
ACE1 Modifying URL Argument Within a GET for Direct Object Access Attempt
ACE2 Modifying Parameter Within A POST for Direct Object Access Attempt

Access Control Exception

ACE3 Force Browsing Attempt
Input Exception IE1 Cross Site Scripting Attempt
System Trend Exception STE1 High Number of Logouts Across The Site

Table 22 LIST OF RESPONSE CATEGORIES SUPPORTED BY APPSENSOR CORE

Category Response
Type Description Code Description

ASR-A Logging ChangeSilent User unaware of application's response
ASR-B Administrator Notification (SMS and email)
ASR-I Function Disabled
ASR-J Account Logout

Active Application functionality reduced for user(s)

ASR-K Account Lockout

The individual interfaces can be extended in order to modify AppSensor for a particular 
environment, and to support additional detection points and response actions.

Source code

The source code and appsensor.jar file are available from:

https://code.google.com/p/appsensor/

https://code.google.com/p/appsensor/downloads/detail?name=AppSensor-
0.1.3.jar

The version at the time of writing is 0.1.3 and is issued under the BSD 3-Clause License120.

Implementation

A developer guide has been provided at:

https://www.owasp.org/index.php/AppSensor_Developer_Guide



Part IV : Demonstration Implementations

91

Considerations

This Java implementation has the following dependencies:

• OWASP ESAPI Java library
• JavaMail libraries (activation and mail jar files)
• Servlet/JSP libraries
• Logging API library (log4j by default).

This AppSensor implementation is no longer under development.

Related implementations

This Java implementation method was utilized in the comparative research and experiment 
undertaken independently by Pål Thomassen “AppSensor: Attack-Aware Applications 
Compared Against a Web Application Firewall and an Intrusion Detection System”33. A 
description of how AppSensor Core was implemented on SimpleShiroSecuredApplication 
has been written by Mária Jurčovičová 121.

The AppSensor Core implementation has also been ported to .Net by Luke Briner and is 
available to download at:

https://www.owasp.org/index.php/File:AppSensor_Core_-_dotNet.zip

This AppSensor Core (version 1) implementation model will still be available in version 2 – 
called “local mode” (as opposed to REST or SOAP).

See also Chapter 24 : Invocation of AppSensor Code Using Jni4Net.



Part IV : Demonstration Implementations

92

Chapter 22 : Light Touch Retrofit

Introduction

In this demonstration implementation, an application has been instrumented with custom 
code to show how AppSensor functionality can be retrofitted to an existing project. The 
implementation does not make use of any AppSensor Project’s library code (as described in 
the previous two chapters above).

The application used in this example is the bulletin board application phpBB122, released 
under the GNU General Public License123. The implementation was performed in a 
manner that affected as little of the original code as possible.

This demonstration implementation does not form part of the core development efforts 
within the OWASP AppSensor Project.

Description

Detection points were added by the additional of minimal additional PHP code without 
altering the phpBB source code. Additional fields were added to some of the application’s 
database tables together with new tables for the event and attack stores. An existing phpBB 
feature which allows “banning” of submissions by individual users was utilized as one 
response by inserting records into the relevant database table; a second response was added 
external to the code base by using the host firewall to block IP addresses.

Figure 13 SCHEMATIC ARRANGEMENT OF EXAMPLE LIGHT TOUCH RETROFIT TO EXISTING CODE



Part IV : Demonstration Implementations

93

AppSensor scope

The following detection point and response action categories are included:

Table 23 LIST OF DETECTION POINT CATEGORIES IMPLEMENTED IN THIS EXAMPLE LIGHT TOUCH RETROFIT

Category Detection Point
Description ID Title
Authentication Exception AE1 Use of Multiple Usernames

AE2 Multiple Failed Passwords 
Access Control Exception ACE3 Force Browsing Attempt

IE2 Violation Of Implemented White ListsInput Exception
IE3 Violation Of Implemented Black Lists

File IO Exception FIO2 Detect Large Number of File Uploads
Honey Trap HT2 Honey Trap Resource Requested

HT3 Honey Trap Data Used
User Trend Exception UT4 Frequency of Feature Use

Table 24 LIST OF RESPONSE CATEGORIES IMPLEMENTED IN THIS EXAMPLE LIGHT TOUCH RETROFIT

Category Response
Type Description Code Description

ASR-I Function DisabledActive Application functionality reduced for user(s)
ASL-L Application Disabled 

In this case, the response to disable the functions utilizes phpBB’s inherent “block” 
functionality and the response to disable the application is accomplished by blocking an IP 
address using the host network firewall level. In this implementation, it was accomplished 
by using the “netsh advfirewall firewall” command124 for Windows Firewall, but iptables 
could be used on *nix systems, and similarly for other operating systems; an external 
network device could also be used.

Source code

The phpBB bulletin board application can be downloaded at:

https://www.phpbb.com/downloads/

PHPIDS as a blacklist input exception detection point. PHPIDS, default_filter.xml and 
converter.php can be downloaded from:

https://phpids.org/downloads/



Part IV : Demonstration Implementations

94

The additional database SQL scripts and PHP files can be downloaded at:

https://www.owasp.org/index.php/File:Appsensor-demo-
lighttouchretrofit.zip

This is proof of concept code and is neither optimized nor production-ready.

Implementation

Developer notes are included within the file containing the source code.

Considerations

The PHP implementation of the event manager needs permissions to perform real-time 
changes to the host-based firewall. This could be changed to signal a separate network 
firewall instead.

This implementation is no longer under development.

Related implementations

None.



Part IV : Demonstration Implementations

95

Chapter 23 : Ensnare for Ruby

Introduction

Ensnare125 is a gem plugin for Ruby on Rails developed to allow the rapid configuration 
and deployment of a basic malicious behavior detection and response scheme.

It was created by Andy Hoernecke and Scott Behrens and uses a combination of honey 
traps to entice malicious users, and a configurable suite of responses to confuse, allude, 
delay, or stop an attacker. The documentation states Ensnare was partially inspired by Ryan 
Barnett's blog posts about honey traps126,127. Ensnare has no connection with the OWASP 
AppSensor Project, but appears to be a close relative.

This production implementation does not form part of the core development efforts within 
the OWASP AppSensor Project.

Description

Ensnare uses honey trap type of detection points referred to as “traps” which can be 
benign cookies, parameters, bad paths, or even regular expressions of known attack 
signature such as from a scanner. When a trap is triggered, the event (“violation”) is logged. 
When predefined threshold of violations is reached for a user, based on username, session 
or IP address, the predetermined response is deployed into the response.

Figure 14 SCHEMATIC ARRANGEMENT OF THE ENSNARE IMPLEMENTATION



Part IV : Demonstration Implementations

96

Custom traps can also be created in the application, and Ensnare allows violation logging 
from anywhere in the application.

AppSensor scope

The following detection points are available as standard:

Table 25 LIST OF DETECTION POINT CATEGORIES IMPLEMENTED IN ENSNARE

Category Detection Point
Description ID Title
Honey Trap HT1 Alteration to Honey Trap Data

HT2 Honey Trap Resource Requested
HT3 Honey Trap Data Used

However custom detection points can be created and, for example, the project’s 
documentation mentions violations of the application's authorization controls.

The following response action categories are defined in Ensnare:

Table 26 LIST OF RESPONSE CATEGORIES IMPLEMENTED IN ENSNARE

Category Response
Type Description ID Titles
None No response ASR-P No Response

ASR-E User NotificationPassive Changes to user experience but nothing denied
ASR-F Timing Change
ASR-G Process Terminated
ASR-H Function Amended

Active Application functionality reduced for user(s)

ASR-I Function Disabled

Source code

Ensnare’s source code is located at:

https://github.com/ahoernecke/ensnare

Implementation

Documentation for Ensnare can be found at:

https://github.com/ahoernecke/ensnare/wiki



Part IV : Demonstration Implementations

97

Considerations

The detection, attack determination and response steps are implemented as a 
“before_filter” that runs for every request.

This implementation is currently under development and is subject to change. The Ensnare 
project wiki128 requests help with:

• Rails 4 Edition
• More trap types (GET parameters, other headers, Http Methods like Trace)
• Optional config to delay a user entering a threshold (to make it harder to correlate 

which requests resulted in an application state change)
• Whitelisting
• More response types
• Filtering/queuing on violation data
• More metrics with graph and query functionality.

Related implementations

None.



Part IV : Demonstration Implementations

98

Chapter 24 : Invocation of AppSensor Code Using Jni4Net

Introduction

Dinis Cruz has used the OWASP O2 Platform129 C# REPL scripting environment to 
invoke Java AppSensor and ESAPI methods from an existing .NET application using 
Jni4Net130. Like the application described in Chapter 22 : Light Touch Retrofit,, it is another 
example of retrofitting AppSensor to an existing project. However it does utilize the 
AppSensor Project’s library code.

This demonstration implementation does not form part of the core development efforts 
within the OWASP AppSensor Project. The O2 Platform has its own mailing list131.

Description

The core development efforts in Java are consumed within a .Net application which 
exposes all the same capabilities.

Figure 15 SCHEMATIC ARRANGEMENT OF EXAMPLE APPSENSOR CODE INVOCATION USING JNI4NET

AppSensor scope

The detection points and response actions are identical to those described for AppSensor 
Core above.



Part IV : Demonstration Implementations

99

Source code

The source code for the pilot demonstration can be found at:

http://github.com:DinisCruz/TeamMentor_3_3_AppSensor

This is proof of concept code and is neither optimized nor production-ready.

Implementation

The method of implementation is described at:

http://blog.diniscruz.com/2013/06/another-step-in-use-of-esapi-
and.html

A video of Denis Cruz’s presentation of the concept is available at:

http://www.youtube.com/watch?v=dzj3llZ9G6I

Considerations

This is purely demonstration code that illustrates an alternative method of implementation.

Related implementations

There is a .Net port of the Java AppSensor Core implementation - see Chapter 21 : Fully 
Integrated (AppSensor Core).



Part IV : Demonstration Implementations

100

Chapter 25 : Using an External Log Management System

Introduction

An external log management system can be used to aggregate event data and generate some 
types of responses such as alerts or network changes. An organization with a large number 
of applications that already has some form of Security Information and Event Management 
(SIEM) or other Continuous Security Monitoring (CSM) may benefit from this type of 
approach.

This demonstration implementation does not form part of the core development efforts 
within the OWASP AppSensor Project.

Description

Detection points are added into each application’s source code like a standard AppSensor 
implementation. But information from the detection points are sent to an external log 
aggregation and event management system. The external system is responsible for 
determining the attack and initiating responses.

Events collected by detection points are sent to a centralized system using Common Event 
Format132 (CEF) over syslog protocol.

Figure 16 SCHEMATIC ARRANGEMENT OF EXAMPLE EXTERNAL LOG MANAGEMENT SYSTEM



Part IV : Demonstration Implementations

101

AppSensor scope

Any detection points capable of being added to the application(s) and elsewhere could 
provide event data to the external system.

Although potentially any response is possible, assume the signaling is one-way from the 
application(s) to the external system,. Then the most likely responses supportable via the 
network are:

Table 27 LIST OF RESPONSE CATEGORIES POSSIBLY AVAILABLE TO AN EXTERNAL LOG/EVENT MANAGEMENT SYSTEM

Category Response
Type Description Code Description
None No response ASR-P No Response

ASR-A Logging Change
ASR-B Administrator Notification

Silent User unaware of application's response

ASR-C Other Notification
Active Application functionality reduced for user(s) ASR-L Application Disabled

Of these, administrator notification is the most common (and not necessarily the most 
effective use of AppSensor capabilities).

Source code

No source code is available.

Implementation

This method still requires the addition of detection points to application code, which is 
application dependent. All other conceptual elements are undertaken external to the 
application(s).

An example message structure is shown on the next page. This utilizes predefined and 
custom key-value pairs in the extension part of CEF:

• User agents string
• Application detection point identifier
• AppSensor detection point category
• HTTP status code
• Request ID (a unique identifier for each application request)
• Local log identifier
• Degree of confidence (in the example 100%).



Part IV : Demonstration Implementations

102

Figure 17 EXAMPLE USE OF COMMON EVENT FORMAT FOR EVENT SIGNALING

src=10.25.102.65

suser=W0005 

proto=TCP

dpt=80

dproc=httpd

request=/catalogue/showProduct/

requestMethod=GET

deviceExternalID=AppSensor06

msg=Cross site scripting attempt in parameter prodid

cat=detection

act=block

cs1Label=requestClientApplication cs1=Mozilla/5.0 (Macintosh; U; Intel Mac OS X 
10.6; en-GB; rv:1.9.2.17) Gecko/20110420

cs2Label=AppSensorDetectionPointID cs2=R03

cs3Label=AppSensorDetectionType cs3=IE1

cs4Label=StatusCode cs4=403

cn1Label=RequestID cn1=000070825566

cn2Label=AppSensorLogID cn2=1650833

cn3Label=Confidence cn3=100

Considerations

This method may not be completely “real time” nor provide feedback information for the 
application(s) to adapt to the attack. See also Chapter 18 : AppSensor and Application Event 
Logging for a discussion about generic application event logging and  Part VI : Reference 
Materials - Data Signaling Exchange Formats.

AppSensor data might simply be used to enhance attack and threat intelligence for fraud 
detection or advanced persistent threat identification.

Related implementations

Similar logging ideas could be implemented using the open source OSSEC or many 
commercial log management systems.

Existing security monitoring systems should always be considered as a recipient of 
AppSensor data, regardless of where the event analysis and event management is being 
undertaken. Signaling AppSensor event and attack data to an event monitoring system adds 
valuable information to an organization’s threat and attack knowledge.



Part IV : Demonstration Implementations

103

Chapter 26 : Leveraging a Web Application Firewall

Introduction

OWASP ModSecurity Core Rule Set is a free set of generic application protection rules for 
the open source ModSecurity35 web application firewall (WAF). A number of rules 
implement AppSensor behavior, albeit separate from the application’s source code.

When there is no permission or ability to modify an application, the use of a WAF can 
accommodate some AppSensor-like behavior. This in fact, may be the only available way to 
apply the concept to some legacy or commercial applications where the source code cannot 
be altered. WAFs have other valuable uses as well, and may already exist in the application’s 
environment.

This implementation does not form part of the core development efforts within the 
OWASP AppSensor Project. Instead, please refer to the actively maintained and supported 
OWASP ModSecurity Core Rule Set Project36,133 which has its own mailing list134.

Description

ModSecurity can be deployed embedded within the existing web server infrastructure, out 
of line listening passively or as a reverse proxy server on the network. The latter has been 
used in this example so that it can protect multiple back-end web servers. In this pure WAF 
implementation, all AppSensor-like functionality is undertaken within the WAF.

Figure 18 SCHEMATIC ARRANGEMENT OF EXAMPLE LEVERAGING A WEB APPLICATION FIREWALL



Part IV : Demonstration Implementations

104

AuditConsole135 is used to browse the event data (indicated in the above diagram as 
accessible to both the event manager and the reporting client).

In this implementation, only the AppSensor-relevant rules (see below) were enabled, with 
all other rules disabled or removed. This was so the effect of AppSensor-like functionality 
alone can be assessed without having to consider the effect of other WAF capabilities.

AppSensor scope

The following detection points have been implemented within in the Core Rule Set (CRS) 
at the time of writing:

Table 28 LIST OF DETECTION POINT CATEGORIES IMPLEMENTED IN MODSECURITY CORE RULE SET

Category Detection Point
Description ID Title
Request Exception RE1 Unexpected HTTP Command

RE2 Attempt to Invoke Unsupported HTTP Method
RE5 Additional/Duplicated Data in Request
RE7 Unexpected Quantity of Characters in Parameter
RE8 Unexpected Type of Characters in Parameter

Input Exception IE1 Cross Site Scripting Attempt
Encoding Exception EE2 Unexpected Encoding Used
Command Injection Exception CIE1 Blacklist Inspection for Common SQL Injection Values

CIE4 Carriage Return or Line Feed Character in File Request
Honey Trap HT1 Alteration to Honey Trap Data
Reputation RP3 Suspicious Client-Side Behavior

The rules are spread across the “base” and “experimental” directories included in the CRS.

Application-specific custom ModSecurity rules can be written to extend these detection 
points further. Some AppSensor detection points may be difficult to implement within the 
WAF due to lack of access available to user information and application context. Having 
said that, ModSecurity contains a Lua API that can be used to directly query back end data 
sources.

ModSecurity can be configured to execute a response based on an individual event or as a 
result of an aggregated (anomaly) score.

All AppSensor example response actions are potentially possible using ModSecurity as 
listed in the next table.



Part IV : Demonstration Implementations

105

Table 29 LIST OF RESPONSE CATEGORIES IMPLEMENTED IN MODSECURITY CORE RULE SET

Category Response
Type Description Code Description
None No response ASR-P No Response

ASR-A Logging Change
ASR-B Administrator Notification
ASR-C Other Notification

Silent User unaware of application's response

ASR-N Proxy
ASR-D User Status Change
ASR-E User Notification

Passive Changes to user experience but nothing denied

ASR-F Timing Change
ASR-G Process Terminated
ASR-H Function Amended
ASR-I Function Disabled
ASR-J Account Logout
ASR-K Account Lockout

Active Application functionality reduced for user(s)

ASR-L Application Disabled
Intrusive User's environment altered ASR-M Collect Data from User

Source code

ModSecurity, the OWASP ModSecurity CRS and AuditConsole respectively can be 
downloaded at:

http://www.modsecurity.org/download/

https://github.com/SpiderLabs/owasp-modsecurity-crs

http://download.jwall.org/AuditConsole/current/

Implementation

Follow the instructions included within the downloaded archive. More information 
available at:

http://www.modsecurity.org/documentation/

http://blog.spiderlabs.com/modsecurity/

http://www.jwall.org/web/audit/console/index.jsp

Considerations

ModSecurity is available for Apache, IIS, Java and Nginx - see the download page listed 
above.



Part IV : Demonstration Implementations

106

Related implementations

Other WAFs may not be as configurable as the example here – AppSensor cannot be 
implemented satisfactorily with only a generic negative security model inspecting individual 
transactions. In order to trigger detection points from either the User Trend Exception 
(UTE) or System Trend Exception (STE) categories, the security system must be able to 
track data across multiple requests. A small number of more advanced load balancers that 
understand the HTTP protocol could support some similar functionality. But note the 
comments in Chapter 2 : Protection Measures - Comparison with .

A web application firewall can also be used for:

• Reputational detection points, for example to send possible attack information to 
the defended application (detection point type RP2) using HTTP request headers 
or other signaling

• Responses on behalf of the defended application, for example to perform 
increased logging (ASR-A), to proxy user requests to another system (ASR-N), to 
disable functions (ASR-I), to disable the application (ASR-L) and to collect data 
from a user (ASR-M).

Similarly other application firewalls (e.g. database firewalls) could be used for some 
detection points and responses.



Part V : Model Dashboards

107

Part V : Model Dashboards

Data visualization of real-time attack detection and response provides organizations with 
much needed insight into whether their applications are under attack, and by whom. This 
part introduces the necessary concepts for visualizing AppSensor data, and presents 
example application-specific dashboards that have already been created.

Note that OWASP does not endorse or recommend any commercial products or services 
mentioned.



Part V : Model Dashboards

108

Chapter 27 : Security Event Management Tools

Introduction

There are many open source and commercial tools for collecting, analyzing and visualizing 
and exploring security event data. These support common event data formats. As discussed 
in Part III : Making It Happen - Chapter 15 : Verification, Deployment and Operation the many 
capabilities of event log management tools are not always necessary, since AppSensor data 
has a high-confidence level and ought to be very information rich already. However, such 
tools can be used to acquire and present AppSensor data.

Description

In Part III : Making It Happen - Chapter 15 : Verification, Deployment and Operation - Operation, 
and imaginary AppSensor was illustrated. 

AppSensor logging and signaling format could be used, but most event log management 
tools are very flexible and even support event records comprised of simple name-value 
pairs.

Figure 19 EXAMPLE APPSENSOR EVENT DATA USING DELIMITED NAME-VALUE PAIRS

Application=MyPortal|Function=View 
Account|Entrypoint=/c/account/view.jsp|UserSaluation=Mr|UserFamilyName=Smith|Us
erPersonalName=Joey|Severity=2|Confidence=100|DetectionPointID=ACE3-
056|DetectionPoint=attempted to access an account belonging to someone 
else|ResponseAction1Code=ASR-B|ResponseAction1Description=Syslog event 
sent|ResponseAction2Code=ASR-C|ResponseAction2Description=Event notified to CRM 
(ID 509578)|ResponseAction3Code=ASR-D|ResponseAction3Description=Fraud flag set 
in CRM|ResponseAction4Code=ASR-I|ResponseAction4Description=Transactional 
functionality disabled for this user

When this data is sent using a system component supporting Common Event Format or 
other standard format, it can be received by security event management tools.

Users of such tools can then use the in-built capabilities to render, display and visualize the 
AppSensor data. Other security event management tools can be used in the same manner.

See Data Signaling Exchange Formats in  Part VI : Reference Materials for further information 
about integrating AppSensor data with security event management tools.



Part V : Model Dashboards

109

Example: Splunk

An example of Common Event Format in Splunk is illustrated below.

Figure 20 APPSENSOR DATA FEED ADDITION TO SPLUNK

Figure 21 APPSENSOR EVENT SUMMARY IN SPLUNK



Part V : Model Dashboards

110

Figure 22 APPSENSOR EVENT DETAIL IN SPLUNK



Part V : Model Dashboards

111

Example: AuditConsole

Most security event log tools will support a wide variety of data formats. Some are custom-
built for particular data, such as AuditConsole88 from jwall.org, a web console for managing 
ModSecurity web application firewall event data imported from audit files or to receive 
event data using the ModSecurity Log Collector (mlogc) tool. If event data can be saved in 
this format, or the only event data available is from ModSecurity, AuditConsole can be 
used.

Figure 23 APPSENSOR EVENT IN THE AUDITCONSOLE DASHBOARD

Events can be tagged within AuditConsole, and rules created to send notifications, delete 
events or call other processes.

AppSensor coverage

Coverage of AppSensor event, attack and response events can be as little or as much as is 
imported from logging or signaling, but is dependent upon the customization options of 
the tool.



Part V : Model Dashboards

112

Chapter 28 : Application-Specific Dashboards

Introduction

A better representation of application attacks can be usually be achieved by building 
custom dashboards instead of open source and commercial event log management tools. 
The possibilities are greater, but possibly require more effort. Application-specific attack 
dashboards are currently an aspect still being developed, and additional ideas and code 
samples are likely to be available in the near future. Further ideas for information security 
consoles and dashboards can be found at SecViz136.

Organizations may have their own application dashboards, and some of the ideas below 
could be used to extend those.

Description

Example: Streaming Comet

Example application-specific dashboards were demonstrated at OWASP AppSec EU 2011. 
The demos broadcast example event and attack data to a server which used the Comet 
model to push real-time updates to an active web page console137. 

Figure 24 AN EXAMPLE APPSENSOR DASHBOARD FOR AN ECOMMERCE WEBSITE



Part V : Model Dashboards

113

In this the detection points are shown relative to the application’s main functional areas are 
listed across the top with an indicator “light” above each position.

Figure 25 AN EXAMPLE DETECTION POINT INDICATORS ON WEBSITE FUNCTIONALITY MAP

These light up red on attack detection and then fade through orange to yellow and white 
again over a suitable time period, so they are not completely ephemeral.

Figure 26 ILLUMINATION OF DETECTION POINT INDICATORS

Trend monitoring detection points are showing a separate area at the bottom right of this 
model dashboard. As data is dynamically updated, the rows change color to indicate 
refreshes and indicators of trend direction.



Part V : Model Dashboards

114

Figure 27 SYSTEM TREND DETECTION POINTS

Figure 28 HIGHLIGHTING OF CHANGES TO SYSTEM TREND DETECTION POINTS

A panel is updated in real time as events occur. In this example where detection points also 
exist in public areas, there are a larger number of events. The corresponding detection 
point indicators are illuminated as events appear.

Figure 29 DETECTION POINTS EVENT LOG DISPLAY



Part V : Model Dashboards

115

Automated real-time responses are displayed in another panel.

Figure 30 RESPONSE EVENT LOG DISPLAY

This is of course all completely custom to the application and the individual organization’s 
view of threats.

Example: Ensnare

The Ensnare Ruby gem includes raw details of the “violations” and summary metrics. See 
Part IV : Demonstration Implementations - Chapter 23 : Ensnare for Ruby.

The following two screen captures are reproduced from the Ensnare project wiki128.

Figure 31 ENSNARE VIOLATIONS LISTING



Part V : Model Dashboards

116

Figure 32 ENSNARE METRICS PAGE

Example: AppSensor WS

The AppSensor WS reference implementation demonstrates how simply information from 
the Event Analysis Engine can be rendered in a web page. See Part IV : Demonstration 
Implementations - Chapter 20 : Web Services (AppSensor WS).

AppSensor coverage

Coverage of AppSensor event, attack and response events can be as little or as much as is 
imported from logging or signaling, but is dependent upon the customization options of 
the tool. But with all of these model examples, code can be developed to produce a custom 
dashboard by the organization to suit their own business needs.



Part V : Model Dashboards

117

Chapter 29 : Application Vulnerability Tracking

Introduction

Software bug/defect/vulnerability tracking systems can also consume AppSensor data to 
add intelligence for severity rating and prioritization. Knowledge about actual attacks and 
how attackers may be getting close to vulnerabilities scheduled for mitigation is valuable 
information. This class of software will usually have multiple methods of data import, and 
will be preconfigured to consume data from commonly used commercial and open source 
information security risk and vulnerability software.

Description

Application vulnerability tracking software usually supports a portfolio of projects or 
applications.

Example: ThreadFix

An open source tool in this area is ThreadFix138 that facilitates the import, aggregation, 
analysis and management of vulnerability data from security verification activities 
throughout the software development lifecycle. This has the additional capability of 
creating web application firewall (WAF) rules that can be deployed while vulnerabilities are 
being investigated, corrected, tested, deployed and verified.

The default dashboard in ThreadFix displays vulnerabilities grouped by severity and by 
most common by CWE108. It is possible to imagine how the very specific AppSensor data 
could be overlaid to provide insight into which types of vulnerability might be being 
actively targeted by different groups of users. This would not generally work as well with 
less specific, and more voluminous, data from network devices.

Figure 33 and Figure 34 on the following page, illustrate a mock overlay of attacks grouped 
by user group. Note the logarithmic scale. These could potentially also be made into more 
detailed reports. ThreadFix and other tools in this class of software do not yet support this 
capability, but could be extended to do so.

In practice, some of the most common CWEs such as configuration and information 
leakage issues may not be included in AppSensor attack detection, and it may not be simple 
to provide a mapping from detection points to CWEs.



Part V : Model Dashboards

118

Figure 33 THREADFIX DASHBOARD SHOWING MOCK UP OF CWE VS ATTACK CHART OVERLAY

Figure 34 DETAILED VIEW OF CHART OVERLAY MOCKUP



Part V : Model Dashboards

119

Since tools like this also import static analysis (code review), a more useful possibility is 
identifying attacks against particular filters, modules or functions. These could be mapped 
during the detection point design specification stage, and saved in AppSensor logs or 
included in AppSensor event signaling (see Data Signaling Exchange Formats in  Part VI : 
Reference Materials).

Similarly if application logging records the entry point (i.e. URL path), this could be used to 
cross reference attacks and vulnerabilities. A mock-up of this addition to ThreadFix’s 
vulnerability report drill down is shown below.

Figure 35 MOCKUP ILLUSTRATING HOW URL PATHS COULD BE USED TO MATCH VULNERABILITIES IDENTIFIED 
THROUGH SECURITY SCANNING CORRELATE WITH WHERE ATTACKS ARE OCCURRING



Part V : Model Dashboards

120

AppSensor coverage

Coverage of AppSensor event, attack and response events can be as little or as much as is 
imported from logging or signaling, but is dependent upon the customization options of 
the tool.



Part VI : Reference Materials

121

Part VI : Reference Materials

In this section, the primary information sources are included. Updates and reference 
materials are maintained on the OWASP AppSensor Project website1.



Part VI : Reference Materials

122

Glossary

A glossary of terminology has been produced for the project to define what particular 
terminology means in the context of application layer attack detection and prevention. In 
some cases existing intrusion detection terminology is not consistent with an application 
specific approach, is implementation specific, or has an alternative meaning in software 
development that could lead to confusion.

Resources from US Committee on National Security Systems (CNSS)139, MITRE 
Corporation140 and National Institute of Standards and Technology (NIST)27 were used to 
find and determine names. Adopters are encouraged to use terminology that is consistent 
with their own in-house standards and which are familiar to development teams.

Access Controller The access controller component performs the authorization 
function in the event analysis engine. Based on the 
authenticated user (client application/reporting client), the 
access controller determines what functions and data are 
available to said user and enforces access to those.

Attack Any kind of malicious activity that attempts to collect, disrupt, 
deny, degrade, or destroy information system resources or the 
information itself. Specifically within the context of AppSensor, 
an attack is a collection of events that violates a specified 
policy.

Attack Store The attack store is the storage mechanism for attacks, which 
are produced by the analysis of events.

Authenticator The authenticator is the component that performs user 
authentication. This functionality lives within the event analysis 
engine. Note: This component is used to authenticate client 
applications and reporting clients, NOT end users to the 
client applications or reporting clients.

Client Application The client application is the business application that is being 
protected by AppSensor. This is the application that will be 
annotated with detection points, and will be protected by 
responses.

Correlation Correlation refers to the determination of relation between 
events based on some common set of data. For example, two 
seemingly unrelated events generated by two different 
application clients may be determined to be correlated 
together due to their being caused by end users sharing a 
common username.

Credential(s) The credential represents the object associated with identity 



Part VI : Reference Materials

123

assertion for client applications and reporting clients when 
authenticating to the event analysis engine.

Detection Point A detection point is a specific point during the execution of a 
program that is instrumented in a way that allows event 
generation. In practice, the execution of the program could 
involve components that are architecturally separate from the 
running client application. For instance, a web application (A1) 
could use a detection point in a WAF that is protecting A1. 
This would still be considered a detection point for A1.

Event An event is any observable occurrence in a system and/or 
network. Specifically within the context of AppSensor, an event 
is an observed occurrence that is monitored, especially within 
the application itself, with the intention that the occurrence be 
considered in the set of occurrences analyzed to determine 
attacks.

Event Analysis Engine The event analysis engine is the component of the AppSensor 
architecture that represents the analysis and processing of 
incoming event data. The events are compiled (and stored) in 
the analysis engine, then processed to determine if and when 
response actions are appropriate. All of the service level APIs 
represented by “AppSensor WS” are exposed by this 
component.

Event Manager The event manager collects event notifications from the client 
application detection points and polls the event analysis 
engine for any appropriate response actions to execute.

Event Store The event store is the storage mechanism for events.

Intrusion An intrusion is a successful attack.

Reporting Client The reporting client is the architectural component of 
AppSensor that represents the data visualization e.g. a 
dashboard. In general, this component views, but does not 
produce, the data stored in the event analysis engine. This is 
meant as a set of functionality to provide a useful 
representation of the AppSensor data.

Response A response is the action taken as a result of attack recognition. 
The goal of executing a response could be to gain or store more 
information about the attack and/or prevent further attacks.

Resource A resource is a defined component of the application. This 
could be at various levels of granularity, but generally 
represents an accessible subset of the application (specific 
component, specific URL, etc.)



Part VI : Reference Materials

124

Role A role is an attribute assigned to a user that ties membership to 
function. When an user has a given role, the user is granted the 
rights of that role. When the user loses that role, those rights 
are removed. The rights given to the role are consistent with 
the functionality that the user needs to perform the expected 
tasks.

Threshold A threshold is a value that sets the limit between normal and 
abnormal behavior.

Trend A trend is the determination of a pattern or tendency of a series 
of data points moving in a certain direction over time.

User An entity that has access to the protected application. This 
could represent a human or a system, or possibly a collection of 
either.



Part VI : Reference Materials

125

Detection Points

Listing of detection points

The example AppSensor detection points are listed in Table 30 below with additional details 
and examples for each category in the summary table below and subsequent twelve tables. 
As discussed in Part III : Making It Happen, AppSensor only needs to detect enough 
obviously malicious behavior to make a decision about the intent of a user, it does not need 
to detect all malicious behavior. Thus only a small subset of detection points is usually ever 
implemented for each application.

Table 30 SUMMARY OF APPSENSOR DETECTION POINT IDENTIFIERS AND TITLES GROUPED BY EXCEPTION CATEGORY

Category Detection Point
Description ID Title
Request Exception RE1 Unexpected HTTP Command

RE2 Attempt to Invoke Unsupported HTTP Method
RE3 GET When Expecting POST
RE4 POST When Expecting GET
RE5 Additional/Duplicated Data in Request
RE6 Data Missing from Request
RE7 Unexpected Quantity of Characters in Parameter
RE8 Unexpected Type of Characters in Parameter

Authentication Exception AE1 Use of Multiple Usernames
AE2 Multiple Failed Passwords
AE3 High Rate of Login Attempts
AE4 Unexpected Quantity of Characters in Username
AE5 Unexpected Quantity of Characters in Password
AE6 Unexpected Type of Character in Username
AE7 Unexpected Type of Character in Password
AE8 Providing Only the Username
AE9 Providing Only the Password
AE10 Additional POST Variable
AE11 Missing POST Variable
AE12 Utilization of Common Usernames
AE13 Deviation from Normal GEO Location

Session Exception SE1 Modifying Existing Cookie
SE2 Adding New Cookie
SE3 Deleting Existing Cookie
SE4 Substituting Another User's Valid Session ID or Cookie
SE5 Source Location Changes During Session
SE6 Change of User Agent Mid Session

Table 30 continued…



Part VI : Reference Materials

126

Category Detection Point
Detection Point Category ID Title
Access Control Exception ACE1 Modifying URL Argument Within a GET for Direct Object Access Attempt

ACE2 Modifying Parameter Within A POST for Direct Object Access Attempt
ACE3 Force Browsing Attempt
ACE4 Evading Presentation Access Control Through Custom POST

Input Exception IE1 Cross Site Scripting Attempt
IE2 Violation Of Implemented White Lists
IE3 Violation Of Implemented Black Lists
IE4 Violation of Input Data Integrity
IE5 Violation of Stored Business Data Integrity
IE6 Violation of Security Log Integrity
IE7 Detect Abnormal Content Output Structure

Encoding Exception EE1 Double Encoded Character
EE2 Unexpected Encoding Used

Command Injection Exception CIE1 Blacklist Inspection for Common SQL Injection Values
CIE2 Detect Abnormal Quantity of Returned Records
CIE3 Null Byte Character in File Request
CIE4 Carriage Return or Line Feed Character in File Request

File IO Exception FIO1 Detect Large Individual File
FIO2 Detect Large Number of File Uploads

Honey Trap HT1 Alteration to Honey Trap Data
HT2 Honey Trap Resource Requested
HT3 Honey Trap Data Used

User Trend Exception UT1 Irregular Use of Application
UT2 Speed of Application Use
UT3 Frequency of Site Use
UT4 Frequency of Feature Use

System Trend Exception STE1 High Number of Logouts Across The Site
STE2 High Number of Logins Across The Site
STE3 High Number of Same Transaction Across The Site

Reputation RP1 Suspicious or Disallowed User Source Location
RP2 Suspicious External User Behavior
RP3 Suspicious Client-Side Behavior
RP4 Change to Environment Threat Level

This list, and the details in the later tables are maintained on the AppSensor website’s list of 
detection points74. Always check there for the most recent information.



Part VI : Reference Materials

127

Categorization of detection points

It is also useful to categorize these example detection points in other ways than exception 
category.

Suspicious/Attack

They can be categorized based on malicious intent, as described at the beginning of this 
chapter:

• Suspicious events which could occur during normal user experience with site or 
browser or as the result of a non-malicious user error

• Attack event which are outside of the normal application flow, or requires special 
tools or requires special knowledge.

The allocations to these categories are shown below in Table 31. This also indicates whether 
the detection point collects information from each user (“One user”) or all users in 
aggregate (“All users”). 

Table 31 APPSENSOR DETECTION POINTS CATEGORIZED BY SUSPICIOUS AND ATTACK EVENTS

Detection PointsSource
Category Suspicious Attack
Request RE3 RE5 RE6 RE1 RE2 RE4 RE7 RE8
Authentication AE1 AE7 AE13 AE2 AE3 AE4 AE5 AE6 AE8 AE9 AE10 AE11 AE12
Session SE3 SE5 SE1 SE2 SE4 SE6
Access Control ACE1 ACE3 ACE2 ACE4
Input Exception IE1 IE2 IE3 IE4 IE5 IE6 IE7
Encoding EE1 EE2
Command Injec. CIE1 CIE2 CIE3 CIE4
File IO FIO1 FIO2
Honey Trap HT1 HT2 HT3
User Trend UT1 UT2 UT3 UT4

One user

Reputation RP1 RP2 RP3
System Trend STE1 STE2 STE3All users
Reputation RP4



Part VI : Reference Materials

128

Discrete/Aggregating/Modifying

Another categorization has been provided that divides the detection points into three 
classes:

• Discrete - Detection points that can be activated without any prior knowledge of 
the user's behavior and thus are related to the scope of the request

• Aggregating - Detection points that require a number of prior identical events to 
occur before they are activated and thus relate to activities over the duration of a 
single or multiple sessions (of one or more users)

• Modifying - Detection points that are typically only used to alter the detection 
thresholds or response actions

The detection points are categorized in this way in Table 32 below.

Table 32 APPSENSOR DETECTION POINTS CATEGORIZED BY WHETHER THEY ARE DISCRETE, AGGREGATING OR 
MODIFYING

Source Detection Points
Category Discrete Aggregating Modifying
Request RE1 RE2 RE3 RE4 RE5 RE6 RE7 RE8
Authentication AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE1 AE2 AE3 AE13
Session SE1 SE2 SE3 SE4 SE5 SE6
Access Control ACE1 ACE2 ACE3 ACE4
Input Exception IE1 IE2 IE3 IE4 IE5 IE6 IE7
Encoding EE1 EE2
Command Injec. CIE1 CIE2 CIE3 CIE4
File IO FIO1 FIO2
Honey Trap HT1 HT2 HT3
User Trend UT1 UT2 UT3 UT4

One user

Reputation RP1 RP2 RP3
System Trend STE1 STE2 STE3All users
Reputation RP4



Part VI : Reference Materials

129

Categorization overview

All these categorizations have been summarized in Figure 36 below. A large color version of 
this diagram is available from the OWASP website141.

Figure 36 DIAGRAM SHOWING THE ASSIGNMENT OF DETECTION POINTS TO ALL THE CATEGORIZATIONS

Detection points AE13 and IE7 are not yet included in this diagram.

The diagram illustrates the following properties of the example detection points:

• Detection points within each exception category run across the diagram 
horizontally, beginning with the Request Exceptions (RE) and finishing with the 
Reputation ones (RP) at the bottom of the diagram

• Detection point names and exception category can be found by reading the identity 
codes

• Discrete, aggregating and modifying detection points are separated and indicated 
by the colored areas

• Suspicious events are bounded by the heavy dashed line
• The four "outcome" detection points are indicated using a hatched background.



Part VI : Reference Materials

130

This diagram also shows a classification Signature vs. Behavioral used in version 1.1 of the 
AppSensor book2. This classification has been deprecated because the term “signature” can 
be mistakenly understood to mean a fixed pattern due its use in terminology for anti-
malware systems. The use of Discrete/Aggregating/Modifying describes the categorization 
more accurately.

At a glance, it can be seen that all behavior-based detection points are of the suspicious 
type, and all are of the aggregating class. The majority of the detection points are in the 
discrete class, and of those, most detect attack events.

Additionally the detection points italicized and underlined are often used in generic pre-
processing or filter modules, rather than deeper within business logic.

Related types

Some detection points can be considered as more specific instances of others. For example 
Unexpected Type of Characters in Parameter (RE8) could be a sub-type of Violation Of 
Implemented White Lists (IE2) and/or Violation Of Implemented Black Lists (IE3). These 
are illustrated in Figure 37. A large color version of this diagram is available from the 
OWASP website142.

Figure 37 DIAGRAM SHOWING THE RELATED APPSENSOR DETECTION POINTS



Part VI : Reference Materials

131

Detection points AE13 and IE7 are not yet included in this diagram.

It should also be noted that a few detection points detect an outcome/result, rather than 
the input (e.g. user data submission in an HTTP request):

• Violation of Stored Business Data Integrity (IE5)
• Violation of Security Log Integrity (IE6)
• Detect Abnormal Content Output Structure (IE7)
• Detect Abnormal Quantity of Returned Records (CIE2).

In some circumstances RP3 Suspicious Client Side behavior might also be considered an 
outcome/result–perhaps some XSS occurs on the response page once rendered by the 
user's web browser. Some outputs are inputs to other processes, so the distinction is not 
always clear.



Part VI : Reference Materials

132

Detailed descriptions of detection points

Grouped by detection point category.

Table 33 DESCRIPTIONS OF REQUEST EXCEPTION (RE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

RE1 - Unexpected HTTP Command
An HTTP request is received which contains unexpected/disallowed 
commands.
A list of accepted commands should be generated (i.e. GET and 
POST) and all other HTTP commands should generate an event. See 
HTTP/1.1: Method Definitions143. Browsers and proxies using the 
HEAD method to check whether the content of a file has changed.

• Instead of a GET or POST request, the 
user sends a TRACE request to the 
application. 

RE2 - Attempt to Invoke Unsupported HTTP Method
An HTTP request is received which contains a non-existent HTTP 
command (does not match anything in this list: HEAD, GET, POST, 
PUT, DELETE, TRACE, OPTIONS, CONNECT).

• Instead of a GET or POST request, the 
user sends a TEST request to the 
application (TEST is not a valid HTTP 
request method).

RE3 - GET When Expecting POST
A page which is expecting only POST requests, is requested by HTTP 
method GET. Some pages may be designed to receive both GET and 
POST requests. 
Some resources may allow both GET and POST methods e.g. an edit 
form may be hyperlinked using a parameter value defining the record 
to be edited, but the form is submitted by POST to itself. Users may 
bookmark a page that is the result of a POST and return to it at a later 
date.

• The user sends a GET request to a page 
which has only been used for POSTs.

RE4 - POST When Expecting GET
A page which is expecting only GET requests, receives a POST.
See also RE3.

• The user utilizes a proxy tool to build a 
custom POST request and sends it to a 
page which has been accessed by GET 
requests.

Table 33 continued…



Part VI : Reference Materials

133

Detection Point Code, Name, Description and Considerations Examples

RE5 - Additional/Duplicated Data in Request
Additional unexpected parameters or HTTP headers, or duplicates, 
are received with the request. Additional parameters may be an 
attempt to override values or to exploit unexposed functionality. 
Duplicated parameters may be an indication of attempted HTTP 
parameter pollution. Beware of firing this detector when additional 
cookies, not used by the application, are found (as opposed to 
duplicated cookies) since these may relate to third-party code (e.g. 
advertisements, analytics) or some other application. Note that extra 
HTTP headers may be added by intermediate proxies, and unless the 
network configuration is fixed (an internal network perhaps), 
additional headers cannot be controlled and thus cannot be used to 
infer existence of a potential attacker. 
Links from third party sites/services may included additional 
parameters (e.g. from search engines, from advertisements). 
Additional cookies headers may be added by other applications or by 
third parties such as advertisers, and there may be very little control 
over these. Additional HTTP headers may be added by intermediate 
network devices (e.g. for traffic management).

• Additional form or URL parameters 
submitted with request (e.g. debug=1, 
servervariable=2000).

• A parameter is defined more than once 
in the URL Query String.

• An HTTP header is duplicated.
• An additional HTTP header is found.
• A URL path parameter with the same 

name as a form parameter is sent with 
the request.

RE6 - Data Missing from Request
Expected parameters or HTTP headers are missing from the request. 
Bookmarking and use of a browser's "back button" can lead to 
requests without the expected parameters. 
A bookmarked page may be missing the required POST parameters 
(see also RE3). Users may choose to send a blank or different User 
Agent header value.

• A page is requested without any of the 
required form parameters.

• The HTTP-Accept header is not 
present in a request.

RE7 - Unexpected Quantity of Characters in Parameter
The user provides a parameter value with a large number of 
characters. 
If the input field does not have client-side validation and/or 
MAXLENGTH attributes, a user might inadvertently copy in some 
text that is longer than expected.

• The user submits a form field with more 
characters than the form's maxlength 
attribute and client-side validation 
would allow

• The user submits data in a form's 
hidden field which is longer than 
expected.

RE8 - Unexpected Type of Characters in Parameter
The user provides a parameter value containing characters outwith the 
expected range. 
Text fields may include text from copy and paste operations that 
contain illegal characters.

• The user sends an HTTP header 
containing a line break character.

• The user sends a URL parameter value 
that contains ASCII characters below 20 
or above 7E.



Part VI : Reference Materials

134

Table 34 DESCRIPTIONS OF AUTHENTICATION EXCEPTION (AE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

AE1 - Use of Multiple Usernames
Multiple usernames are attempted when logging into the application. 
The assignment of login attempts to a user can be based on a 
sessionID given to the user when they first visit the website. 
Correlating based on IP address is difficult since multiple users could 
be using the site from the same IP address (e.g. corporate NAT).

• User first tries username 'bob', then 
username 'sue', then 'steve', etc.

AE2 - Multiple Failed Passwords
For a single username, multiple bad passwords, or other 
authentication credentials, are entered. See Popularity is Everything144 
section 4 - Attack-Detection Scenarios for ideas about tracking use of 
unsuccessful passwords and looking whether these are used against 
multiple accounts. 
A users providing the same wrong password more than once may be 
different to different wrong passwords. See Account Lockout, 
Episode 76, OWASP Podcast145.

• User tries username:password 
combination of 'user:pass1', 'user:pass2', 
'user:pass3', etc.

• Multiple failed PINs are attempted for 
the same customer account.

• In an online banking application, several 
invalid mobile authentication codes, 
transaction verification codes or 
transaction authentication numbers are 
submitted.

• A user provides the correct password, 
but repeatedly fails to provide the 
required second password correctly.

AE3 - High Rate of Login Attempts
The rate of login attempts becomes too high (possibly indicating an 
automated login attack). The threshold should relate to a limit and 
period appropriate to the application (e.g. total number in a second or 
minute or hour).

• User sends the following login attempts 
within 1 second - 'user1:pass1', 
'user1:pass2', 'user2:pass3', 'user2:pass4'.

AE4 - Unexpected Quantity of Characters in Username
The user provides a username with a large number of characters 
(see also RE7).

• The user sends a username that is 200 
characters long when 6-8 are expected.

AE5 - Unexpected Quantity of Characters in Password
The user provides a password with a large number of characters. 
Higher limits may be required for sites which allow users to have pass 
phrases (see also RE7).

• The user sends a password that is 200 
characters long, when 5-20 are expected.

• The user sends a PIN of 30 characters.

Table 34 continued…



Part VI : Reference Materials

135

Detection Point Code, Name, Description and Considerations Examples

AE6 - Unexpected Type of Character in Username
The user provides a username which contains characters outwith the 
expected range. Any characters below hex value 20 or above 7E are 
often considered illegal (decimal values of below 32 or above 126).
Users may be confused between a username, customer identification 
code and their account number, or even between offline and online 
identifiers. Mis-typing might add a character like "]" or "#" if these are 
adjacent to the ENTER/CR key. Whitespace may be appended to 
values when copied from a spreadsheet cell (e.g. a line feed character 
when cell values are copied and pasted from Excel). A password may 
be put in the username field by accident.

• The user sends a username that contains 
ASCII non-printable characters such as 
the NULL byte.

AE7 - Unexpected Type of Character in Password
The user provides a password containing characters outwith the 
expected range. Examples include null byte, and characters which 
need the ALT key to be used.(see also AE6).

• The user sends a password that contains 
ASCII characters below 20 or above 7E.

AE8 - Providing Only the Username
The user submits a POST request which only contains the username 
variable. The password variable has been removed. This is different 
from only providing the username in the login form since in that case 
the password variable would be present and empty.

• The user utilizes a proxy tool to remove 
the password variable from the 
submitted POST request.

AE9 - Providing Only the Password
The user submits a POST request which only contains the password 
variable. The username variable has been removed. This is different 
from only providing the password in the login form since in that case 
the username variable would be present and empty.

• The user utilizes a proxy tool to remove 
the username variable from the 
submitted POST request.

AE10 - Additional POST Variable
Additional, unexpected POST variables are received during an 
authentication request (see also RE5).

• The user utilizes a proxy tool to add the 
POST variable of 'admin=true' to the 
request.

AE11 – Missing POST Variables
Expected POST variables are not present within the submitted 
authentication request. (see also RE6).

• The user utilizes a proxy tool to remove 
an additional POST variable, such as 
'guest=true', from the POST request.

AE12 - Utilization of Common Usernames
Common dictionary usernames are used to attempt to log into the 
application. Common usernames might be allowed during self-
registration or when editing account details.

• Log in attempted with usernames 
"administrator", then "admin", then 
"test"

AE13 - Deviation from Normal GEO Location
In some applications, most users log in from one or a just a few 
geographic locations. If the application learns these GeoIP locations, 
it can then detect when a user is logging into the application from a 
different location. This would help to identify possible account 
hijacking attacks (from phishing, banking trojans).

• A banking customer's IP address has 
never been seen before when they log 
in.

• A system attempts to authenticate to 
web services from a different country.



Part VI : Reference Materials

136

Table 35 DESCRIPTIONS OF SESSION EXCEPTION (SE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

SE1 - Modifying Existing Cookie
A request is received containing a cookie with a modified value. This 
could be determined if the cookie is modified to an illegal value. 
In a poorly designed application, the length of the cookie value, or the 
combined size of all the cookies, might possibly exceed that which is 
supported.

• The user utilizes a proxy tool to change 
the encrypted cookie to an alternative 
value which does not properly decode 
within the application.

• The user modifies an unencrypted 
cookie and sets an illegal value for a 
particular variable.

SE2 - Adding New Cookie
A request is received which contains additional cookies that are not 
expected by the application. A session cookie existing when it should 
not (e.g. prior to authentication) is probably indicative of an attack. 
But cookies may also be set by third party sites which get send with 
the request - these may be harmless. Also consider what other 
applications exist on sub-domains (e.g. www.example.com, 
extranet.example.com and sales.example.com) which may also be 
setting cookies.

• The user utilizes a proxy tool to add 
cookies to the request.

SE3 - Deleting Existing Cookie
A request is received which does not contain the expected cookies. 
The user may have bookmarked a page they had visited during a 
previous authenticated session. 
In a poorly designed application, the number of cookies might exceed 
the allowed number supported by the user's browser.

• The user utilizes a proxy tool to remove 
cookies or portions of cookies from a 
request.

SE4 - Substituting Another User's Valid Session ID or Cookie
A request is received which contains cookie data that is clearly from 
another user or another session.
A mis-configured proxy might send the same session ID or cookie for 
all users.

• The user utilizes a proxy tool to 
substitute valid data from another user 
or session into the cookie. An example 
would be changing some sort of 
identification number within the cookie.

Table 35 continued…



Part VI : Reference Materials

137

Detection Point Code, Name, Description and Considerations Examples

SE5 - Source Location Changes During Session
Valid requests, containing valid session credentials, are received from 
multiple source locations indicating a possible session hijacking attack. 
A full IP address may not be constant for some users during normal 
use due to clustered proxies or while mobile. Enforcing single fixed IP 
addresses for each session in an intranet application may be valid. 
However, if the application is accessible over public networks, 
changing IP address cannot be excluded and it may be more useful to 
consider fixing just part of the IP address, or looking for more 
significant changes such as when the user's IP address geo-location 
region or country changes (see Autonomous System Number (ASN) 
and Detecting Malice with ModSecurity: GeoLocation Data). Note: 
source port number should not be used in checks since this usually 
changes very frequently.
If the full IP address is used for this, it may change slightly from 
request to request by the same user.

• User A's session is compromised and 
User B begins using the account. The 
requests originating from User B will 
possibly contain a different source IP 
address the User A. The source IP 
addresses could be the same if both 
users where behind the same NAT.

• An application at a fixed server location, 
which calls web services, changes IP 
address unexpectedly.

SE6 - Change of User Agent Mid Session
The User-Agent value of the header changes during a session. This 
may indicate a different browser is now being used. Although this 
value is under the control of the sender, a change in this may indicates 
that the session has been compromised and is being used another 
individual. This will likely not be the case that the user has simply 
copied and pasted the URL from one browser to another on the same 
system because this action would not copy over the appropriate 
session identifiers. The User Agent string may change in some 
browsers when the content type changes (e.g. from HTML to PDF). 
This detection point may only be useful in environments where a 
single browser is deployed. Optionally also include other HTTP 
headers in this check. For example, the Accept-Encoding and Accept-
Language headers do not normally change and could be concatenated 
with the User-Agent and hashed to created an identifier. The ideas146 
described in Panopticlick147 and Javascript Browser Fingerprinting148 
can also be used to fingerprint a particular client system but require 
the use of client-side code. Application owners should check the 
legality of collecting data, and whether it is considered "personal data" 
which may have additional constraints in some jurisdictions.

• Mid session, the User Agent changes 
from Firefox to Internet Explorer



Part VI : Reference Materials

138

Table 36 DESCRIPTIONS OF ACCESS CONTROL EXCEPTION (ACE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

ACE1 - Modifying URL Argument Within a GET for Direct Object Access Attempt
The application is designed to use an identifier for a particular object, 
such as using categoryID=4 or user=guest within the URL. A user 
modifies this value in an attempt to access unauthorized information. 
This exception should be thrown anytime the identifier received from 
the user is not authorized due to the identifier being non-existent or 
the identifier not authorized for that user. 
Bookmarking , truncation, and mistyping issues could lead to some 
access control exceptions.

• ? The user modifies the following URL 
from /viewpage?page=1&user=guest to 
/viewpage?page=22&user=admin

ACE2 - Modifying Parameter Within A POST for Direct Object Access Attempt
The value of a non-free text html form element (i.e. drop down box, 
radio button) is modified to an illegal value. The value either does not 
exist or is not authorized for the user. 
(see also ACE1 regarding bookmarking)

• The user utilizes a proxy tool to 
intercept a POST request and changes 
the submitted value to a value that was 
not available through the normal 
display. For example, the user 
encounters a dropdown box containing 
the numbers 1 through 10. The user 
selects 5 and then intercepts the request 
to change the submitted value to 100.

ACE3 - Force Browsing Attempt
An authenticated or unauthenticated user sends a request for a non-
existent resource (e.g. page, directory listing, image, file, etc), or a 
resource that is not authorized for that user. 
Requests for non-existent resources may occur for many reasons such 
as Benign Unexpected URLs - Part 1 - Missing (404 Not Found 
Error) Files149

• The user is authenticated and requests 
site.com/PageThatDoesNotExist.

• The user is authenticated and requests a 
video they are not authorized to 
download/view.

• An unauthenticated user (perhaps with a 
session ID) requests a listing of a 
directory detailed in the site's robots.txt 
file.

ACE4 - Evading Presentation Access Control Through Custom POST
A POST request is received which is not authorized for the current 
user and the user could not have performed this action without 
crafting a custom POST request. This situation is most likely to occur 
when presentation layer access controls are in place and have removed 
the user's ability to initiate the action through the presentation of the 
application. An attacker may be aware of the functionality and attempt 
to bypass this presentation layer access control by crafting their own 
custom message and sending this in an attempt to execute the 
functionality.

• The application contains the ability for 
an administrator to delete a user. This 
method is normally invoked by entering 
the username and submitting to 
https://oursite/deleteuser Presentation 
layer access controls ensure the delete 
user form is not displayed to non-
administrator users. A malicious user 
has access to a non-administrator 
account and is aware of the delete user 
functionality. The malicious user sends a 
custom crafted POST message to 
https://oursite/deleteuser in an attempt 
to execute the delete user method.



Part VI : Reference Materials

139

Table 37 DESCRIPTIONS OF INPUT EXCEPTION (IE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

IE1 - Cross Site Scripting Attempt
The HTTP request contains common XSS attacks which are often 
used by attackers probing for XSS vulnerabilities. Detection should be 
configured to test all GET and POST values as well as all header 
names and values for the following values. 
There are many patterns which could be XSS but may also be normal 
user input to a free text field e.g. "Press the 'drop' button" if a pattern 
were looking for a single quotation mark followed by SQL commands 
like DROP, INSERT, UPDATE and DELETE. Applications that are 
used to discuss or share information about programming, software 
development and security may want to allow such free text input, 
provided it is encoded/escaped correctly.

• The user utilizes a proxy tool to add an 
XSS attack to the header value and the 
'displayname' POST variable. The 
header value could be displayed to an 
admin viewing log files and the 
'displayname' POST variable may be 
stored in the application and displayed 
to other users. Note, the following XSS 
attacks would only be used by an 
attacker to probe for vulnerability. An 
actual XSS attack would be customized 
by the attacker.

• A user sends payloads like 
<script>alert(document.cookie);</scrip
t> <script>alert();</script> 
alert(String.fromCharCode(88,83,83)) 
<IMG SRC="javascript:alert('XSS');"> 
<IMG SRC=javascript:alert('XSS')> 
<IMG 
SRC=javascript:alert(&quot;XSS&quot;)
> <BODY ONLOAD=alert('XSS')>

IE2 - Violation Of Implemented White Lists
The application receives user-supplied data that violates an established 
white list validation. See AC3 (Force Browsing Attempts) about 
requests for non-existent/unauthorised (i.e. not white listed) URLs. 
(see also IE1).

• The user submits data that is not correct 
for the particular field. This may not be 
attack data necessarily, but repeated 
violations could be an attempt by the 
attacker to determine how an 
application works or to discover a flaw.

IE3 - Violation Of Implemented Black Lists
The application receives user-supplied data that violates an established 
black list validation. This may not be attack data necessarily, but 
repeated violations could be an attempt by the attacker to determine 
how an application works or to discover a flaw or to exploit a flaw. 
This black list approach suffers from the potential for greater false 
positives than IE2 above, and cannot be used to identify all potential 
malicious data (see also IE1).

• URL in comment field identified as 
suspected phishing and malware pages 
using Google Safe Browsing API150.

• Parameter value matches a known SQL 
injection pattern.

• Parameter value matches a known XSS 
pattern.

Table 37 continued…



Part VI : Reference Materials

140

Detection Point Code, Name, Description and Considerations Examples

IE4 - Violation of Input Data Integrity
The application receives HTTP header or body parameter values 
which have been tampered with when no change should have 
occurred. 
This detection point should only be used with parameters that cannot 
be altered by accident. Input types text and textarea would not 
normally be suitable, even if the elements are disabled in the browser. 
Be wary of assuming JavaScript will prevent modification of form 
elements in all conditions.

• Hidden form field modified by client.
• Select list value submitted in response, 

not sent by server as an available option 
value.

• Cookie set by server has been 
manipulated by the client.

• Cookie created by client instead of by 
the server.

IE5 - Violation of Stored Business Data Integrity
User's input leads to violation of data integrity. • A user's action leads to a system 

integrity error when writing to, or 
updating, a database.

• Business rule checks detect that a user's 
action is not compatible.

• Data accuracy checking detects 
duplicate records for a user.

• User input leads to an unexpected file 
change (e.g. .htaccess file overwritten, 
page template changed).

• User's request leads to a new, 
unexpected, outbound network 
connection being made (e.g. mail sent to 
an SMTP server, files downloaded from 
a FTP server).

IE6 - Violation of Security Log Integrity
Security or audit log tampering detected. AppSensor may rely on the 
accuracy of "log" data to make decisions when thresholds are reached. 
This detector aims to detect the insertion of forged entries, corruption 
of logs, unauthorised deletion of and changes to records. 

See also: 
• NIST SP 800-92 Guide to Security Log Management151

• Tamper Detection in Audit Logs152

• Forensic Tamper Detection in SQL Server153

• Special characters embedded in logged 
data about a user's activity cause the 
data to overwrite a previous log entry.

• Log file integrity is broken by 
modification to an existing log entry.

IE7 - Detect Abnormal Content Output Structure
Output data is of an unexpected format, structure or contains 
unexpected components.

• An abnormal number of inline scripts or 
iframes are returned in an HTML page 
indicating a successful XSS injection.

• An XML file generated utilizing user 
input no longer matches the expected 
structure/schema/document 
declaration.

• Generated JSON data contains does not 
match expected format.



Part VI : Reference Materials

141

Table 38 DESCRIPTIONS OF ENCODING EXCEPTION (EE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

EE1 - Double Encoded Characters
An HTTP request is received which contains one or more double 
encoded values. 
Data supplied by other party systems may have encoding issues.

• The user sends encodes the % symbol 
to %25 and appends 3C. The user is 
sending %253C which may be 
interpreted by the application as %3C 
which is actually <.

EE2 - Unexpected Encoding Used
An HTTP request is received which contains values that have 
encoded in an unexpected format (see also EE1).

• The user encodes an attack such as 
alert(document.cookie) into the UTF-7 
format and sends this data the 
application. This could bypass validation 
filters and be rendered to a user in 
certain situations.



Part VI : Reference Materials

142

Table 39 DESCRIPTIONS OF COMMAND INJECTION EXCEPTION (CIE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

CIE1 - Blacklist Inspection for Common SQL Injection Values
A request is received which contains common SQL injection attack 
attempts. The point of this detection is not to detect all variations of a 
SQL injection attack, but to detect the common probes which an 
attacker or tool might use to determine if a SQL injection vulnerability 
is present. Unless the site contains some sort of message board for 
discussing SQL injection, there is little reason that the SQL injection 
examples should ever be received from a user request (see also IE1).

• The user sends a request and modifies a 
URL parameter from category = 5 to 
category = 5' OR '1' = '1 in an attempt 
to perform an SQL injection attack. The 
user could perform similar attacks by 
modifying POST variables or even the 
request headers to contain SQL 
injection attacks. ' OR '1'='1 ' OR 'a'='a ' 
OR 1=1-- xp_cmdshell UNION JOIN

CIE2 - Detect Abnormal Quantity of Returned Records
A database query is executed which returns more records than 
expected.

• A query of a non-SQL dataset should 
only return 1 record but 100 records are 
returned.

• The application is designed to allow a 
user to maintain 5 profiles. A user 
makes a request to view all of their 
profiles. The database SQL query, 
which is expected to always return 5 or 
less results, returns 10,000 records. 
Something in the application, or user's 
actions, has caused unauthorized data to 
be returned.

• Extraction of data from an XML file 
should only return one matching node, 
but more than one is returned.

CIE3 - Null Byte Character in File Request
A request is received to download a file from the server. The filename 
requested contains the null byte the file name. This is an attempted 
OS injection attack.

• The user modifies the filename of the 
requested file to download to contain 
the null byte. The null byte can be 
added by inserting the hex value %00.

CIE4 - Carriage Return or Line Feed Character in File Request
A request is received which contains the carriage return or line feed 
characters within the POST data or the URL parameters. This is an 
attempted HTTP split response attack.

• The user includes the hex value %0D or 
%0A in the HTTP request POST data 
or URL parameters.



Part VI : Reference Materials

143

Table 40 DESCRIPTIONS OF FILE INPUT/OUTPUT EXCEPTIONS (FIO) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

FIO1 - Detect Large Individual File
A file upload feature detects that a large file has been submitted for 
upload which exceeds the maximum upload size.

• The user attempts to upload a large file 
to occupy resources or fill up disk 
space.

FIO2 - Detect Large Number of File Uploads
A user uploads an excessively large number of files. 
The limit and period used to determine the threshold rate is 
application dependent, and may also depend on the user's role.

• A single user attempts to upload 
multiple small files to occupy resources 
or fill up disk space.



Part VI : Reference Materials

144

Table 41 DESCRIPTIONS OF HONEY TRAP (HT) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

HT1 - Alteration to Honey Trap Data
Fake (not otherwise needed by the application) data sent to the user 
and returned (e.g. as form, URL, cookie values or in the path or 
HTTP header) is modified154. This is usually combined with making 
the name or value a tempting item for an attacker to try modifying. 
Similar techniques can also be used for the creation of accessible 
CAPTCHA.

• Otherwise useless hidden fields, which 
look like potential vulnerabilities, added 
to some forms are sent back to the 
server modified (e.g. <input 
type="hidden" name="admin" 
value="false" />)

• An additional URL parameter, which is 
not used by the application, is modified 
by the user (e.g. /account.jsp?debug=0).

• An additional fake cookie is added and 
is modified by the user.

• URL rewriting is used and a fake 
directory name is added; this is modified 
by the user (e.g. 
/orders/normaluser/display.php).

HT2 - Honey Trap Resource Requested
A purposely leaked resource that has no use in normal application use 
is requested by a user. Ensure the resource is not linked from normal 
application content such that a spider or robot might find the resource 
in any case.

• Page, directory or other resource listed 
in the application's robots.txt robots 
exclusion file is requested by the user.

• URL identified only in HTML 
comments is requested by the user.

• Unexposed server function call included 
in Flash file source code is requested by 
the user.

HT3 - Honey Trap Data Used
Special data sent or accessed by a user. For honey trap data that is 
detected on egress only, use of outbound content monitoring (e.g. a 
web application firewall or similar technique) may be helpful.

• Fake user name and password only 
visible in source HTML code used to 
attempt to log in to the application (e.g. 
in HTML comments, in server-side 
code 'accidentally' delivered to the user).

• A special code number or account name 
is left in a discussion forum site; this is 
then used in the application

• An attempt is made to authenticate with 
the user name listed in the first row (e.g. 
ID=1) of the application's database 
table of Users.

• Data from a fake account record is sent 
by the server and detected; this record 
should not normally be accessible by 
anyone using the application.



Part VI : Reference Materials

145

Table 42 DESCRIPTIONS OF USER TREND EXCEPTION (UT) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

UT1 - Irregular Use of Application
The application receives an unusual pattern of requests for the same 
page or feature from a user. The user may be sending different data 
combinations or trying to detect errors in the page. 
Use of bookmarked URLs and the "back" button might generate out-
of-sequence requests. See also related frequency of feature use in UT4.

• The user requests a particular page, such 
as the address update page, numerous 
times.

• The user requests a page out-of-
sequence, such as an intermediate step 
in a multi-stage form , or a series of 
actions that do not map to a valid 
business process.

• The user only requests dynamic content, 
and not the associated static files (e.g. 
images, style sheets).

• The user sends a slow request/read in 
an attempt at application denial of 
service.

UT2 - Speed of Application Use
The speed of requests from a user indicates that an automated tool is 
being used to access the site. The use of a tool undertaking a high 
number of requests quickly may indicate unapproved content scraping 
or data gathering, reconnaissance for an attack, or attempts to identify 
vulnerabilities in the site. Slow usage (e.g. between account creation 
and use) might indicate automated account creation that are then used 
subsequently for attacks. If enforced inappropriately or too rigorously, 
this detection point could lead to false positives. 
Time periods need to be set broadly enough to cater for the normal 
spread in user behavior. Some users may use automated tools that 
store passwords securely to populate and submit authentication forms.

• The user utilizes an automated tool to 
request hundreds of pages per minute.

• The user does not log in to the site until 
a long time after their account is 
created.

• New (uncached) static content such as 
images and style sheets associated with 
each page are not requested in a similar 
time period as the page.

• A CAPTCHA challenge is responded to 
more quickly than a human could 
possibly do.

• The user's clickstream data velocity is 
too high.

• The time interval between the 
applications displaying a page/form and 
the time for the user to complete the 
page/form and submit it is too fast.

• A web scraping tool is used to obtain 
content from a website.

UT3 - Frequency of Site Use
Change in how often the site is used by a user 
Some users may correctly change their behavior in the frequency of 
accessing the application.

• The user normally accesses the site once 
per week, but this changes to many 
times per day.

UT4 - Frequency of Feature Use
The rate of a user utilizing a particular application feature changes 
dramatically. 
It may be valid for some functionality may be requested repeatedly. 
For example a real customer placing many orders, a press officer 
publishing a backlog of press releases, or an administrator populating 
a staff directory.

• The user submits many forum messages 
in a short period of time.

• The user adds many new friends rapidly.



Part VI : Reference Materials

146

Table 43 DESCRIPTIONS OF SYSTEM TREND EXCEPTION (STE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

STE1 - High Number of Logouts Across The Site
A sudden spike in logouts across the application could indicate a XSS 
and CSRF attack placed within the application which is automatically 
logging off users.

• The hourly usage of the log-off feature 
of the application suddenly spikes by 
500%.

STE2 - High Number of Logins Across The Site
A sudden spike in logins across the application could indicate users 
being redirected to the site from a phishing email looking to exploit a 
XSS vulnerability in the site.

• The hourly usage of the logon feature of 
the application suddenly spikes by 
1,000%.

STE3 - Significant Change in Usage of Same Transaction Across The Site
A sudden spike in similar activity across numerous users of the 
application may indicate a phishing attack or CSRF attack against the 
users; a rapid reduction in activity may indicate users are being 
redirected elsewhere; a significant change in average transaction value 
or other quantitative measure may indicate suspicious activity. 
External events (e.g. a news item) may lead to additional unexpected 
traffic which is not an attack. 
A special requirement, situation or event may dramatically change the 
rate of use of certain transactions. (See also UT4)

• The hourly usage of the update email 
address feature of the application 
suddenly spikes by 2,000%.

• A website is compromised and users are 
redirected to a malicious site part-way 
through a process; the number of 
successful fully completed transactions 
drops to nil.

• A number of slow requests/reads are 
received in an attempt at application 
denial of service.

• The find contacts functionality is used 
excessively to identify related friends.



Part VI : Reference Materials

147

Table 44 DESCRIPTIONS OF REPUTATION (RP) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

RP1 - Suspicious or Disallowed User Source Location
The user is identified as using an IP address associated with a blacklist 
Considerations
Suspicious or invalid geo-location, IP addresses or IP address ranges 
may be identified using a whitelist, internal blacklist, list of Tor nodes155

, HTTP blacklist156,157, list of spammers158 or known botnets159. 
"Suspicious" may also depend upon the type of user e.g. users in the 
"CMS manager" role should be using an internal network IP address, 
public users could be from anywhere, customers should only be 
accessing the application from a particular geographical region, search 
engine robots should be from a limited range of IP addresses. Take 
care that "suspicious" does not contribute to greater false positives. 
The currency and accuracy of needs to be considered when the 
information is used in AppSensor. The method of challenge and 
removal of inaccuracies, and the speed of this process, should also be 
considered.

• A user with an external IP address is 
accessing an internal application, which 
should not be occurring.

• An authenticated user is accessing the 
application using a known Tor node, 
and attack detection thresholds are 
made stricter.

• An authenticated user is accessing the 
application from a known trustworthy 
IP address, and thresholds for certain 
activity (e.g. input data validation errors) 
are relaxed slightly.

• The IP address of the payment 
authentication server, used by the 
application for credit card authorization, 
changes.

RP2 - Suspicious External User Behavior
External (to the application) devices and systems (e.g. host and 
network IDS, file integrity monitoring, disk usage monitoring, anti-
malware service, IPS, network firewall, web application firewall, web 
server logging, XML gateway, database firewall, SIEM) detect 
anomalous behavior by the user (e.g. session and/or IP address) or 
suspicious user properties (e.g. fraud score, previously compromised, 
unusual current/previous behavior). This information can be used by 
the application to contribute to its knowledge about a potential 
attacker. In some cases, the information could be detected by the 
application itself (e.g. XSS pattern black listing), but may be more 
effectively identified by the external device, or is not known to the 
application normally (e.g. requests for missing resources that the web 
server sees, but does not pass onto the application). The greater the 
knowledge a device or system has about the application, the greater 
confidence can be given to evidence of suspicious behaviour. 
Therefore, for example, attempted SQL injection detected by a web 
application firewall (WAF) might be given greater weight than 
information from a network firewall about the IP address. The power 
of AppSensor is its accuracy and low false positive rate, and the usage 
of external data should be carefully assessed to ensure it does not 
contribute to a higher false positive rate. 
The level of trust in information from the external 
device/system/organization needs to be considered.

• A network IDS has detected suspicious 
activity by a particular IP address, and 
this is used to temporarily tighten the 
attack detection thresholds for requests 
from all users in the same IP address 
range.

• An application is using the ModSecurity 
web application firewall with the Core 
Rule Set, and utilises the anomaly score 
data passed forward in the X-WAF-
Events and X-WAF-Score HTTP 
headers (optional rules in 
modsecurity_crs_49_header_tagging.co
nf) to adjust the level of application 
logging for each user.

• Information from an instance of 
PHPIDS suggests request data may be 
malicious.

• An adverse score is indicated for the 
user or IP address by a fraud detection 
engine, or by an external reputation or 
fraud rating service (e.g. Open Fraud 
Detection Project).

• The username (email address) is related 
to an account compromised by a data 
breach (e.g. 
http://www.haveibeenpwned.com/).

Table 44 continued…



Part VI : Reference Materials

148

Detection Point Code, Name, Description and Considerations Examples

RP3 - Suspicious Client-Side Behavior
The application receives a report of client-side security policy 
exceptions. Take care this information does not contribute to greater 
false positives.

• An internal corporate intranet 
application detects use of a non-
standard workstation configuration (e.g. 
using JavaScript font or plugin detection 
see SE6). An alert is raised for further 
investigation.

• An online banking application receives 
details of suspicious client-side 
behaviour that would not be expected in 
normal application use, via a Content 
Security Policy160 violation report. The 
application increases logging for the 
user, and decreases the monetary limit at 
which the user's payments require 
manual authorization by bank staff.

• The HTTP user agent header value does 
not agree with other indicators (e.g. 
using JavaScript detection as in the first 
example above)161.

• A honey client system monitoring the 
web application reports unexpected 
behavior in the generated web pages 
output.

• A third-party monitoring system detects 
page content that is unauthorised 
and/or contrary to policy (e.g. structure, 
included links, HTML validation, 
inclusion of certain data such as 
payment card data).

• Client-side code is injected that creates a 
hash of the page content in the 
receiving client web browser to monitor 
for manipulated HTML code162.

RP4 - Change to Environment Threat Level
The general threat level (e.g. general risk of attack from the Internet, 
or specific targeted attacks against an organization) is elevated. This 
could also be used to change response sensitivity due to short-term 
effects such as application upgrades/patching. This input could be 
used to alter thresholds for AppSensor responses. 
The detection point could receive specially crafted input from an 
attacker, and therefore the information should be considered as 
untrusted.

• A machine-readable threat index is read 
from a third-party and is used to control 
security logging levels.

• Business circumstances (e.g. increased 
attention by activists) raises the 
suspicion the application may be at 
increased risk of mis-use, and response 
thresholds for attack detection are 
tightened for non-authenticated users.

• The Defense Condition Level 
(DEFCON)163 is raised and response 
thresholds are changed.

• Sensor signal missing.
• External power source disconnected.
• Firmware or software patch signing 

check failure.



Part VI : Reference Materials

149

Detection point specification sheets

Figure 38 EXAMPLE DETECTION POINT DEFINITION OVERVIEW SHEET FOR AN INSTANCE OF IE2

DETECTION POINT DEFINITION - OVERVIEW TYPE II - Discrete / business layer

CODE/TITLE IE2 Violation of Implemented White Lists

SERIES/PURPOSE 3000 Detailed parameter validation against white list

DESCRIPTION Whitelists are defined in XML data associated with the application for each allowed form 
and URL parameter. This detection point compares the parameter value with two 
whitelists:

1) valid values: that can be used safely as inputs to subsequent processing
2) invalid values: that should be rejected, but might only be user error (soft 

rejection)
Values that do not match either whitelist are invalid and impermissible (hard rejection).

PRE-REQUISITES All generic pre-processing detection points

RELATED DPS None

COMMENTS The parameters have been previously screened for missing/duplication/extra parameters 
and values.
Some parameters can be defined but have NULL value.
Some parameter values may be lists (e.g. comma delimited) of other values.

CHANGE LOG DATE

19 Feb 2013

BY

CW

ACTION

Created



Part VI : Reference Materials

150

Figure 39 EXAMPLE DETECTION POINT DEFINITION OVERVIEW SHEET FOR AN INSTANCE OF ACE3

DETECTION POINT DEFINITION - OVERVIEW TYPE I - Discrete / generic pre-processing 

CODE/TITLE ACE3 Force Browsing Attempts

SERIES/PURPOSE 1200 Validation of request URL against whitelist of allowable application surface

DESCRIPTION All permissible application entry points are defined in the database, together with whether 
SSL/TLS is mandatory, optional or disallowed. The database also includes URLs of 
dynamic (e.g. scripts) and static (e.g. style sheets, images, etc) content entry points.
This detection point is called for every HTTP request to the application.
This detection point checks the path and whether SSL/TLS is being used.

PRE-REQUISITES RE1, RE2

RELATED DPS RE3, RE4

COMMENTS This detection point does not validate user/role permissions for the URL or the 
presence/absence of parameters.

CHANGE LOG DATE

19 Feb 2013

21 Feb 2013

21 Feb 2013

BY

CW

AK

MM

ACTION

Created

Note on exclusions added to comments

Detection point locations added



Part VI : Reference Materials

151

Figure 40 PART OF EXAMPLE DETECTION POINT SCHEDULE FOR IE2

DETECTION POINT DEFINITION - OVERVIEW TYPE II - Discrete / business layer

CODE/TITLE IE2 Violation of Implemented White Lists

SERIES/PURPOSE 3000 Detailed parameter validation against white list

LOCATIONS ID

IE2-3010

IE2-3011

IE2-3013

IE2-3020

OBJECT

username

password

resource

press_release

MODULE 

site.dao.auth

site.dao.auth

site.dao.auth

site.dao.media

Figure 41 EXAMPLE DETECTION POINT SCHEDULE FOR AE3 

DETECTION POINT DEFINITION - OVERVIEW TYPE I - Discrete / generic pre-processing

CODE/TITLE ACE3 Force Browsing Attempts

SERIES/PURPOSE 1200 Validation of request URL against whitelist of allowable application surface 

LOCATIONS ID

ACE-1210

OBJECT

URL

MODULE 

site.dao.request



Part VI : Reference Materials

152

Responses

Listing of responses

Table 45 SUMMARY OF APPSENSOR RESPONSE IDENTIFIERS AND TITLES, GROUPED BY THE EFFECT ON THE USER 

Category Response
Type Description ID Titles
None No response ASR-P No Response

ASR-A Logging Change
ASR-B Administrator Notification
ASR-C Other Notification

Silent User unaware of application's response

ASR-N Proxy
ASR-D User Status Change
ASR-E User Notification

Passive Changes to user experience but nothing denied

ASR-F Timing Change
ASR-G Process Terminated
ASR-H Function Amended
ASR-I Function Disabled
ASR-J Account Logout
ASR-K Account Lockout

Active Application functionality reduced for user(s)

ASR-L Application Disabled
Intrusive User's environment altered ASR-M Collect Data from User

ASR-P for “no response” is usually only output in logs to indicate an event did not initiate 
an immediate response. For example the event might relate to an aggregating detection 
point.

This list, and the details in the following tables are maintained on the AppSensor website’s 
list of responses75. Always check there for the most recent information.



Part VI : Reference Materials

153

Categorization of responses

The responses can be categorized by their purpose, whether the response affects one or all 
users, and whether the response is an instantaneous single event, has a duration or is 
permanent.

Table 46 ASSIGNMENT OF APPSENSOR RESPONSES TO CATEGORIZATIONS

ClassificationsResponse
Purpose Target User Response Duration

Code Description Logging Notifying Disrupting Blocking One All Instantaneous Period Permanent
ASR-A Logging Change � � � � �

ASR-B Administ’r Notification � � � � �
ASR-C Other Notification � � � �
ASR-D User Status Change � � �
ASR-E User Notification � � � � �
ASR-F Timing Change � � � � � �

ASR-G Process Terminated � � � � �
ASR-H Function Amended � � � � � � � �

ASR-I Function Disabled � � � � � � � �

ASR-J Account Logout � � � � � �
ASR-K Account Lockout � � � � � � �

ASR-L Application Disabled � � � � � �
ASR-M Collect Data from User � � �
ASR-N Proxy � � � � �

ASP-P No response
����� always,  � sometimes



Part VI : Reference Materials

154

Detailed descriptions of responses

Table 47 DESCRIPTIONS OF APPSENSOR RESPONSES LISTED ALPHABETICALLY BY CODE

Response Code, Name, Description and Considerations Examples

ASR-A - Logging Change
The granularity of logging is changed (typically more logging). • Capture sanitised request headers and response 

bodies.
• Full stack trace of error messages logged.
• Record DNS data on user's IP address.
• Security logging level changed to include 

'informational' messages.

ASR-B - Administrator Notification
A notification message is sent to the application 
administrator(s).

• Email alert sent to everyone in the 
administration team.

• SMS alert sent to the on-call administrator.
• Visual indicator displayed on an application 

monitoring dashboard.
• Audible alarm in the control room.

ASR-C - Other Notification
Notification message sent to something or someone other than 
Administrators (see ASR-B) or the User (see ASR-E). The 
message recipient (e.g. firewall) could take some action 
otherwise unavailable to the application (e.g. disruptive - the 
application makes a silent response, but the firewall actively 
intervenes and perhaps blocks the user).

• Broadcast event to SIEM.
• Signal sent to upstream network firewall, 

application firewall (e.g. XML, web) or load 
balancer.

• Alert sent to fraud protection department.
• Record added to server event log.
• Event highlighted in a daily management 

report.
• Email alert to staff member's manager.
• Proactive entry added to customer support 

system (e.g. "Someone had difficulty logging in 
with this customer's username - request extra 
validation for telephone enquiries").

ASR-D - User Status Change
A parameter related to the user is modified. This may have an 
impact on functionality or usability of the application, but only 
for the one user.

• Internal trustworthiness scoring about the user 
changed.

• Reduce payment transfer limit for the 
customer before additional out-of-band 
verification is required.

• Reduce maximum file size limit for each file 
upload by the forum user.

• Increase data validation strictness for all form 
submissions by this citizen.

• Reduce the number of failed authentication 
attempts allowed before the user's account is 
locked (ASR-K).

Table 47 continued…



Part VI : Reference Materials

155

Response Code, Name, Description and Considerations Examples

ASR-E - User Notification
A visual, audible and/or mechanical (e.g. vibration) signal or 
message is activated, displayed, or sent by other means, to the 
user.

• On-screen message about mandatory form 
fields (e.g. "The 'occupation' must be 
completed").

• On-screen message about data validation 
issues (e.g. 'The bank sort code can only 
contain six digits with optional hyphens').

• Message sent by email to the registered email 
address to inform them their password has 
been changed.

• On-screen message warning that they have 
been detected performing malicious activity 
(e.g. Mr Clippy idea)

ASR-F - Timing Change
The usual timescales to perform an operation are altered, 
usually extended, or delays are added.

• Extend response time for each failed 
authentication attempt.

• File upload process duration extended 
artificially.

• Add fixed time delay into every response.
• Order flagged for manual checking.
• Goods despatch put on hold (e.g. despatch 

status changed).

ASR-G - Process Terminated
An interruption to the sending, display or process, such that the 
user has to start again, or start somewhere else. For 
authenticated users, this would not include termination of their 
session (see ASR-J). And, they would be free to attempt the 
process again (e.g. access the resource after logging in, submit a 
payment transfer, etc).

• Discard data, display message and force user 
to begin business process from start.

• Redirection of an unauthenticated user to the 
log-in page.

• Redirection to home page.
• Display other content (i.e. terminate process 

but display the output of some other page 
without redirect).

• Redirection to a page on another website.

Table 47 continued…



Part VI : Reference Materials

156

Response Code, Name, Description and Considerations Examples

ASR-H - Function Amended
The usual functionality is amended but not disabled (see ASR-
I).

• Limit on feature usage rate imposed.
• Reduce number of times/day the user can 

submit a review.
• Additional registration identity validation 

steps.
• Additional anti-automation measures (e.g. out-

of-band verification activated, CAPTCHA 
introduced).

• Static rather than dynamic content returned.
• Additional validation requirements for delivery 

address.
• Watermarks added to pages, images and other 

content.
• Additional human interactive proof challenges 

added due to the number of incorrect guesses 
of CAPTCHAs outnumbering the correct 
guesses by more than a certain factor (e.g. 
Token bucket idea).

• Fuzz responses to mask real functionality or 
increase attacker efforts to enumerate the 
application or its data (e.g. random URL 
generation using ADHD Spider Trap or 
Weblabyrinth, realistic but invalid cipher text 
data using techniques such as honey 
encryption)

ASR-I - Function Disabled
A function or functions are disabled for one, some or all users. 
Other functionality continues to work as normal. For changes 
that affect multiple users, be careful the response cannot be 
used too easily for denial of service.

• 'Add friend' feature inactivated.
• 'Recommend to a colleague' feature links 

removed and disabled.
• Document library search disabled.
• Prevent new site registrations.
• Web service inactivated or cloaked.
• Content syndication stopped.
• Automated Direct Debit system turned off 

and manual form offered instead.

ASR-J - Account Logout
The current session is terminated on the server, and the user is 
logged out. Often undertaken in conjunction with process 
termination (ASR-G) and sometimes lockout (ASR-K).

• Session terminated and user redirected to 
logged-out message page.

• Session terminated only (no redirect).

ASR-K - Account Lockout
An account, session or source address is blocked from access 
and/or authentication. If IP blocking is implemented, it is 
recommended this is undertaken at the network layer using the 
operating system (e.g. iptables, Windows firewall) or by a 
network device (e.g. firewall).

• User account locked for 10 minutes.
• User account locked permanently until an 

Administrator resets it.
• One user's IP address range blocked.
• Unauthenticated user's session terminated.

Table 47 continued…



Part VI : Reference Materials

157

Response Code, Name, Description and Considerations Examples

ASR-L - Application Disabled
The whole application is disabled or made unavailable. Be 
careful the response cannot be used too easily for denial of 
service.

• Website shut down and replaced with 
temporary static page.

• Application taken offline.

ASR-M - Collect Data from User
This response is meant to be non-malicious in intent - it is 
simply additional information gathering - and not retaliatory or 
damaging to the user, their systems or data, nor make any 
permanent change. An alert user might be aware of the action. 
Be very wary of data collected and perform appropriate 
validation and sanitization. Ensure any use of this type of 
response is legally permissible in the relevant jurisdictions, and 
complies with corporate policies and the application's terms of 
use, privacy notice and corporate policies. To a certain extent, 
any additional payload in a response might cause a user's 
browser or computer to crash, and this might have unforeseen 
circumstances.
The information collection could use techniques such as to 
gather information on the user's browser and computer 
configuration146, inject content into an HTTP response using 
JavaScript to discover the user's real IP address164, embed a 
decloaking engine to discover the real IP address of a web user165

, or use ModSecurity and BeEF to monitor the attacker166.

• Deploy additional browser fingerprinting using 
JavaScript in responses.

• Deploy a Java applet to collect remote IP 
address.

• Deploy JavaScript to collect information about 
the user’s network.

• Record mobile phone fingerprint and IMEI 
number.

ASR-N - Proxy
Send the request to a different back-end location. For 
redirection that the user will be aware of, see See ASR-G 
instead.

• Requests from the user invisibly (from the 
user's perspective) passed through to a 
hardened system.

• Requests are proxied to a special honeypot 
system which closely mimics or has identical 
user functionality.

ASR-P - No Response
There is no response. This could be used to record in logs that 
a detection event did not lead to any particular response action.

• A detection point fired, but the threshold for 
response has not been reached.

Letter “O” is not used for a response code.



Part VI : Reference Materials

158

Thresholds and responses definition sheets

Figure 42 EXAMPLE THRESHOLD SCHEDULE NO1

RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

OVERALL NUMBER OF SECURITY EVENTS

CODE

(All)

SERIES

-

THRESHOLD

3 

PERIOD

1 day

RESPONSES

ASR-K

Figure 43 EXAMPLE THRESHOLD SCHEDULE NO2

RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

OVERALL NUMBER OF SECURITY EVENTS

CODE

(none)

SERIES

-

THRESHOLD

-

PERIOD

-

RESPONSES

-

SYSTEM TRENDS (INDIVIDUAL DETECTION POINTS)

CODE

STE3

STE3

SERIES

-

-

THRESHOLD

+200% 

+1,000%

 

PERIOD

1 hour

1 hour 

RESPONSES

ASR-B

ASR-I 



Part VI : Reference Materials

159

Figure 44 EXAMPLE THRESHOLD SCHEDULE NO3

RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

OVERALL NUMBER OF SECURITY EVENTS

CODE

(All)

(All)

SERIES

-

-

THRESHOLD

5 

45

PERIOD

1 day

1 day

RESPONSES

ASR-E

ASR-E, ASR-J, ASR-K

SYSTEM TRENDS (INDIVIDUAL DETECTION POINTS)

CODE

STE1

STE2

SERIES

1000

1000

THRESHOLD

+500% 

+1000% 

PERIOD

15 minutes

1 hour

RESPONSES

ASR-B

ASR-B

USER TRENDS (INDIVIDUAL DETECTION POINTS)

CODE

UT1

UT1

UT1

UT3

UT3

SERIES

1000

2010

2020

1000

2000

THRESHOLD

10 

5 

40 

1

1

PERIOD

1 hour

15 minutes

1 day

-

-

RESPONSES

ASR-B

ASR-B, ASR-E

ASR-B, ASR-E, ASR-I

ASR-D

ASR-B, ASR-I

USER EVENTS (INDIVIDUAL DETECTION POINTS)

CODE

RE1

RE2

RE3

RE4

AE2

AE3

SERIES

1000

1000

1000

1000

1000

1000

THRESHOLD

2 

2 

5 

5 

 

 1 

1 

PERIOD

1 hour

1 day

1 day

1 day

NA

NA

RESPONSES

ASR-G

ASR-G

ASR-B, ASR-J

ASR-B, ASR-J

ASR-K

ASR-K



Part VI : Reference Materials

160

SE1

SE2

SE5

SE5 

ACE1

ACE2

ACE3

IE1

IE2

IE2

1000

1000

1010

1020

1000

1000

1000

1000

1000

1010

1 

1 

1 

1 

2 

2 

5 

2 

1 

25 

(session)

1 day

(session)

(session)

30 days

30 days

15 minutes

1 day

1 day

2 hours

ASR-J, ASR-B, ASR-E

ASR-A

ASR-A

ASR-B, ASR-K

ASR-B, ASR-K

ASR-B, ASR-K

ASR-A, ASR-F

ASR-A, ASR-E, ASR-G

ASR-G, ASR-B

ASR-B, ASR-J



Part VI : Reference Materials

161

Data Signaling Exchange Formats

This AppSensor Guide defines a recommended syntax for event information records 
between systems. No taxonomy of values is provided. Identity authentication, 
authorization, integrity, synchronization should be accomplished using the transport 
protocol utilized. Additionally the particular transportation protocol is not defined since 
this will be environment-specific.

See also Part III : Making It Happen - Chapter 15 : Verification, Deployment and Operation - 
Operation - Logging, signaling, monitoring and reporting.

Note on detection point identifiers

Sometimes detection points are simply identified as the base inspiration types (e.g. RE4, 
IE5). However an application may have multiple instances of a particular detection point 
type (e.g. IE5-001, IE5-002), and it is recommended this is allowed for even in pilot 
implementations.

Additional information could be appended to these detection IDs, such the application 
name and version, and hostname, where the information is transmitted to some other 
system. Alternatively these other identifiers can be transmitted in other fields.

Note on user identifiers

User identification is an important consideration, but not all users will necessarily be 
identifiable even in authenticated parts of an application. Please see the considerations 
discussed in Part I : AppSensor Overview - Chapter 4 : Conceptual Elements - User identification 
(attribution).

Event syntax

Not all the data that is collected for security event logging is necessary for attack 
identification (see for example Chapter 18 : AppSensor and Application Event Logging - 
Application event logs).

The minimum data to be recorded/signaled when an event occurs is:

• Application/host identity (e.g. application abbreviated name and host code)
• User identity (e.g. username)
• Event identity (e.g. detection point ID)
• Event date/time.



Part VI : Reference Materials

162

Internally within an application, this may simply be logged to a database or file system, but 
with an external application or component, the preferred format to use is JSON. Other 
formats are also discussed below.

AppSensor Event Format in JSON

The JSON Data Interchange Format167 is used by the demonstration implementation 
AppSensor WS. Using the minimum information as defined above.

Figure 45 BASIC APPSENSOR EVENT FORMAT FOR JSON DATA

{

"user":{

"username":"USER_USERNAME"

},

"detectionPoint":{

"id":"DETECTIONPOINT_ID"

},

"timestamp": EVENT_TIMESTAMP

}

For a definition of the event data values in AppSensor Event Format (AEF) see Figure 48 
AppSensor Event Format Data Value Definitions.

Using JSON, the application identity is specified in an HTTP header named “X-
AppSensor-Client-Application-Name”. A simple example event notification of detection 
point “RE5-001” activated by the user with username “horacio7” is shown below.

Figure 46 IMPORTANT HTTP HEADERS AND EXAMPLE JSON EVENT DATA

Content-Type: text/x-json

X-AppSensor-Client-Application-Name: WebShop-WS05

{"user":{"username":"horacio7"},"detectionPoint":{"id":"RE5-001"},"timestamp": 
2014-05-01T11:48:40+01:00 }

If additional fields are required from Table 19 in Chapter 18 : AppSensor and Application Event 
Logging - Application event logs, it is recommended the JSON data could be extended as 
follows. Note that some of these properties may be inherently defined in the detection 



Part VI : Reference Materials

163

point identity already, and thus may be redundant if the receiving event logging system or 
analysis engine can decode the detection point identity.

Figure 47 EXTENDED APPSENSOR EVENT FORMAT FOR JSON DATA SHOWING OPTIONAL AND CUSTOM FIELDS

{

"user":{

"username":"USER_USERNAME",

"source":"USER_SOURCE",

"useragent":"USER_AGENT",

"fingerprint":"USER_FINGERPRINT"

},

"detectionPoint":{

"id":"DETECTIONPOINT_ID",

"process":"DETECTIONPOINT_PROCESS",

"description":"DETECTIONPOINT_DESCRIPTION",

"message":"DETECTIONPOINT_MESSAGE"

},

"location":{

"host":"LOCATION_HOST_ID",

"application":"LOCATION_APPLICATION_ID",

"version":"LOCATION_APPLICATION_VERSION",

"port": "LOCATION_PORT",

"protocol4": "LOCATION_PROTOCOL_COMMUNICATION",

"protocol7": "LOCATION_PROTOCOL_APPLICATION",

"method": "LOCATION_METHOD",

"entrypoint": "LOCATION_ENTRY_POINT"

"interaction":"LOCATION_INTERACTION"

},

"classification":{

"severity": "CLASSIFICATION_SEVERITY",

"confidence”: "CLASSIFICATION_CONFIDENCE",

"owner": "CLASSIFICATION_OWNER",

"[CUSTOM_NAME_1]": "[CUSTOM_VALUE_1]",

"[CUSTOM_NAME_2]": "[CUSTOM_CLASS_VALUE_2]",

…

},

"timestamp": EVENT_TIMESTAMP,

"logtimestamp: LOG_TIMESTAMP,

“logid”: LOG_ID

}

The values for AppSensor Event Format (AEF) are defined in the table below. But see also 
the references in Chapter 18 : AppSensor and Application Event Logging - Application event logs.



Part VI : Reference Materials

164

Figure 48 APPSENSOR EVENT FORMAT DATA VALUE DEFINITIONS

[Application] User:

• USER_USERNAME (string)
An application-specific end user account username, or other user 
identity such as email address or database key, or sometimes an IP 
address or physical device identity; never a session identifier or 
sensitive data; possibly “0” for unauthenticated users

• USER_SOURCE (string)
User’s address e.g. IPv4 or IPv6 address

• USER_AGENT (string)
User’s client software or device identification. e.g. HTTP User Agent 
string

• USER_FINGERPRINT (string)
User’s client or device fingerprint e.g. SHA1 hash of certain HTTP 
request headers

[Application] Detection Point:

• DETECTIONPOINT_ID (string)
The identity assigned to the activated detection point, and could 
include further detection point details and even host, application, 
path, code process, logic flow and instance identifiers

• DETECTIPNPOINT_PROCESS {string}
The code process where the event was detected such as the module, 
function, subroutine, component or script name (not the URL path – see 
”entrypoint”)

• DETECTIONPOINT_DESCRIPTION (string)
Human readable description of detection point

• DETECTPOINT_MESSAGE (string)

Human readable warning message displayed to user

[Detection Point] Location:

• LOCATION_HOST_ID (string)
Host system identifier e.g. host name, IP address, device identity

• LOCATION_APPLICATION_ID (string)
Application/service identifier e.g. application name abbreviation

• LOCATION_APPLICATION_VERSION (string)
Application/service release version

• LOCATION_PORT (integer)
Network TCP or UDP port number e.g. 443

• LOCATION_PROTOCOL_COMMUNICATION (string)
Network protocol e.g. TCP, UDP

• LOCATION_PROTOCOL_APPLICATION (string)
Application protocol or physical event descriptor e.g. FTP, key, HTTP, 
screen, SIP

• LOCATION_METHOD (string)
Application protocol method e.g. POST, depress, mouse over, touch

• LOCATION_ENTRYPOINT (string)
Data submission identifier e.g. URL path, button identifier, form or 
screen name

• LOCATION_INTERACTION (string)
A unique identifier used to group all events associated with a single 
user interaction e.g. when multiple detection points are activated by a 
single user request



Part VI : Reference Materials

165

continued…

[Event] Classification:

• SEVERITY (integer)
This is the severity level from RFC 5424168 (The Syslog Protocol) i.e.
.. 0 (Emergency/Application unavailable for all users)
   1 (Alert/Function unavailable for all users)
   2 (Critical/Function or application unavailable to a single user)
   3 (Error/Other security events not included in codes 0, 1, 2 or 4)
   4 (Warning/A security event but user allowed to continue)
   5 (Notice: normal but significant condition)
   6 (Information/Normal user behavior)
   7 (Debug-level messages)
Note severity levels 6 and 7 are not normally valid for AppSensor

• CONFIDENCE (integer)
An integer between 0 and 100, where 100 means certain

• OWNER (string)
Event assignment e.g. Operations, Compliance

• CUSTOM_NAME and CUSTOM_VALUE
can be used for additional use but are not necessarily supported by 
other systems

[Event] Chronology:

• EVENT_TIMESTAMP
Timestamp from RFC 3339169 (Date and Time on the Internet: Timestamps) 
when the event was detected

• LOG_TIMESTAMP (signed integer)
A Unix time (POSIX time) in the GMT time zone designated when the event 
was logged

• LOG_ID (string)

• Some identifier of the relevant application event log record (there 
should be very many more application events than detection point 
events)

This is extended JSON format in not supported by the demonstration web services 
implementation - see Part IV : Demonstration Implementations - Chapter 20 : Web Services 
(AppSensor WS).

AppSensor event data using Common Event Format

Common Event Format (CEF) may be more useful in enterprises with existing log 
aggregation, monitoring and alerting systems. CEF comprises80 a prefix, message and 
optional extension requiring a greater number of fields to be sent than for AEF in JSON. 
Using the minimum AEF information as defined above, CEF may be used for AppSensor 
event data as follows.



Part VI : Reference Materials

166

Figure 49 BASIC APPSENSOR EVENT DATA USING CEF

"EVENT_TIMESTAMP" "LOCATION_HOST_ID" CEF:0 
|"CEF_DEVICE_VENDOR"|"LOCATION_APPLICATION_ID"|"LOCATION_APPLICATION_VERSION"|"
DETECTIONPOINT_ID"|"DETECTIONPOINT_DESCRIPTION"|"SEVERITY"|suser="USER_USERNAME
"

IN CEF terminology, the instrumented application is the “device”, and the detection point 
is the “signature”. The mappings from the terms for JSON in the previous table to CEF 
keys are shown in the table below.

Table 48 MAPPING OF APPSENSOR EVENT FORMAT (AEF) TERMS TO COMMON EVENT FORMAT (CEF) KEYS

AEF Term CEF Key
EVENT_TIMESTAMP TIMESTAMP
LOCATION_HOST_ID HOST
LOCATION_APPLICATION_ID DEVICE PRODUCT
LOCATION_APPLICATION_VERSION DEVICE VERSION
DETECTIONPOINT_ID SIGNATURE ID
DETECTIONPOINT_DESCRIPTION NAME
SEVERITY SEVERITY (i.e. the same)
USER_USERNAME SOURCEUSERNAME

The two additional CEF-specific field values are described below.

Figure 50 BASIC ADDITIONAL CEF FIELD VALUES IN THE CONTEXT OF APPSENSOR

CEF:

• CEF_DEVICE_VENDOR (string)
The vendor of the application e.g. supplier, organization itself

• CEF_SEVERITY (integer)
0 to 10, lowest to highest; note this is the reverse order to syslog

Other CEF extension predefined keys can be used as listed in the CEF standard80 such as 
shown in the example below. Custom dictionary extensions could also be used.



Part VI : Reference Materials

167

Figure 51 EXAMPLE CEF APPSENSOR EVENT DATA USING CEF PREDEFINED KEYS

18 04 2014 16:04:53 EST appserver02 CEF:0|widgetco|shoponline|3.7.03|AppSensor|
XSS attempt blocked|7|src=10.25.102.65 suser=W0005 proto=TCP dpt=80 dproc=httpd 
request=/catalogue/showProduct/ requestMethod=GET deviceExternalID=AppSensor06 
msg=Cross site scripting attempt in parameter prodid cat=detection act=block 
cs1Label=requestClientApplication cs1=Mozilla/5.0 (Macintosh; U; Intel Mac OS X 
10.8; en-GB; rv:1.9.2.17) Gecko/20110420 cs2Label=AppSensorDetectionPointID 
cs2=R03 cs3Label=AppSensorDetectionType cs3=IE1 cs4Label=StatusCode cs4=403 
cn1Label=RequestID cn1=000070825566 cn2Label=AppSensorLogID cn2=1650833 
cn3Label=Confidence cn3=100

When CEF is being used it may be the receiving system has much less knowledge about the 
application and its workings. In this situation it may be valuable to pass forward other data 
the application already knows about the user, the detection points and the attack such as 
CWE108, CCE109, CAPEC68 and SWID112 identifiers. However, passing forward any type of 
sensitive data should be assessed and approved first (e.g. privacy impact assessment, 
information security risk assessment, regulatory compliance check).

Attack syntax

This is expected to be defined in the near future.

Response syntax

Information on responses initiated may need to be transmitted by a discrete Event Analysis 
Engine, or such data could be broadcast by the application itself to centralized logging and 
monitoring systems.

This is expected to be defined in the near future.



Part VI : Reference Materials

168

Awareness and Training Resources

Overview briefing

There is a high-level promotional video about AppSensor at:

http://www.youtube.com/watch?v=6gxg_t2ybcE

The project’s founder Michael Coates was interviewed about the AppSensor Project during 
AppSec USA in New York during November 2013:

https://soundcloud.com/owasp-podcast/appsec-usa-2013-michael-coates

Furthermore, the four-page article “Creating Attack-Aware Software Applications with 
Real-Time Defenses”10 in the journal CrossTalk provides a high-level summary of the 
AppSensor concept, benefits and applicability.

http://www.crosstalkonline.org/storage/issue-
archives/2011/201109/201109-Watson.pdf

This article is very suitable for circulation to senior development and information security 
management. 

Detailed documentation

This AppSensor Guide can be downloaded free of charge as an Adobe PDF file, Word 
document and Google Doc from links on the OWASP AppSensor Project website1:

https://www.owasp.org/index.php/OWASP_AppSensor_Project

It is also available in print at cost from Lulu170:

Other electronic formats and language translations may be available in due course. The 
OWASP AppSensor Project website provides the most up-to-date sources of information, 
presentation files and links to the latest version of the book.



Part VI : Reference Materials

169

Video briefings and demonstrations

Overviews:

• Creating Self Defending Applications to Repel Attackers, Michael Coates, 2014
https://www.youtube.com/watch?v=YOtTPr8r0tI

• OWASP AppSensor - In Theory, In Practice and In Print, Colin Watson, 2013
https://www.youtube.com/watch?v=QhhG4ty5DdY

• Using the O2 Platform, ZAP and AppSensor, Dinis Cruz, 2013
http://www.youtube.com/watch?v=dzj3llZ9G6I

• Protección Web Con ESAPI y AppSensor, Manual Lopez Arredondo, 2013
http://www.youtube.com/watch?v=v2j0oVKCZLw

• Implementing AppSensor in ModSecurity, Ryan Barnett, 2011
http://www.youtube.com/watch?v=0LJKGNs_rT8

• Real Time Application Defenses: The Reality of AppSensor and ESAPI, 2010
Part 1 http://www.youtube.com/watch?v=ibQkfkATbVA
Part 2 http://www.youtube.com/watch?v=du60qMpIQU4
Part 3 http://www.youtube.com/watch?v=UUEs8CfVWq8

Attack detection and response using a demonstration application:

• OWASP AppSensor: Detecting XSS Probes, Michael Coates, 2009
http://www.youtube.com/watch?v=CekUMk_VRV8

• OWASP AppSensor: Detecting URL Tampering, Michael Coates, 2009
http://www.youtube.com/watch?v=LfD4y67qdWE

• OWASP AppSensor: Detecting Verb Tampering, Michael Coates, 2009
http://www.youtube.com/watch?v=1D6nTlmYjhY
OWASP AppSensor: Responding to an Attack, Michael Coates, 2009
http://www.youtube.com/watch?v=8ItfuwvLxRk

Demonstration information dashboards:

• OWASP AppSensor Dashboard Demo No 2 - Ecommerce Application Advanced 
Configuration
http://www.youtube.com/watch?v=YZ5zGQ-XLkk

• OWASP AppSensor Dashboard Demo No 1 - Ecommerce Application Base 
Configuration
http://www.youtube.com/watch?v=zCaYREAyiRg



Part VI : Reference Materials

170

Previous guides and workbooks:

• OWASP AppSensor – Detect and Respond to Attacks from Within the 
Application, v1.1, Michael Coates, 2008-2009
https://www.owasp.org/images/b/b0/OWASP_AppSensor_Beta_1.1.doc
https://www.owasp.org/images/2/2f/OWASP_AppSensor_Beta_1.1.pdf

• Attack Detection & Response with OWASP AppSensor - An Implementation 
Planning Workbook, Colin Watson, 2010-2011
http://www.owasp.org/index.php/File:Appsensor-planning.zip



Part VI : Reference Materials

171

Feedback and Testimonials

The volunteers supporting the OWASP AppSensor Project would like to hear about your 
application-specific real-time attack detection and response:

• Questions
• Suggestions
• Corrections
• Experiences.

Actual production examples and testimonials, anonymous or otherwise, are especially 
welcome to help the team learn and share knowledge to the wider application development 
community. The AppSensor project supports OWASP’s core values171 which are:

• OPEN - Everything at OWASP is radically transparent from our finances to our 
code.

• INNOVATION - OWASP encourages and supports innovation/experiments for 
solutions to software security challenges.

• GLOBAL - Anyone around the world is encouraged to participate in the OWASP 
community.

• INTEGRITY - OWASP is an honest and truthful, vendor neutral, global 
community.

Please also let us know about errors in, improvements to and contributions for this guide.

For open contribution and discussion, please use the PROJECT mailing list:

https://lists.owasp.org/listinfo/owasp-appsensor-project

To discuss or ask about the reference implementations (AppSensor WS and AppSensor 
Core), please use the DEVELOPMENT mailing list:

https://lists.owasp.org/mailman/listinfo/owasp-appsensor-dev

Thank you.



Part VI : Reference Materials

172

References

1 OWASP AppSensor Project, OWASP
https://www.owasp.org/index.php/OWASP_AppSensor_Project
2 Coates M, AppSensor, v1.1, OWASP
https://www.owasp.org/images/2/2f/OWASP_AppSensor_Beta_1.1.pdf
3Chiappori PA, Levitt S and Groseclose TG, Testing Mixed-Strategy Equilibria When Players Are 
Heterogeneous: The Case of Penalty Kicks in Soccer
http://pricetheory.uchicago.edu/levitt/Papers/ChiapporiGrosecloseLevitt2002.pdf
4 Tossing Coins Experiment
http://gwydir.demon.co.uk/jo/probability/coins.htm
5 OWASP Security Principles Project, OWASP
https://www.owasp.org/index.php/OWASP_Security_Principles_Project
6 Coates M, AppSensor: Real Time Defenses, OWASP DC 2009
https://www.owasp.org/images/0/06/Defend_Yourself-
Integrating_Real_Time_Defenses_into_Online_Applications-Michael_Coates.pdf
7 Coates M, Automated Application Defenses to Thwart Advanced Attackers 
http://michael-coates.blogspot.com/2010/06/online-presentation-thursday-automated.html
8 http://michael-coates.blogspot.com/2010/08/mozilla-at-owasp-appsecusa.html
9 CrossTalk The Journal of Defense Software Engineering
http://www.crosstalkonline.org/
10 Watson C, Coates M, Melton J and Groves G, Creating Attack-Aware Software Applications with 
Real-Time Defenses, CrossTalk The Journal of Defense Software Engineering, Vol. 24, No. 5, 
Sep/Oct 2011
http://www.crosstalkonline.org/storage/issue-archives/2011/201109/201109-Watson.pdf
11 Resilient Software, Software Assurance, US Department Homeland Security
https://buildsecurityin.us-cert.gov/swa/resilient.html
12 http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf 
BITS Software Assurance Framework, Financial Services Roundtable, 2012
13 Kitten T, New Wave of DDoS Attacks Launched, BankInfoSecurity.com, Information Security 
Media Group, 6 March 2013
http://www.bankinfosecurity.com/new-wave-ddos-attacks-launched-a-5584/op-1
14 damontoo, Etsy Has Been One of the Best Companies I've Reported Holes To
http://www.reddit.com/r/netsec/comments/vbrzg/etsy_has_been_one_of_the_best_companies_i
ve/
15 Lackey Z, Security at Scale: Effective Approaches to Web Application Security, Etsy
http://www.slideshare.net/zanelackey and http://vimeo.com/54107692
16 Etsy, Node.js Instrumentation Library
https://github.com/etsy/statsd
17 Malpas I, Measure Anything, Measure Everything, Code as Craft, Etsy



Part VI : Reference Materials

173

http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
18 Ratnam G and King R, Pentagon Seeks $500 Million for Cyber Technologies, Bloomberg
http://www.bloomberg.com/news/2011-02-15/pentagon-seeks-500-million-for-cyber-research-
cloud-computing.html
19 Applegate SD, The Principle of Maneuver in Cyber Operations, Navy Center for Innovation 
Weblog, Navy Warfare Development Command, 6 June 2012
https://www.nwdc.navy.mil/ncoi/blog/Document%20Library/The%20Principle%20of%20Maneu
ver%20in%20Cyber%20Operations%20-%20Guest%20Briefing.pdf
20 McRee R, MORPHINATOR & cyber Maneuver as a Defensive Tactic, HolisticInfoSec blog, 18 
July 2012
http://holisticinfosec.blogspot.co.uk/2012/07/morphinator-cyber-maneuver-as-defensive.html
21 Naraine R, How Google Set a Trap for Pwn2Own Exploit Team, ZDNet, 9 March 2012
http://www.zdnet.com/blog/security/how-google-set-a-trap-for-pwn2own-exploit-team/10641
22 Google Hack Honeypot
http://ghh.sourceforge.net/
23 HP Fortify Runtime
https://ssl.www8.hp.com/us/en/software-solutions/software.html?compURI=1337235
24 Prevoty
https://www.prevoty.com/
25 Bace R, Intrusion Detection, Sams, 1999
ISBN-10: 1578701856, ISBN-13: 978-1578701858
26 Bace R and Mell P, NIST Special Publication on Intrusion Detection Systems, NIST
http://www.21cfrpart11.com/files/library/government/intrusion_detection_systems_0201_draft.p
df
27 Scarfone K and Mell P, SP 800-94 Guide to Intrusion Detection and Prevention Systems (IDPS), 
NIST, 2007
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
28 Scarfone K and Mell P, SP 800-94 Revision 1 DRAFT Guide to Intrusion Detection and 
Prevention Systems (IDPS), NIST, 2012
http://csrc.nist.gov/publications/drafts/800-94-rev1/draft_sp800-94-rev1.pdf
29 ISO/IET 7498-2:1989 Information Processing Systems - Open Systems Interconnection - Basic 
Reference Model - Part 2: Security Architecture
http://www.iso.org/iso/catalogue_detail.htm?csnumber=14256
30 Recommendation X.800 : Security architecture for Open Systems Interconnection for CCITT 
applications, ITU, 1991
http://www.itu.int/ITU-T/recommendations/rec.aspx?id=3102
31 Ferraiolo K, The Systems Security Engineering Capability Maturity Model (SSE-CMM), ISSEA
http://csrc.nist.gov/nissc/2000/proceedings/papers/916slide.pdf
32 Application Logging Cheat Sheet, OWASP
https://www.owasp.org/index.php/Logging_Cheat_Sheet
33 Thomassen P, AppSensor: Attack-Aware Applications Compared Against a Web Application 



Part VI : Reference Materials

174

Firewall and an Intrusion Detection System, Norwegian University of Science and Technology, 
Faculty of Information Technology, Mathematics and Electrical Engineering, Department of 
Computer and Information Science, 2012
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:566091
34 Snort, Sourcefire
http://www.snort.org/
35 ModSecurity Open Source Web Application Firewall, Trustwave SpiderLabs
http://www.modsecurity.org/
36 OWASP ModSecurity Core Rule Set Project, OWASP
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
37 OWASP Top Ten Most Critical Web Application Security Risks, 2013, OWASP
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
38 Transport Layer Security, Wikipedia
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
39 OSI Model, Wikipedia
http://en.wikipedia.org/wiki/OSI_model
40 Firesmith D, Common Concepts Underlying Safety, Security, and Survivability Engineering, 
Software Engineering Institute, Carnegie Mellon University, Technical Note CMU/SEI-2003-TN-
033, 2003
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6553
41 Software Assurance Maturity Model Project (SAMM). OWASP
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
42 Software Security Assurance State of the Art Report, DACS/IATAC
http://iac.dtic.mil/iatac/download/security.pdf
43 Secure Software Engineering Initiatives, ENISA
http://www.enisa.europa.eu/act/application-security/secure-software-engineering/secure-software-
engineering-initiatives
44 Secure SDLC Cheat Sheet, OWASP
https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet
45 BITS Software Assurance Framework, Financial Services Roundtable
http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf
46 Team Software Process for Secure Systems Development (TSP Secure), Software Engineering 
Institute, Carnegie Mellon University
http://www.cert.org/secure-coding/secure.html
47 Capability Maturity Model Integration (CMMI), Software Engineering Institute, Carnegie Mellon 
University
http://www.sei.cmu.edu/cmmi/
48 CMMI for Acquisition, v1.3, Technical Report CMU/SEI-2010-TR-032, Software Engineering 
Institute, Carnegie Mellon University
http://www.sei.cmu.edu/reports/10tr032.pdf
49 Resiliency Management Model, v1.0, CERT



Part VI : Reference Materials

175

http://www.cert.org/resilience/rmm.html
50 ISO/IEC 27034 Application Security
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44378
51 SP 800-64 Rev2 Security Considerations in the Information System Development Life Cycle, 
NIST
http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf
52 Software Assurance Forum for Excellence in Code (SAFECode)
http://www.safecode.org/
53 Software Assurance, Cyber Security Division, Department Homeland Security
https://buildsecurityin.us-cert.gov/swa/
54 Practical Measurement Framework for Software Assurance and Information Security, v1.0, 2008
http://www.psmsc.com/Downloads/TechnologyPapers/SwA%20Measurement%2010-08-08.pdf
55 Microsoft Security Development Lifecycle (SDL)
http://www.microsoft.com/security/sdl/
56 Oracle Software Security Assurance (OSSA)
http://www.oracle.com/us/support/assurance/
57 Building Security In Maturity Model (BSIMM)
http://bsimm.com/
58 BSIMM for Vendors (vBSIMM)
http://bsimm.com/related/
59 Appropriate Software Security Control Types for Third Party Service and Product Providers, 
Third Party Software Security Working Group, Financial Services Information Sharing and Analysis 
Center
http://docs.ismgcorp.com/files/external/WP_FSISAC_Third_Party_Software_Security_Working_
Group.pdf
60 Application Security Guide for CISOs, OWASP
https://www.owasp.org/index.php/OWASP_Application_Security_Guide_For_CISOs_Project
61 CISO Survey and Report, OWASP
https://www.owasp.org/index.php/OWASP_CISO_Survey_Project
62 DShield.org Web Application Honeypot
http://code.google.com/p/webhoneypot/
63 Distributed Web Honeypot (DWH) Project
http://projects.webappsec.org/w/page/29606603/Distributed%20Web%20Honeypots
64 Glastopf Web Application Honeypot
http://glastopf.org/
65 High Interaction Honeypot Analysis Toolkit (HIHAT)
http://hihat.sourceforge.net/
66 Riden J, McGeehan R, Engert B and Mueter M, Know your Enemy: Web Application Threats - 
Using Honeypots to Learn About HTTP-Based Attacks, The Honeynet Project, 2008
http://www.honeynet.org/papers/webapp



Part VI : Reference Materials

176

67 Pattern of Life and Temporal Signatures of Hacker Organizations, Analysis Intelligence blog, 9 
May 2013
http://analysisintelligence.com/cyber-defense/temporal-signatures-of-hacker-organizations/
68 Common Attack Pattern Enumeration and Classification (CAPEC), The Mitre Corporation
http://capec.mitre.org/
69 ModSecurity SQL Injection Challenge: Lessons Learned, Anterior blog, Trustwave SpiderLabs, 26 
July 2011
http://blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.html
70 SQL Injection Challenge, ModSecurity
http://modsecurity.org/demo/challenge.html
71 Header Field Definitions, Hypertext Transfer Protocol HTTP/1.1, W3C
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
72 Panopticlick research project, Electronic Frontier Foundation
https://panopticlick.eff.org/
73 JavaScript Browser Fingerprinting, Business Info Web Security Applications and Experiments
http://www.businessinfo.co.uk/labs/probe/probe.php
74 AppSensor Detection Points, AppSensor Project, OWASP
http://www.owasp.org/index.php/AppSensor_DetectionPoints
75 AppSensor Response Actions, AppSensor Project
https://www.owasp.org/index.php/AppSensor_ResponseActions
76 Strand J and Asadoorian P, Offensive Countermeasures: The Art of Active Defense, PaulDotCom 
June 2013
77 Hacking Banking Websites: Myth or Reality? High-Tech Bridge, 12 Nov 2013
https://www.htbridge.com/news/hacking_banking_websites_myth_or_reality.html
78 Virtual Patching Best Practices, OWASP
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
79 Barnett R, Dynamic DAST/WAF Integration: Realtime Virtual Patching, 5 June 2012
http://blog.spiderlabs.com/2012/06/dynamic-dastwaf-integration-realtime-virtual-patching.html
80 Common Event Format (CEF), Revision 15, ArcSight, 17 July 2009
http://mita-tac.wikispaces.com/file/view/CEF+White+Paper+071709.pdf
81 The Incident Object Description Exchange Format, RFC 5070, IETF, December 2007
http://www.ietf.org/rfc/rfc5070.txt
82 Extended Abuse Reporting Format, x-arf.org
http://www.x-arf.org
83 Structured Threat Information eXpression, Mitre Corporation
http://stix.mitre.org/
84 Cyber Observable eXpression, Mitre Corporation
http://cybox.mitre.org/
85 Protocol Specification For Interfacing to Data Communication Networks, American National 
Standards Institute Inc, 2008



Part VI : Reference Materials

177

http://www.nema.org/Standards/ComplimentaryDocuments/ANSI-C1222-2008-Contents-and-Scope.pdf
86 Automated Copyright Notice System, Motion Picture Association, Inc.
http://www.acns.net/
87 Vocabulary for Event Recording and Incident Sharing (VERIS), Verizon Inc
http://www.veriscommunity.net/doku.php
88 AuditConsole, jwall.org
http://www.jwall.org/web/audit/console/index.jsp
89 WAF-FLE Log and Event Console for ModSecurity
http://www.waf-fle.org/
90 Watson C, Attack Detection and Response with OWASP AppSensor - An Implementation 
Planning Workbook, v0.3, August 2011
http://www.owasp.org/index.php/File:Appsensor-planning.zip
91 Threat Classification, v2.0, Web Application Security Consortium
http://projects.webappsec.org/Threat-Classification
92 Cornucopia - Ecommerce Website Edition, OWASP
https://www.owasp.org/index.php/OWASP_Cornucopia
93 Barnett R, Web Application Defender's Cookbook: Battling Hackers and Protecting Users, 
December 2012, John Wiley & Sons
ISBN: 978-1-118-36218-1
94 Elevation of Privilege (EoP) Card Game, Microsoft
http://www.microsoft.com/security/sdl/adopt/eop.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=20303
95 Shostack A, Threat Modeling: Designing for Security, ISBN 1118809998, Wiley, 2014
http://threatmodelingbook.com/
96 Gallagher B and Eliassi-Rad T, Classification of HTTP Attacks: A Study on the ECML/PKDD 
2007 Discovery Challenge, Lawrence Livermore National Laboratory
http://eliassi.org/papers/gallagher-llnltr09.pdf
97 Hansen R, Detecting Malice
http://www.detectmalice.com/
98 OWASP Mobile Threat Model Project, OWASP
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=OWASP_Mobile_Thr
eat_Model_Project
99 AppSensor Response Actions, OWASP
https://www.owasp.org/index.php/AppSensor_ResponseActions
100 Logging Cheat Sheet, OWASP
https://www.owasp.org/index.php/Logging_Cheat_Sheet
101 Chuvakin A and Peterson G, How to Do Application Logging Right,
IEEE Security & Privacy Journal
http://arctecgroup.net/pdf/howtoapplogging.pdf
102 OWASP ESAPI Logger (Java), OWASP



Part VI : Reference Materials

178

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Logger.html
103 SP 800-92 Guide to Computer Security Log Management, NIST
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
104 OWASP Logging Project, OWASP
https://www.owasp.org/index.php/Category:OWASP_Logging_Project#tab=Main
105 Watson C, Application Security Logging
https://www.clerkendweller.com/2010/8/17/Application-Security-Logging
106 Watson C, World Summit - AppSensor Results, AppSensor Project Mailing List, OWASP
https://lists.owasp.org/pipermail/owasp-appsensor-project/2011-March/000215.html
107 The Security Content Automation Protocol (SCAP), NIST
http://scap.nist.gov/
108 Common Weakness Enumeration, The Mitre Corporation
http://cwe.mitre.org/
109 Common Configuration Enumeration, NIST
http://nvd.nist.gov/cce/
110 The Common Misuse Scoring System (CMSS): Metrics for Software Feature Misuse 
Vulnerabilities, Interagency Report 7864, NIST, July 2012
http://csrc.nist.gov/publications/nistir/ir7864/nistir-7864.pdf
111 ISO/IEC 19770-2:2009, Software Asset Management -- Part 2: Software Identification Tag
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53670
112 Software Identification (SWID) Tags, TagVault.org
http://tagvault.org/swid-tags/what-are-swid-tags/
113 Common Log File Format, July 1995, W3C
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
114 Extended Log File Format, March 1996, W3C
http://www.w3.org/TR/WD-logfile.html
115 Documents Library, PCI SSC
https://www.pcisecuritystandards.org/security_standards/documents.php
116 Qualified Security Assessor Companies, PCI SSC
https://www.pcisecuritystandards.org/approved_companies_providers/qualified_security_assessors
.php
117 Google Summer of Code 2012, Google
http://www.google-melange.com/gsoc/homepage/google/gsoc2012
118 SOAP Web Services for AppSensor, Rauf Butt, Google
http://www.google-melange.com/gsoc/project/google/gsoc2012/edil/60002
119 Google Summer of Code (GSoC), OWASP
https://www.owasp.org/index.php/GSoC
120 BSD 3-Clause License, Open Source Initiative
http://opensource.org/licenses/BSD-3-Clause
121 AppSensor – Intrusion Detection, Mária Jurčovičová



Part VI : Reference Materials

179

http://meri-stuff.blogspot.co.uk/2011/05/appsensor-intrusion-detection.html
122 phpBB Bulletin Board Software, phpBB Limited
https://www.phpbb.com/
123 GNU General Public License, version 2 (GPL-2.0)
http://opensource.org/licenses/gpl-2.0.php
124 How to use the "netsh advfirewall firewall" context instead of the "netsh firewall" context to 
control Windows Firewall behavior in Windows Server 2008 and in Windows Vista, Microsoft
http://support.microsoft.com/kb/947709
125 Ensnare for Ruby
https://github.com/ahoernecke/ensnare
126 Barnett R, Detecting Malice with ModSecurity: Honey Traps, Spider Labs Blog, August 2011
http://blog.spiderlabs.com/2011/08/detecting-malice-with-modsecurity-honeytraps.html
127 Barnett R, Setting Honey Traps with ModSecurity: Adding Fake robots.txt Disallow Entries, 
Spider Labs Blog, August 2013
http://blog.spiderlabs.com/2013/08/setting-honeytraps-with-modsecurity-adding-fake-robotstxt-
disallow-entries.html
128 Ensnare Project
https://github.com/ahoernecke/ensnare/wiki
129 OWASP O2 Platform, OWASP
https://www.owasp.org/index.php/OWASP_O2_Platform
130 Cruz D, Invoking an OWASP AppSensor Java method from .NET C# REPL (using Jni4Net)
http://blog.diniscruz.com/2013/03/invoking-owasp-appsensor-java-method.html
131 Owasp-o2-platform Mailing List, OWASP O2 Platform Project
https://lists.owasp.org/listinfo/owasp-o2-platform
132 Common Event Format, Revision 15, 17 July 2009, ArcSight Inc
http://mita-tac.wikispaces.com/file/detail/CEF+White+Paper+071709.pdf
133 Shezaf O, ModSecurity Core Rule Set": An Open Source Rule Set for Generic Detection of 
Attacks against Web Applications
https://www.owasp.org/images/0/07/OWASP6thAppSec_ModSecurityCoreRuleSet_OferShezaf.p
df
134 Owasp-modsecurity-core-rule-set Mailing List, ModSecurity Core Rule Set Project
https://lists.owasp.org/mailman/listinfo/owasp-modsecurity-core-rule-set
135 AuditConsole, Christian Bockermann
http://www.jwall.org/web/audit/console/index.jsp
136 SecViz - Security Visualization
http://secviz.org/
137 AppSensor Application Logging, Signalling and Dashboards, Clerkendweller Web Security, 
Usability and Design blog, 14 June 2011
https://www.clerkendweller.com/2011/6/14/AppSensor-Application-Logging-Signalling-and-Dashboards
138 ThreadFix, Denim Group



Part VI : Reference Materials

180

http://www.threadfix.org/
139 National Information Assurance Glossary, CNSS Instruction No. 4009, 26 April 2010, 
Committee on National Security Systems, National Security Agency
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
140 CWE Glossary, v0.5, 21 February 2013, The MITRE Corporation
http://cwe.mitre.org/documents/glossary/index.html
141 Overview of AppSensor Detection Point Categorizations, OWASP
https://www.owasp.org/index.php/File:Detection-points-2-venn.png
142 AppSensor Detection Points Inter-Relationships, OWASP
https://www.owasp.org/index.php/File:Detection-points-interrelationships.png
143 HTTP/1.1 Method Definitions, W3C
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
144 Schechter S, Herley C and Mitzenmacher M, Popularity is Everything - A New Approach to 
Protecting Passwords from Statistical-Guessing Attacks
http://www.eecs.harvard.edu/~michaelm/postscripts/hotsec2010.pdf
145 Account Lockout, Bill Cheswick, Episode 76, OWASP Podcast, September 22, 2010
http://www.owasp.org/index.php/OWASP_Podcast#tab=Latest_Shows
146 About Panopticlick, Electronic Frontier Foundation
http://panopticlick.eff.org/about.php
147 Panopticlick Test, Electronic Frontier Foundation
http://panopticlick.eff.org/
148 JavaScript Browser Fingerprinting, Labs, Businessinfo
http://www.businessinfo.co.uk/labs/probe/probe.php
149 Watson C, Benign Unexpected URLs - Part 1 - Missing (404 Not Found Error) Files, Web 
security, Usability and Design Blog, 26 October 2010
https://www.clerkendweller.com/2010/10/26/Benign-Unexpected-URLs-Part-1-Missing-Files
150 Safe Browsing API, Google
http://code.google.com/apis/safebrowsing/
151 SP 800-92 Guide to Security Log Management, NIST
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
152 Snodgrass RT, Yao SS and Collberg CTamper Detection in Audit Logs, University of Arizona
http://www.cs.toronto.edu/vldb04/protected/eProceedings/contents/pdf/RS13P1.PDF
153 Forensic Tamper Detection in SQL Server
http://www.sqlsecurity.com/images/tamper/tamperdetection.htm
154 Ullrich J, My Top 6 Honey Tokens, App Sec Blog, SANS Institute
http://software-security.sans.org/blog/2009/06/04/my-top-6-honeytokens/
155 Tor nodes
https://torstat.xenobite.eu/
156 HTTP blacklist
http://www.projecthoneypot.org/httpbl.php



Part VI : Reference Materials

181

157 DShield
http://www.dshield.org
158 Spamhaus
http://www.spamhaus.org/
159 Shadow Server
http://www.shadowserver.org/wiki/
160 Content Security Policy 1.0, W3C
http://www.w3.org/TR/CSP/
161 Browser Detection Autopwn, etc…
http://ha.ckers.org/blog/20100904/browser-detection-autopwn-etc/
162 ModSecurity Advanced Topic of the Week: Detecting Banking Trojan Page Modifications
http://blog.spiderlabs.com/2013/07/modsecurity-advanced-topic-of-the-week-detecting-banking-
trojan-page-modifications.html
163 Defence Condition Level (DEFCON)
http://www.fas.org/nuke/guide/usa/c3i/defcon.htm
164 Content Injection, ModSecurity Features, Trustwave SpiderLabs
http://www.modsecurity.org/projects/modsecurity/apache/feature_content_injection.html
165 Decloaking Engine
http://decloak.net/
166 Barnett R, Building a Web Attacker Dashboard with ModSecurity and BeEF
https://speakerdeck.com/rcbarnett/building-a-web-attacker-dashboard-with-modsecurity-and-beef
167 The JSON Data Interchange Format, ECMA-404, ECMA International, October 2013
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
168 RFC 5424, The Syslog Protocol, Network Working Group, IETF
https://tools.ietf.org/html/rfc5424
169 RFC 3339, Date and Time on the Internet Timestamps, Network Working Group, IETF
http://tools.ietf.org/html/rfc3339
170 OWASP Store, Lulu
http://www.lulu.com/spotlight/owasp
171 About the Open Web Application Security Project, OWASP
https://www.owasp.org/index.php/About_OWASP


