

AppSensor Guide
Application-Specific Real-Time Attack Detection & Response

Version 1.5 (for final review)

Lead Author

Colin Watson

Co-Authors

Dennis Groves John Melton

Other Contributors, Editors and Reviewers

Josh Amishav-Zlatin, Ryan Barnett, Michael Coates, Craig Munson, Jay Reynolds, ???,
???, ???, ???, ???

Version 1 Author

Michael Coates

The AppSensor Guide is primarily written for those with software architecture responsibilities, but
can also be read by other developers and those with an interest in secure software. Implementation
requires a collaborative effort by development, operational and information security disciplines.

© 2008-2014 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license

OWASP AppSensor Project Founder

Michael Coates

OWASP AppSensor Project Leaders

Dennis Groves John Melton Colin Watson

Full A-Z of Project Contributors

All OWASP projects rely on the voluntary efforts of people in the software development and
information security sectors. They have contributed their time and energy to make suggestions,
provide feedback, give advice, write, review and edit documentation, give encouragement, make
introductions, produce demonstration code, promote the concept, and provide OWASP support.
They participated via the project’s mailing lists, by developing code, by updating the wiki, by
undertaking research studies, and through contributions during the AppSensor working session at
the OWASP Summit 2011 in Portugal and the AppSensor Summit at AppSec USA 2011. Without all
their efforts, the project would not have progressed to this point, and this guide would not have
been completed.

Josh Amishav-Zlatin Erlend Oftedal Craig Munson
Ryan Barnett Sean Fay Giri Nambari

Simon Bennetts Dennis Groves Jay Reynolds
Joe Bernik Randy Janida Chris Schmidt
Rex Booth Chetan Karande Sahil Shah
Luke Briner Eoin Keary Eric Sheridan
Rauf Butt Alex Lauerman John Steven

Fabio Cerullo Junior Lazuardi Alex Thissen
Marc Chisinevski Jason Li Don Thomas
Robert Chojnacki Manuel López Arredondo Christopher Tidball
Michael Coates Bob Maier Kevin W Wall

Dinis Cruz Jim Manico Colin Watson
August Detlefsen Sherif Mansour Farag Mehmet Yilmaz
Ryan Dewhurst John Melton ???

Cover

Light Installation by David Press
Kinetica Art Fair 2012, Ambika P3 Gallery, London, photograph Colin Watson

OWASP Summer of Code 2008

The AppSensor Project1 was initially supported by the OWASP Summer of Code 2008, leading to
the publication of the book AppSensor v1.12.

Google Summer of Code 2012

Additional development work on SOAP web services was kindly supported by the Google Summer
of Code 2012.

Other Acknowledgements

The project has also benefitted greatly from the generous contribution of time and effort by many
volunteers in the OWASP community including those listed above, and contributors to the OWASP
ESAPI project, members of the former OWASP Global Projects Committee, and support from the
OWASP Project Reboot initiative. The second version of the guide was conceived during the
AppSensor Summit held during AppSec USA 2011 in Minneapolis.

Tables of Contents

Contents

Foreword 1	

Preamble 1	

Introduction .. 1	

About This Guide ... 10	

How To Use This Guide ... 11	

Part 1 : AppSensor Overview 1	

Chapter 1 : Application-Specific Attack Detection & Response .. 2	

Chapter 2 : Protection Measures .. 8	

Chapter 3 : The AppSensor Approach ... 16	

Chapter 4 : Conceptual Elements .. 20	

Part II : Illustrative Case Studies 28	

Chapter 5 : Case Study of a Rapidly Deployed Web Application ... 29	

Chapter 6 : Case Study of a Magazine’s Mobile App .. 30	

Chapter 7 : Case Study of a Smart Grid Consumer Meter ... 32	

Chapter 8 : Case Study of a Financial Market Trading System ... 33	

Chapter 9 : Case Study of a B2C Ecommerce Website .. 34	

Chapter 10 : Case Study of B2B Web Services .. 36	

Chapter 11 : Case Study of a Document Management System ... 37	

Chapter 12 : Case Study of a Credit Union’s Online Banking .. 38	

Part III : Making It Happen 39	

Chapter 13 : Introduction ... 40	

Chapter 14 : Design and Implementation .. 45	

Chapter 15 : Verification, Deployment and Operation .. 52	

Chapter 16 : Advanced Detection Points ... 59	

Chapter 17 : Advanced Thresholds and Responses .. 68	

Chapter 18 : AppSensor and Application Event Logging ... 78	

Chapter 19 : AppSensor and PCI DSS for Ecommerce Merchants ... 81	

Part IV : Demonstration Implementations 83	

Chapter 20 : Web Services (AppSensor WS) ... 84	

Chapter 21 : Fully Integrated (AppSensor Core) ... 88	

Chapter 22 : Light Touch Retrofit ... 91	

Chapter 23 : Ensnare for Ruby ... 94	

Chapter 24 : Invocation of AppSensor Code Using Jni4Net .. 96	

Chapter 25 : Using an External Log Management System .. 98	

Chapter 26 : Leveraging a Web Application Firewall ... 102	

Part V : Model Dashboards 106	

Chapter 27 : Security Event Management Tools ... 107	

Table of Contents

Chapter 28 : Application-Specific Dashboards ... 111	

Chapter 29 : Application Vulnerability Tracking .. 116	

Part VI : Reference 120	

Glossary ... 121	

Detection Points ... 124	

Responses .. 152	

File Data Logging Format .. 161	

Signaling Data Exchange Formats .. 162	

Awareness and Training Resources ... 169	

Feedback and Testimonials .. 172	

Bibliography .. 173	

Tables of Contents

List of Figures

Figure 1	
 The Spectrum of Acceptable Application Usage Illustrating How Malicious
Attacks are Very Different to Normal Application Use 4	

Figure 2	
 Pseudo Code Illustrating the Addition of AppSensor Detection Point Logic
Within Existing Input Validation Code 23	

Figure 3	
 Pseudo Code Illustrating the Addition of Completely New AppSensor
Detection Point Logic 23	

Figure 4	
 An Imaginary AppSensor Dashboard Under Normal Operational Conditions
i.e. Blank 56	

Figure 5	
 The Imaginary AppSensor Dashboard When A User Is Identified as an Attacker 56	

Figure 6	
 The Imaginary AppSensor Dashboard Demonstrating What Else AppSensor

Could Do 56	

Figure 7	
 The Spectrum of Application Acceptable Usage Illustrating How Normal Use

Requires Input Validation to Cater for a Range of User-Provided Input 63	

Figure 8	
 The Spectrum of Application Acceptable Usage Showing How Some

Unacceptable Data Input Are Much More Likely to Indicate a Malicious User 64	

Figure 9	
 The Spectrum of Application Acceptable Usage Showing How Application-

Specific Knowledge Increases the Ability to Differentiate Between Normal and
Malicious Input 65	

Figure 10	
 Schematic Arrangement of the AppSensor WS Reference Implementation 84	

Figure 11	
 Schematic Arrangement of the AppSensor Core Reference Implementation 88	

Figure 12	
 Schematic Arrangement of Example Light Touch Retrofit to Existing Code 91	

Figure 13	
 Schematic Arrangement of Example AppSensor Code Invocation Using

Jni4Net 96	

Figure 14	
 Schematic Arrangement of Example External Log Management System 98	

Figure 15	
 Example Use of Common Event Format for Event Signaling 100	

Figure 16	
 Schematic Arrangement of Example Leveraging a Web Application Firewall 102	

Figure 17	
 Example AppSensor Event Data Using Delimited Name-Value Pairs 107	

Figure 18	
 AppSensor Data Feed Addition to Splunk 108	

Figure 19	
 AppSensor Event Summary 108	

Figure 20	
 AppSensor Event Detail 109	

Figure 21	
 Detection Point, Attack and Response Data Displayed by AppSensor WS 111	

Figure 22	
 An Example AppSensor Dashboard for an Ecommerce Website 112	

Figure 23	
 An Example Detection Point Indicators on Website Functionality Map 112	

Figure 24	
 Illumination of Detection Point Indicators 113	

Table of Contents

Figure 25	
 System Trend Detection Points 113	

Figure 26	
 Highlighting of Changes to System Trend Detection Points 113	

Figure 27	
 Detection Points Event Log Display 114	

Figure 28	
 Response Event Log Display 114	

Figure 29	
 ThreadFix Dashboard Showing Mock Up of CWE vs Attack Chart Overlay 117	

Figure 30	
 Detailed View of Chart Overlay Mockup 117	

Figure 31	
 Mockup Illustrating How URL Paths Could be Used To Match Vulnerabilities

Identified Through Security Scanning Correlate with Where Attacks are
Occurring 118	

Figure 32	
 Diagram Showing the Assignment of Detection Points to All the
Categorizations 128	

Figure 33	
 Diagram Showing the Related AppSensor Detection Points 129	

Figure 34	
 Example Detection Point Definition Overview Sheet for an Instance of IE2 149	

Figure 35	
 Example Detection Point Definition Overview Sheet for an Instance of ACE3 150	

Figure 36	
 Part of Example Detection Point Schedule for IE2 151	

Figure 37	
 Example Detection Point Schedule for AE3 151	

Figure 38	
 Example Threshold Schedule No1 158	

Figure 39	
 Example Threshold Schedule No2 158	

Figure 40	
 Example Threshold Schedule No3 159	

Figure 41	
 Basic AppSensor Event Format for JSON Data 163	

Figure 42	
 Important HTTP Headers and Example JSON Event Data 163	

Figure 43	
 Extended AppSensor Event Format for JSON Data Showing Optional and

Custom Fields 164	

Figure 44	
 AppSensor Event Format Data Value Definitions 165	

Figure 45	
 Basic AppSensor Event Data Using CEF 167	

Figure 46	
 Basic Additional CEF Field Values in the Context of AppSensor 167	

Figure 47	
 Example CEF AppSensor Event Data Using CEF Predefined Keys 167	

Tables of Contents

List of Tables

Table 1	
 Pros and Cons of the Most Commonly Implemented Responses 25	

Table 2	
 List of Conceptual Elements in the AppSensor Pattern 26	

Table 3	
 Properties for the Case Study of a Minimal AppSensor Implementation for a

Small Rapidly-Built Web Application that Already has a Strong Input Validation
Module 29	

Table 4	
 Properties for the Case Study of a Magazine’s Mobile App to Identify
Authentication Attacks, Account-Sharing and Blatant XSS Attempts 30	

Table 5	
 Properties for the Case Study of a Smart Grid Consumer Meter for the
Detection of Attempted and Actual Tampering. 32	

Table 6	
 Properties for the Case Study of a Financial Market Trading System for the
Detection of Collusion Between Traders. 33	

Table 7	
 Properties for the Case Study of a B2C Ecommerce Website 34	

Table 8	
 Properties for the Case Study of B2B Web Services 36	

Table 9	
 Properties for the Case Study of a Document Management System 37	

Table 10	
 Properties for the Case Study of a Credit Union’s Online Banking 38	

Table 11	
 AppSensor Aspects Mapped to Open SAMM Activities 42	

Table 12	
 AppSensor Aspects Mapped to BSIMM Activities 43	

Table 13	
 AppSensor Aspects Mapped to BITS Software Assurance Framework Areas 44	

Table 14	
 AppSensor Aspects Mapped to MS SDL Processes 44	

Table 15	
 Example Thresholds and Responses for Individual Per User Detection Points 73	

Table 16	
 Example Multiple Thresholds and Responses for the Overall Number of Events

Per User in a Single Fixed Time Period 74	

Table 17	
 Example Response Thresholds for the Overall Number of Events Per User For

a Range of Time Periods 75	

Table 18	
 Example Response Thresholds for a System Trend Detection Point Monitoring

the Usage Rate of an Application's "Add a Friend" Feature 76	

Table 19	
 Typical Event Logging Properties for Web Applications 79	

Table 20	
 Possible Detection Points if the Only Event Source are Web Server Logs 80	

Table 21	
 List of Detection Point Categories Supported by AppSensor WS 85	

Table 22	
 List of Response Categories Supported by AppSensor WS 85	

Table 23	
 List of Detection Point Categories Supported by AppSensor Core 89	

Table 24	
 List of Response Categories Supported by AppSensor Core 89	

Table of Contents

Table 25	
 List of Detection Point Categories Implemented in this Example Light Touch
Retrofit 92	

Table 26	
 List of Response Categories Implemented in this Example Light Touch Retrofit 92	

Table 27	
 List of Response Categories Possibly Available to an External Log/Event

Management System 99	

Table 28	
 List of Detection Point Categories Implemented in ModSecurity Core Rule Set 103	

Table 29	
 List of Response Categories Implemented in ModSecurity Core Rule Set 104	

Table 30	
 Summary of AppSensor Detection Point Identifiers and Titles Grouped by

exception category 124	

Table 31	
 AppSensor Detection Points Categorized by Suspicious and Attack Events 126	

Table 32	
 AppSensor Detection Points Categorized by Whether They are Discrete,

Aggregating or Modifying 127	

Table 33	
 Descriptions of Request Exception (RE) Detection Points 131	

Table 34	
 Descriptions of Authentication Exception (AE) Detection Points 133	

Table 35	
 Descriptions of Session Exception (SE) Detection Points 135	

Table 36	
 Descriptions of Access Control Exception (ACE) Detection Points 137	

Table 37	
 Descriptions of Input Exception (IE) Detection Points 138	

Table 38	
 Descriptions of Encoding Exception (EE) Detection Points 140	

Table 39	
 Descriptions of Command Injection Exception (CIE) Detection Points 141	

Table 40	
 Descriptions of File Input/Output Exceptions (FIO) Detection Points 142	

Table 41	
 Descriptions of Honey Trap (HT) Detection Points 143	

Table 42	
 Descriptions of User Trend Exception (UT) Detection Points 144	

Table 43	
 Descriptions of System Trend Exception (STE) Detection Points 146	

Table 44	
 Descriptions of Reputation (RP) Detection Points 147	

Table 45	
 Summary of AppSensor Response Identifiers and Titles, Grouped by the Effect

on the User 152	

Table 46	
 Assignment of AppSensor Responses to Categorizations 153	

Table 47	
 Descriptions of AppSensor Responses Listed Alphabetically by Code 154	

Table 48	
 Mapping of AppSensor Event Format (AEF) Terms to Common Event Format

(CEF) Keys 167	

Foreword

Foreword

[To be written by MC]

Michael Coates
AppSensor Project Founder

ForewordIntroduction

1

Preamble

PreambleIntroduction

1

Introduction

I believe that AppSensor is the most important advancement in Application Security in the
last decade. Now this is a very large claim, so I am going to need to justify my reasoning to
you which I will do in the paragraphs that follow. My reasoning and justifications can be
broken into roughly three key areas, philosophy, architecture, and statistics. Let me explore
them briefly with you now.

Philosophically: OWASP AppSensor presents a new methodology to security. Incidentally,
that new methodology is actually not new at all; however it is the road that is very much
‘less traveled in the IT industry.’ This road is heavily traveled in industries where actuarial
sciences are used to control risk, such as healthcare, pharmaceuticals, and aviation. I believe
that once exposed to the idea; you will have a not only have a new tool in your security tool
chest, but one you will increasingly want to use and apply to your IT risk.

Architecture: OWASP AppSensor is both a set of security patterns and practices. This
guide will discuss in detail the practices. OWASP AppSensor started as a development
practice. However, when I discovered AppSensor the first thing I did was to decompose
this set of practices into a methodology. After doing this I realized that OWASP
AppSensor is actually a new security pattern. Further, this pattern can be used to evaluate
and practice security in both the design as well as development of Applications.

Statistics: This is perhaps the most exciting part of OWASP AppSensor. OWASP
AppSensor captures data for analysis that is currently discarded. Unfortunately, this
discarded data contains incredible amounts of valuable information about the security of
the application! OWASP AppSensor captures so much data that that it becomes possible to
apply big data analytics to security. And, more importantly, it opens up whole new
possibilities of what you can do with it. OWASP AppSensor currently defines more than 50
detection points all with adaptive response! And this is just the tip of the ice-berg.

On those three pillars, OWASP AppSensor improves the effectiveness of your entire
information security management program, and I find that to be very exciting indeed, and I
hope you do to!

Philosophy

I would like to start the philosophy discussion with a thought exercise. Imagine tomorrow
we have a pistol duel. If we loose we will be shot and likely die, if we win our opponent
takes the bullet instead and dies. Let’s agree to analyze this event following the process
which matches our information security management practices. We will do a risk analysis,
then reduce the risks identified and then we will go have our duel. So the question is “What
can we do to improve our chances of survival?”

Preamble

2

Lets begin our risk analysis now. To begin with we need far more information if we want to
survive.

It would be really important to know what the rules of our pistol duel are to start out with.
Incidentally, there are two types of pistol duels. There are Victorian and Western Pistol
duels. And depending on which we are participating in greatly changes both our risks and
the strategies we require to survive.

In a Victorian pistol duel, opponents stand back to back, take ten steps away from each
other, turn and fire. The fairness of this kind of duel depends on neither party turning at
step 9 or earlier. So it is a game of trust, that depends on neither party cheating. However,
cheating means we are not killed. And since our goal is to survive and our pistol duel is a
Victorian duel; then we have our first risk reduction strategy! We simply turn after step one
and shoot our opponent!

Increasing speed, or being faster is a key security metric. In fact it is the entire basis for time
based security. Time based security states that our protection time must be greater than or
equal to detection time plus response time. A great example of this principle in action was
the final scene of the Matrix where Neo can dodge the bullets. He is able to detect and
react before the bullets reach him; this causes him to be invincible for all practical purposes.
We all know what the longer it takes a vendor to fix our bugs the greater risk we are at, as
attackers are able to attack us until we can patch. Similarly, the longer it takes for us to fix
our own bugs the more vulnerable we are. This metric can be applied in many
circumstances, and I encourage you to try and apply it to things in your environment and to
start measuring security from this perspective.

Now the other kind of duel we may be having is a Western duel. A western duel is the one
in all the western cowboy films where the opponents meet at high noon. We no longer
have to trust our opponent, instead we have place and time that decides when the duel
begins. Punctuality is important otherwise someone you love will be killed in your place.
Opponents face one another from twenty paces and draw pistols from holsters. It is
difficult to cheat at the western duel, but you should try anyway.

Additionally, I think it is likely a good idea to know whom our opponent is. I personally
believe that it is essential otherwise you have no ability to understand the threat you face
and mitigate risks accordingly. For example many of us, if we were put in a situation where
the opponent were one of our loved ones or immediate family, are very likely to loose on
purpose. For the purpose of this exercise however our opponent will be my next door
neighbor - a 6 foot 4 inch, 63 year old man. Because of this disadvantage we will face off in
a Western duel to keep things fair.

I can imagine that most of you right now will be feeling a bit relieved to know that we are
facing an old man, and one who has a fairly large surface area to aim for. In application

PreambleIntroduction

3

security we very rarely consider who our opponent is, what they are motivated by and how
many resources they have at their disposal to attack us. But it is critical. To further
emphasize this point I will tell you a bit more about my 63 year old neighbor. His name is
Johnny Brusco, and he was the fastest quick draw in the United States until 1974 when he
retired from quick draw competition. Suddenly, with a single piece of information our
assessment of the risk went from a risk of ‘mostly harmless’ to ‘we are seriously, very dead.’

This scenario is not unlike the one we face with our web applications every day. Attackers
significantly out number defenders. Additionally, attackers do not have tight budgets,
deadlines and last minute changes to requirements to manage. Attackers only have to find a
single vulnerability, defenders have to find and fix them all; something we know can not be
done, so we rank them in order of importance by perceived risk. Indeed all is not hopeless,
industry experience tells us risk treatment is the ‘best practice’ today. And we can use the
same principles here in our duel where we are seriously out gunned by our opponent.

Risk can be defined simply as the probability of the vulnerability times the threat. And the
two most widely used strategies for managing risk are to reduce the probability of a threat
and/or reduce the probability of a vulnerability. To reduce the probability of a threat we
reduce the attack surface. This is a fancy way of saying we patch the vulnerabilities that are
identified so there are ‘less places for attackers to attack.’ The other things we do is to hire
penetration testers, and to do internal code reviews and testing of our own security. This is
how we identify vulnerabilities. By finding our vulnerabilities before the bad guys we can fix
them before they are exploited.

We can apply the same to our gunfight tomorrow. We can reduce our attack surface by not
turning so our shoulders are ‘square’ with our opponent which would expose our entire
torso to bullets. But rather we can stand perpendicular to our opponent minimizing the
surface area of our bodies subject to bullets. We can also reduce our vulnerabilities by
hiring a gunslinger to teach us the art of gunslinging and practice. This is like penetration
testing, the gunslinger will identify what we are doing wrong and help us to eliminate the
bad habits thus reducing our vulnerabilities or bad habits that are likely to get us shot.

We can still improve our chances tomorrow however, by attempting to predict in advance
where our opponent will shoot and move out of the way. This is similar to our risk
prediction models where we rank the identified vulnerabilities according to perceived risks.
When we do this we are making a prediction that on vulnerability is more likely than
another to be exploited. So for example if the gunman is right handed he may well fire on
his right side and so moving to the left will increase the probability that you will survive.
Incidentally, there are actually three options you can move left, move right and stay in the
middle. Which is your optimal strategy if you want to survive?

Now, as it happens the correct answer to this question is far more difficult that it initially
seems. Indeed, it is a subject of research3 in the field of ‘game theory.’ Now it just so
happens that the correct answer can only be derived from playing hundreds if not

Preamble

4

thousands of games. In the case of a Western duel; this requires us to derive the answer
from getting shot at hundreds if not thousands of times. Now that seems like certain death
to me,

Let’s say for example that you have a 50% chance of surviving, And let us represent that
chance by a fair toss of a coin that lands heads up. If you survive the first toss - do you
really want to toss the coin a second time? I hope it is perfectly obvious you do not as you
have only a 25% chance of living through the second toss. Although the odds of any given
toss are 50%, you actually only have a 1 in 4 chance of heads coming up a second time in a
row. Given that kind of odds, a tails is almost certainly going to come along and ruin your
day eventually. Try it for yourself4. In my case, I got “No heads 48%” - so I would have
died once out of every 2 duels. I think you will agree with me that you don’t want to have a
gun fired at you hundreds if not thousands of times if your goal is survival.

We will assume that we are able to practice those 100 duel shots using blanks before noon
tomorrow and learn the correct answer, perhaps we hired a consultant who could teach us
the answer or a seasoned gunslinger who knows his trade. In the case of our applications,
this is not a penetration testing consultancy, but rather a subject matter expert in
information security who is able to coach and mentor us with valuable strategic information
that comes only from a lifetime of experiences in the field. We are now armed with
knowledge about the ‘best strategy’ for survival in our duel tomorrow.

So while pistol duels and application security are very different; the security problems in
each domain share a common thread. So, lets recap the 7 best practices that we identified:

1. Perform a Risk Analysis
2. Use Time Based Security Metrics
3. Know the Enemy
4. Practice Risk Reduction
5. Reduce Surface Area
6. Use Risk Prediction
7. Practice, Practice, Practice

Now, while I am certain that we can all agree on these best practices or security principles,
there are many more. Incidentally, I have personally collected and catalogued 193 such
security principles in my career. These principles are now publicly documented as the
OWASP Security Principles project5. What I universally observe, is that companies ‘at best’
do ‘at most’ a handful of such practices that they happen know about. And even the most
seasoned security practitioners are unable to identify more than a dozen such principles. It
is very obvious to me why we are failing to secure those things that matter most to us.

I have spent my career attempting to identify the ‘Pareto Efficient’ security principle (or
principles as it happens to be). Using the 80/20 principle I hope to one day identify the

PreambleIntroduction

5

20% of the security principles that give you 80% of the risk reduction. In this way, I think
that a definitive minimal roadmap of security best practices can be developed.

To date I know that at least one of the security principles I have identified is a Pareto
efficient one, and I believe that there are others. Incidentally, this principle happens to be
one that most people have never heard of, and consequently never practice. This is the
principle of Impact Reduction sometimes known as Risk Optimization. Although, it is
rarely practiced, it is a very effective method. The goal of this principle is to examine ways
that you can reduce the impact of events when the occur.

Returning to our pistol duel the most obvious way to implement the security principle of
impact reduction is to wear a bullet proof vest! That is to say when we get hit by a bullet, it
reduces the impact of the bullet when we get hit. Mind you, we still don’t want to get hit
and are going to do our best to avoid it. And if we get hit, it is still going to hurt like crazy,
but we will very likely survive. A bullet proof vest is obviously going to do more to save our
lives at high noon tomorrow than all of the other 7 practices combined.

If we get hit, our chances of survival are greatest if we have a bullet proof vest, but we
would be equally foolish to rely on the bullet proof vest alone. Indeed we will still combine
the bullet proof vest with the other 7 practices in order to maximize our chances of survival
tomorrow. Naturally this begs the question how do we apply an impact reduction strategy
to our web applications? What do we do?

This is exactly what the OWASP AppSensor is. This book, the OWASP AppSensor Guide,
is entirely about what to do. And just to be clear, AppSensor is not a panacea anymore than
a bullet proof vest. You do not want to be shot in general, but if you do get shot you want
to be wearing a vest. And If you get shot while wearing a bullet proof vest, it is going to
hurt; it may potentially break bones however, you will survive what would otherwise have
been a fatality. Similarly, OWASP AppSensor will reduce the impact of a successful attack
but it does not entirely eliminate risk of a successful attack.

We all know the devil is in the details; even a bullet proof vest is not a one size fits all
solution. Vests are rated according to the ability to stop different masses and speeds of
projectiles. And the true is this is also true of OWASP AppSensor as well.

I sincerely hope that I have demonstrated sufficiently how important the philosophy and
practice of impact reduction is, and why I am so excited about it. I hope that through this
thought exercise that you will also be excited about it as well. Risk Optimization is actually
how risk is managed across a wide range of disciplines outside of IT and it has been found
to be very effective, and in my experience when applied to IT projects it has been equally
effective.

Preamble

6

Architecture

Most software today is built according to Weinberg's Second Law which states that if
builders built buildings the way programmers wrote programs, then the first woodpecker
that came along would destroy civilization. Nowhere is this more true than in the discipline
of software security, where the woodpeckers are the so called ‘hackers,’ and indeed there is
no question in my mind that we are witnessing in the news daily evidence of the
degradation of civilization as a result.

IT Architects have long been highly concerned with the technical aspects of software, and
very little focus in any at all has been placed on the human aspects. And as a result software
is not only ugly, and confusing it is fragile and breaks easily, and particularly when placed
under stress as hackers will do. Software is not so much designed, as organically evolved,
and consequently form does not follow the function further increasing the complexity and
fragility.

 “Form follows function - that has been misunderstood. Form and function should be one, joined
in a spiritual union.”

 – Frank Lloyd Wright

This statement drives directly to the heart of the security problem with software
engineering as it is widely practiced today. We first build the software and then we secure it
after it is built, deployed or shipped. Sometimes this is necessary, due to requirements
changing or the need to secure legacy software. However, in ideal circumstances, rather
than after the fact, security and the application “should be one, joined in spiritual union.”
Software security must exist before the software, it must be part of the plans, the budgets,
the schedule, the architecture, the design, and the engineering process.

Many people are starting to do this. Microsoft has its SDLC. BSIMM project defines a
methodology for building security in to the software development process, and OWASP
has the OpenSAMM and AppSensor projects. None of these are mutually exclusive in fact
they have a great deal in common. AppSensor differs in a number of ways from the others
however. The first has already been discussed, OWASP AppSensor is designed around the
philosophy of Risk Optimization or impact reduction.

Impact reduction is exactly how exactly how rescue services and first responders work.
Think about it; their entire existence is to minimize the impact of an event so that as few
lives as possible are lost and restore services as quickly as possible. This is how your smoke
detector operates, it doesn’t try and predict where a fire is likely and when it will happen!
Rather it detects and responds as quickly as possible to minimize the impact of the fire to
the occupants. The fire department acts to reduce the impact of the fire to the property.

PreambleIntroduction

7

'Think simples' as my old master used to say - meaning reduce the whole of its parts into the
simplest terms, getting back to first principles."

– Frank Lloyd Wright

Architecture is about design principles. In the case of traditional architecture they are line,
color, shape, texture, space and form. In security architecture there are many principles, and
as I previously mentioned I have spent my career attempting to identify the ‘Pareto
Efficient’ security principle or principles. Where security architecture is concerned I have
identified two such principles. They are separation of duty, and trust.

Separation of duty is perhaps the most important principle in security architecture.
Inevitably applications are designed with security principles architects knew about, security
folks included. However, as this demonstrated in our thought exercise, there are far more
than just a 'few' principles, most of which never make it into the design. For example,
security design happens with perhaps a handful of principles:

• Use Least Privilege
• Use Perimeter Security
• Practice Defence in Depth
• Practice Risk Reduction
• Reduce Surface Area
• Use Risk Prediction

As a result, we regularly see designs without separation of privilege. Think about that, most
web applications today have all their eggs in a single basket. The business logic, the
identities, passwords, products, policy enforcement, security rules are all found in the same
application database that makes up the typical website! It is little wonder then, that attacks
on the database have been so completely devastating, since there is no separation of
privilege!

The principles of trust can be examined in detail with data flow diagram tools. One way to
understand AppSensor is to think of it as baking the above mentioned DFDs (data flow
diagrams) into the application, and when it detects a violation of trust it raise an event, just
like the smoke alarm. This event is then analyzed by an event analysis engine which then
decides how to respond or not. This gives us two new and incredibly powerful and
important features not found in other approaches.

Currently OWASP AppSensor is a reference implementation of a set of very specific and
unique development practices. First we take some input from some place, we analyze it for
validity according to rules that make sense, then we either raise events or continue
normally. The event analysis engine decides to respond accordingly to the exceptions as
required. This is an inter-process communications protocol for adaptation to events outside
of the programs execution control! At first glance this doesn’t seem so interesting, after all

Preamble

8

is this not what virus software does? It is not, because the virus checker is acting on behalf
of the operating system. If you feed the right input into the virus checker it will crash.
However, AppSensor is acting on behalf of the application, so it is defending itself and that
is a critical difference!

AppSensor is actually a software security pattern for turning ‘fragile’ software into ‘agile’
software, even virus checkers. And, while the OWASP AppSensor is currently
demonstrated as reference implementation, it is not hard to identify this as an architecture
pattern when you start to imagine how it can be scaled out just like any other software
today. For example in a service oriented architecture (SOA), the detection points are built
into the application itself as normal, where as the analysis and response could be services
that are consumable by secure web API, just like any other enterprise application built
today. Perhaps it is XML, WSDL or more likely JSON. It doesn’t actually matter because
the security architecture pattern is the same.

In conclusion, I have demonstrated that OWASP AppSensor represents a significant
security architecture pattern above and beyond the security protocol the reference
implementation demonstrates. In this guide we will look at half a dozen case studies and
reference implementations. As you study them, pay special attention to what is common
about each of them and synthesize a larger picture. There is far more to AppSensor than
first appears.

Conclusion

So in conclusion I would just like to point out that while AppSensor is powerful tool that
can improve the effectiveness of your entire information security management program.
However, not a panacea, nor a quick fix for your security ills, OWASP AppSensor is a long
term investment in your information security management program. Thus, I am reminded
of the following quote by Jeff Bezos, founder of Amazon.

“I very frequently get the question: 'What's going to change in the next 10 years?' And that is a
very interesting question; it's a very common one. I almost never get the question: 'What's not
going to change in the next 10 years?' And I submit to you that that second question is actually
the more important of the two -- because you can build a business strategy around the things that
are stable in time. ... [I]n our retail business, we know that customers want low prices, and I
know that's going to be true 10 years from now. They want fast delivery; they want vast selection.
It's impossible to imagine a future 10 years from now where a customer comes up and says, 'Jeff I
love Amazon; I just wish the prices were a little higher,' [or] 'I love Amazon; I just wish you'd
deliver a little more slowly.' Impossible. And so the effort we put into those things, spinning those
things up, we know the energy we put into it today will still be paying off dividends for our
customers 10 years from now. When you have something that you know is true, even over the long
term, you can afford to put a lot of energy into it.”

– Jeff Bezos

PreambleIntroduction

9

I believe that security is going to be important to your business 10 years from now, just like
it was 13 years ago when I co-founded OWASP. And, I also know that your investment
into OWASP AppSensor will be paying dividends 10 years from now, and that is a sound
investment over the long term.

Dennis Groves, MSc
Co-Founder OWASP

Preamble

10

About This Guide

Why should you read this book

Who is this book for

What this book contains

What is not in this book

PreambleHow To Use This Guide

11

How To Use This Guide

Part 1 : AppSensor Overview

???

Part II : Illustrative Case Studies

???

Part III : Making It Happen

???

Part IV : Demonstration Implementations

???

Part V : Model Dashboards

???

Part VI : Reference

???

Part 1 : AppSensor OverviewHow To Use This Guide

1

Part 1 : AppSensor Overview

The OWASP AppSensor Project defines the concept of real-time attack-aware detection
and response services for software applications providing guidance and example code. Part
I gives a high-level overview of the concept. It also details why it is different to traditional
defensive techniques. This is then followed by a description of the general approach
towards implementing AppSensor within application software projects.

Part 1 : AppSensor Overview

2

Chapter 1 : Application-Specific Attack Detection & Response

Purpose

Organizations are concerned about protecting their applications, the application users, and
related data. The concept of AppSensor is to reduce the risks to these assets by detecting
malicious activity within an application. AppSensor is designed to detect activities such as
malicious users probing or attacking the application, and to stop them before they can
identify and exploit any vulnerability.

This objective is possible because many software vulnerabilities can only be discovered as a
result of trial and error by an attacker. Adding the AppSensor framework to an application
gives that application the ability to respond to attack attempts by intervening early
(oftentimes almost immediately), and blocking those attempts. This approach, if
successfully implemented, would make it economically infeasible to attack that application.

Dynamic defense

In the same way that users are benefitting from responsive design in user interfaces and
bandwidth utilization, with concepts like progressive enhancement, mobile first and
graceful degradation, applications themselves should, and can, alter their behavior and
posture in a pre-defined manner when under attack to defend themselves, their data and
their users.

The application advantage

Detection is undertaken at the application layer where, unlike infrastructure protection
devices, the software application itself has access to the complete context of an interaction
and enhanced information about the user. The application knows what is a high-value issue
and what is noise. Input data are already decrypted and canonicalized within the application
and therefore application-specific attack detection is less susceptible to advanced evasion
techniques. When appropriate detection points are selected, a very high degree of
confidence in attack identification can be achieved..

Benefits to organizations and users

Application-specific attack detection and response is a comprehensive adaptive approach
that can be applied to applications throughout the enterprise. It reduces the risk of
unknown vulnerabilities being exploited. The benefits can include:

• Intelligence into whether your applications are under attack, how, and from where
• Certainty due to an extremely high degree of confidence in attack identification
• Fast and fluid responses, using application and user specific contexts
• Protection for software vulnerabilities that you are unaware of
• Defends against future unknown attack methods

Chapter 1 : Application-Specific Attack Detection & Response

3

• Early detection of both unsuccessful and successful attempts to exploit
vulnerabilities

• Insight into users’ accidental and malicious misuse
• Information enrichment for conventional network-based intrusion and attack

detection systems.

The approach helps to defend organizations (e.g. increased system security, enhanced data
protection, insight into attacks, identification of attempted espionage) and its application
users (e.g. privacy protection, malware infection prevention).

It greatly increases the visibility of suspicious events and actual attacks. This can provide
additional information assurance benefits:

• Lowered information security risk for data and information systems
• Improved compliance
• Reduced impact of attacks leading to increased system survivability.

In turn, these can provide improved service levels and resilience, and competitive
advantage.

Architects and developers, who have the most knowledge about the intent of an application
and its inner workings, can use the techniques described in this guide to build more robust
applications that can defend themselves, by adapting the failure response to minimize the
impact of the attack, and provide valuable insight into application usage for other systems
and processes.

AppSensor attack-aware applications with real-time response

OWASP AppSensor Project defines a conceptual framework, methodology, guidance and
example code to implement attack detection and automated responses. It is not a bolt-on
tool or code library, but instead offers insight to an approach for organizations to specify or
develop their own implementations – specific to their own business, applications,
environments and risk profile – building upon existing standard security controls.
AppSensor:

• Detects attackers, not vulnerabilities
• Is application-specific, not generic
• Does not use signatures, or try to predict anything
• Allows applications to adapt in real-time to an identified attacker
• Reduces the impact of an attack
• Provides security intelligence.

Part 1 : AppSensor Overview

4

This AppSensor Guide describes how to build detection capabilities into applications to
identify unacceptable malicious attacks. The idea is similar to the approach taken for
building fire protection. In the event of a fire (an attack), the smoke and/or heat sensors
(detection points) signal the building’s central control system which automatically warns the
occupants to escape using a siren and lights, notifies fire fighters to attend, inactivates
elevators, turns off air conditioning systems, primes the water sprinkler system, and closes
fire doors and ventilation duct baffles. These actions (responses) reduce the spread of the
smoke and fire to reduce the impact on people (users) and other assets (systems). The fire
fighters respond in additional ways after they have received the alert and arrive on site. In
the same way as building fire protection systems, applications should have self-protection
built in.

Many application attacks are potentially obvious and not the result of "user error". They
require the use of tools and/or bypass of the user interface controls. Application software
usage behavior can be thought of as a continuum of unacceptable to acceptable behavior –
AppSensor is only concerned with identifying and responding to clearly malicious events,
beyond the range of normal user behavior:

Figure 1 THE SPECTRUM OF ACCEPTABLE APPLICATION USAGE ILLUSTRATING HOW MALICIOUS ATTACKS ARE VERY
DIFFERENT TO NORMAL APPLICATION USE

Application-specific attack detection does not need to identify all invalid usage, to be able
to determine an attack. There is no need for “infinite data” or “big data” in this approach.
In the analogy of the bank, someone jumping over the counter is sufficient evidence; the
bank does not need to wait until the robber starts using a thermal lance to drill through the
safe door. Similarly in an application, receipt of modified data that the user cannot alter
through normal usage should be enough to identify bad behavior and there is no need to
wait for a SQL injection payload to be prepared, or tested or executed, regardless of
whether there is a vulnerability or not.

The application has full knowledge about the business logic and the roles & permissions of
users. Using this knowledge, AppSensor can make informed decisions about misuse, and
identify and stop attackers with an extremely high degree of confidence. It also does this in
real time.

Additionally, AppSensor can potentially make better use of information from other security
devices to contribute to its pool of information for attack detection, increasing the value of
those other systems.

Chapter 1 : Application-Specific Attack Detection & Response

5

Implementing AppSensor is like defining a whitelist for a subset of application
functionality, and noting exceptions to this whitelist (for the functionality/entry points
included). Only a sufficiently sized subset that covers the highest risks, or the most
common things done by attackers is needed. AppSensor does not need to detect everything
or know about every attack vector.

Once an attack has been identified, a predefined adaptive response can be undertaken in
real-time. Responses can include anything possible in the application’s code including
logging users out, locking an account, hardening the application and sending alerts,
signaling infrastructure devices to perform other actions, or sharing data with other systems
or industry groups.

It has also been demonstrated6,7 how AppSensor can be used to contain the effects of an
application worm by detecting rapid escalation of functional usage, combined with an
automated response that disables one part of the site, to allow the remainder of the
application to continue to operate, and freeze the corruption of data. It has also been
shown how a web application with access control detection points combined with an
automated real time log out/lock out response seriously hinders automated vulnerability
scanning software. So much in fact, that fuzzing data and entry URLs becomes almost
impossible for any sort of reasonable timescales.

Technique adoption

The following use cases are most common:

• Identifying attacks (e.g. application or data enumeration, application denial of
service, system penetration, fraud)

• Responding to attackers, including prevention
• Monitoring users (e.g. call center, penetration testing lab)
• Maintaining stability (e.g. application worm propagation prevention)
• Attack information sharing.

The Mozilla Foundation has established8 an integrated application intrusion detection
system across its enterprise-scale portfolio of web applications using AppSensor to identify
application attackers.

Architects and developers realize they can deploy the AppSensor concept themselves. This
is not just for a “big company” or using a “big budget” approach. The technique can be
piloted, undertaken in stages, progressively extended and enhanced over time.

Software assurance community

AppSensor was promoted to the US software assurance community in the Sept/Oct 2011
edition of CrossTalk (The Journal of Defense Software Engineering)9 in a concise overview

Part 1 : AppSensor Overview

6

of the concept and method of implementation. The article is available to download10 from
the CrossTalk website.

AppSensor is a recommended component of resilient software, described on a page11 in the
Software Assurance (SwA) section of the US Department of Homeland Security’s website.
This discusses the need for defenses that are proactive, not reactive.

The BITS (Financial Services Roundtable) Software Assurance Framework12 mentions
software security intelligence as an emerging practice where “technology advancements
include software and devices designed to monitor, and in some cases prevent, security
threats within the production environment”.

The Payment Card Industry Security Standards Council (PCI SSC) requires in-scope public
facing web applications to address new threats and vulnerabilities on an ongoing basis (PCI
DSS v3 requirement 6.6) with one option being “Installing an automated technical solution
that detects and prevents web-based attacks…”.

AppSensor-like functionality elsewhere

It cannot be claimed that the following are using AppSensor or ever heard of it, but the
following information alludes to the adoption of production enterprise-scale AppSensor-
like functionality. Note that OWASP is not affiliated with any company, and OWASP does
not endorse or recommend commercial products or services.

In a discussion about distributed denial of service attacks against financial institutions13, it
was reported that “Some [financial institutions] also have implemented measures to turn off
access to certain parts of their online sites, such as search functions, when DDoS activity is
detected. These precautions, and others, have helped ensure sites are not completely taken
offline by an attack, experts say.”. This includes application layer responses – not just
network layer responses.

A blog post “Monitoring of HTML and JavaScript entering an application by Etsy”14 by a
vulnerability researcher on how a vulnerability he had identified was fixed before he had
been able to verify it, and the related link15 to a presentation by Zane Lackey, Etsy’s
Engineering Manager for Application Security, about web application security at scale
including the point about “instrument application to collect data points” and their
instrumentation library16,17 that runs on the Node.js platform and listens for statistics, from
counters and timers.

The US Defense Department announced they are funding cyber security research that
include “developing active defenses – technologies that detect attacks and probes as they
occur, as opposed to defenses that employ only after-the-fact detection and notification”18.

Chapter 1 : Application-Specific Attack Detection & Response

7

The principle of “cyber maneuver” in cyber security has been used to describe the
defensive and offensive use of changing computing and information resources at machine
speeds to achieve a position of advantage19,20.

It was reported that Google Chrome’s security team built in a detection trap to identify the
exploit attack being used21. Furthermore, the Google Hack Honeypot (GHH)22 is a website
that mimics vulnerable behavior and monitors attacker reconnaissance once it has been
installed and indexed by search engines. The information in the generated attack database
can be used to “to gather statistics on would-be-attackers, report activities to appropriate
authorities and temporarily or permanently deny access to resources”.

Commercial implementations

OWASP does not endorse or recommend any commercial products or services, but notes
the close fit of the following application-integrated (non network) products with some
aspects of the AppSensor concept:

• Fortify Runtime23 (formerly Fortify Real-Time Analyzer), supporting Java and .Net,
includes dynamic injection of protection against malware and for logging and
monitoring of application security activity and integrates with other HP Fortify
Software 360 products

• Prevoty24 highly-scalable software as a service that validates inputs, queries and
tokens, with a range of SDKs for popular programming languages and frameworks
such as C#, Java, Objective-C, PHP, Python and Ruby on Rails.

No review or assessment of these has been undertaken during the writing of this guide.
Other commercial and open source products and services are expected in due course. This
guide documents a number of free and open source demonstration implementations in Part
IV.

Conclusion

AppSensor provides comprehensive visibility into attacks against applications, valuable
intelligence, allowing real-time automated response. AppSensor is not a perimeter defense
solution but assumes the application is operating in a hostile environment. AppSensor
implementation should be a baseline for application defense and be part of “defense in
depth” strategies.

Part 1 : AppSensor Overview

8

Chapter 2 : Protection Measures

Intrusion detection and prevention fundamentals

AppSensor builds on the work of many researchers, but has taken the concepts of intrusion
detection and prevention into the heart of application software. The most important work
to date in the field of Intrusion Detection is Rebecca Bace’s book titled Intrusion
Detection25. Her NIST Special Publication on Intrusion Detection Systems26 mentions
application-based Intrusion Detection Systems (IDS). The subsequent SP 800-94 Guide to
Intrusion Detection and Prevention Systems (IDPS)27,28 mainly focuses on network-based,
wireless, network behavior Analysis and Host-Based IDPS. These are all valuable sources
of background information with many good referenced works, and are recommended
reading to help understand the fundamental concepts, options, deployment and operational
considerations, pros and cons.

Wile most research has been undertaken relating primarily to the network layer, AppSensor
takes IDPS concepts to the application layer as ISO/IEC 7498-229 (twinned as ITU
X.80030) predicted in 1989.

Detecting attacks on applications

AppSensor can be used to perform:

• Attack determination
• Real-time response
• Attack blocking.

It can help to protect software applications against:

• Skilled attackers probing looking for weaknesses
• Misuse of valid business functionality
• Propagation of application worms
• Data scraping and exfiltration
• Application-layer denial of service (DoS)
• As yet unknown attack methods and exploits.

AppSensor is not an application security magic bullet. AppSensor helps defend securely
designed and developed applications. It is not a shortcut to deploy security controls.
AppSensor will not do these for you. It depends on rigorous input validation practices at
every point in the application. Using a Systems Security Engineering Capability Maturity
Model31 rating as an example, AppSensor provides a “Well Defined” (level 3) pattern for
“Quantitative Control” (level 4) of application security. This constitutes a major

Chapter 2 : Protection Measures

9

organizational investment and it is not necessarily the right model or investment for every
corporation.

If you have not specified, designed, developed, tested, deployed the application securely,
you cannot benefit from AppSensor’s capabilities. Attackers will be able to easily identify
and exploit weaknesses. If you have an obviously insecure application, concentrate on
solving that first. You must have existing authentication, session management,
authorization, validation, error handling and encryption services available and implemented
in a robust manner.

Localized security controls are not sufficient. Functions like authentication failure counts
and lock-out, or limits on rate of file uploads are localized protection mechanisms. These
themselves are not AppSensor equivalents, unless they are rigged together into an
application-wide sensory network and centralized analytical engine. Similarly logging is
necessary but not equivalent to its AppSensor counter part. AppSensor differs
fundamentally from traditional alerting logging and alerting systems, and this aspect will be
discussed in further detail subsequently. Logs may be a method of recording event and
attack information and application security logging should exist for many other purposes32,
but can sometimes be used as part of an AppSensor implementation.

The issue of vulnerabilities

Most importantly, AppSensor does not detect software weaknesses or vulnerabilities.
Instead it is used to detect users trying to find vulnerabilities.

AppSensor does not analyze an application’s source code or examine the application in its
runtime environment. AppSensor protects against attackers trying to find weaknesses.
Organizations must already be undertaking information security activities throughout the
software development life cycle (SDLC) to prevent vulnerabilities being deployed in
production code, and be ensuring that supporting hardware and network infrastructure is
secured.

Similarly AppSensor does not perform dynamic patching. There are promising integrations
of web application firewalls with automated static analysis (source code review) and/or
dynamic analysis (run time or penetration testing) to generate “virtual patches” for
vulnerabilities discovered. These can be implemented in a web application firewall (WAF)
while work is undertaken to remediate the source code if it is available. If there is a known
weakness, solve it. AppSensor exists to help prevent attackers finding these, not stopping
exploits that an organization is already aware of.

Comparison with other defensive mechanisms

In AppSensor, attack detection and prevention capabilities are added to an application
instead of functioning at a lower or more generic level. By doing this, the organization gains

Part 1 : AppSensor Overview

10

the detection and response capabilities of other systems, coupled with detailed business
specific data related to a specific application or set of applications.

AppSensor has been compared with more conventional alternatives using research and
experimental techniques33 by Pål Thomassen at the Norwegian University of Science and
Technology in Tronheim. The thesis attempted to address four questions:

1. What is the current state of application-based intrusion detection and prevention
systems?

2. How does OWASP AppSensor compare to other IDPS technologies?
3. In the given scenario, what are the benefits of using AppSensor compared with

trying to stop the attacks in a IDPS or WAF?
4. How hard is it to built AppSensor into an application?

The paper primarily compares the use of Snort34, ModSecurity35 WAF using the OWASP
ModSecurity Core Rule Set36 and the reference AppSensor Core implementation - see
Chapter 21 : Fully Integrated (AppSensor Core) - to protect a demonstration online banking web
application in a lab environment subjected to attacks based on the OWASP Top Ten Most
Critical Web Application Security Risks37. The conclusions to the four questions above
includes the comment that “AppSensor shines in that in addition to detect the well known
web application attacks it is also able to detect attack which exploits the internal workings
of an application, such as failure in access controls mechanisms”. The full paper and
conclusions should be read to understand the context of this statement.

Comparison with infrastructure protection mechanisms

Three questions that can be used to identify if a mechanism is AppSensor-like are whether
the system/service/solution/mechanism/device can:

1. Determine an attack where a user is stepping through a multi-step business process
in the wrong order?

2. Understand the difference between a user who has access to a particular document
today but not tomorrow, due to a change in user’s role or a change in the
information classification of the document?

3. Identify an attack that is an attempt to exceed an individual user-specific action
threshold (e.g. payment transfer limit).

AppSensor can be used for all of these. Common non-AppSensor-like protective
mechanisms that cannot do any of the above are described bovver the next few pages.

These are often cited as providing defense to applications, but they have no knowledge of
custom application knowledge or insight into the context of user’s actions. They do not
provide application-specific protection, and if these are all an organization is replying on for
application defense, the applications are dangerously exposed and the organization

Chapter 2 : Protection Measures

11

probably does not have insight as to whether the applications are really under attack. Some
may be physical appliances, but they can also be software hosted locally or as a remote
service.

Network Firewall

Network firewalls control traffic source, destinations and ports. If an application needs say
port 443 open to all internet users and no other ports open, a network firewall is the correct
device. Similarly network firewalls might limit access to a particular application to only
certain internal users. However, they have no insight into the application or the user
context. A network firewall could be utilized to perform application-elected response such
as blocking an individual IP address.

At this point it is also probably worth mentioning the use of HTTP over Transport Layer
Security (TLS)/Secure Sockets Layer (SSL)38 for web applications. The correct use of
TLS/SSL provides confidentiality and assurance in the integrity of data sent between two
points. It can also provide some degree of identity assurance. However, it does not protect
web applications at all. Malicious payloads and activities can be undertaken just as well
using TLS as not. And in many cases TLS will prevent the inspection of the data while in
transit.

Application Aware Firewall

Some network firewalls are rather confusingly called “application firewalls” or “application
aware firewalls” or “next generation firewalls”. These only allow or deny traffic for
individual and groups of users to and from defined IP addresses, ports and URLs for many
common applications (e.g. Facebook, Twitter). It sounds a like AppSensor, but looks like a
network firewall with some extra social media aware configuration options.

Traffic/Load Balancer

Traffic/load balancers are used to distributed network and/or application traffic across a
number of servers. Some of these can have the ability to inspect traffic at the application
layer (e.g. an understanding of HTTP for example), but they are limited to knowledge
gained from the data stream, and have no inherent understanding of the application. Some
of these devices can have custom rules written and thus have some application firewall
capabilities (e.g. like a basic Web Application Firewall - see below).

Anti DDoS System

Network firewalls, switches, routers, traffic/load balancers and intrusion protection systems
often include some measures to protect against distributed denial of service (DDoS) attacks
which intend to prevent legitimate access to the targeted system. However specialist
systems (often as outsourced services) are also available that prevent these attacks reaching
an organization’s own network. These do not have knowledge of individual applications
even if they are able to detect application protocol DDoS attacks.

Part 1 : AppSensor Overview

12

Web Gateway

These devices scan incoming web traffic to an organizations’ end-users who are browsing
the web. They may incorporate data on blacklisted websites, signatures for malware present
in web page content, email messages and files, and even perform live malware analysis. Web
Gateways do not protect applications used by other people.

Intrusion Detection System (IDS) and Intrusion Prevention System (IPS)

As mentioned above (Intrusion detection and prevention fundamentals), typical IDS and IPS
observe network traffic (NIDS) or activities on hosts (HIDS). They detect deviations from
baseline behavior but have no knowledge of application behavior and thus have to use
signature-based misuse detection or statistical based anomaly detection and are thus
susceptible to a higher level of false positives. While policies, a continuously updated
database of known attacks, and information sharing between users has improved
performance, they have little understanding of application protocols and none of
application logic, or even what entry points or user data is acceptable. Intrusion is not
always the same as attack. And due to these factors IDS and IPS are more prone to false
positives for attacks against applications.

Data Loss Prevention (DLP)

Data loss prevention is concerned with the detection and prevention of the loss, leakage or
exfiltration of targeted data types. The exploit has already been performed and this useful
technique is not an application protection.

Application Firewall, Filter or Guard

These are usually protocol-specific application firewalls looking only at Layer 7 in the OSI39
stack. They tend to be good at examining one particular data type (e.g. XML, PDFs) or
protocol (e.g. SQL, HTTP) and can include some element of self-learning about “normal”
traffic, but often include many blacklist signatures. Some may be self-learning, include web
behavioral analysis and have some mitigating capabilities, but in the end they are a generic
solution to generic attacks. They are not application-specific. See also Web Application
Firewall below.

Web Application Firewall

Many applications are web-based and there are now a number of commercial and open
source HTTP protocol application firewalls, built upon earlier HTTP filtering techniques.
They are generally referred to as “web application firewalls (WAFs). WAFs understand
HTTP traffic and can be an excellent way to screen web applications from generic attacks
and can be used for virtual patching. Some WAFs have application traffic self-learning
capabilities, and others support custom attack and application logic rule building including
support for scripting languages. WAFs also have capabilities to drop connections, or
interact with network firewalls to block IP addresses. However, WAFs are sometimes left

Chapter 2 : Protection Measures

13

operating in detection-only mode due to concerns about false positives leading to denial of
service to normal users.

Certain types of AppSensor-like functionality can be built into a WAF, and some of these
might be much more efficiently undertaken by a WAF for both detection (e.g. HTTP
protocol misuse detection, generic blacklist input validation, web application denial of
service identification) and response (e.g. HTTP logging, proxying requests, IP address
blocking). However, a WAF still does not have insight into the full capabilities of each
application such as user session and access controls. The demonstration implementation in
Chapter 26 : Leveraging a Web Application Firewall discusses some of these many possibilities
further.

Use of AppSensor with infrastructure protection mechanisms

The above mechanisms may often be deployed as well as AppSensor. If such devices block,
change or mask application traffic or data, it is important to consider how these might
affect the ability of the application to detect an attack.

Often the mechanisms can provide inputs to AppSensor (as external “reputational”
detection points). This is certainly almost always true for web application firewalls in front
of web server farms, database monitoring/firewalls in front of database servers, and for
other similar application firewalls, filters and guards.

Application protection mechanisms

Applications must have their own in-built security controls such as services for
authentication, session management, authorization, input validation, output validation,
output encoding, and cryptography. They may also have discrete functionality that behaves
very similarly to “attack response” such as:

• Counting multiple failed authentication attempts to lock a user account
• Detecting the use of the TRACE HTTP method to block requests
• Checking the IP address during a session and terminating the session if the IP

address changes
• Displaying a message to the user about invalid input
• Logging unexpected requests
• Investigating suspicious incidents at a later date.

These alone are not sufficient to be considered AppSensor. These are typically be
implemented as isolated processes and some may be undertaken reactively to events or
performed largely in a manual way. AppSensor centralizes and formalizes this approach.

AppSensor is about implementing measures proactively to add instrumentation and
controls directly into an application in advance so that all these events (and more) are

Part 1 : AppSensor Overview

14

centrally analyzed, using all the knowledge about the business logic and the roles &
permissions of users, responding and adapting behavior in real time.

The event and attack information can be displayed using custom application-specific
dashboards. Since attack events are hopefully rare, especially within the authenticated part
of an application, operators can quickly identify and assess the attack and the responses
being taken automatically by AppSensor.

These are discussed further in Part III : Making It Happen - Chapter 15 : Verification,
Deployment and Operation.

AppSensor defining characteristics

AppSensor does not act as a security silver bullet for all the reasons above and more.
AppSensor is another technique, with some unique benefits, that contributes to an overall
software security assurance program. It also relies on other infrastructure defenses, but
those are platform and architecturally specific.

So what properties would a system have to say it is AppSensor-like? The fundamental
requirements are the ability to perform four tasks:

• Detection of a selection of suspicious and malicious events
• Use of this knowledge centrally to identify attacks
• Selection of a predefined response
• Execution of the response.

These tasks are fairly generic and can therefore be applied in many different ways to suit
the systems architecture and an organization’s policies, development practices and cultural
preferences. AppSensor can often be completely contained within the application itself, but
that is not the only way.

AppSensor improves system survivability in spite of malicious actions through all three
survivability quality sub-factors40:

• Detection/recognition of attacks as they occur
• Prevention through changes to security posture
• Reaction/recovery through responses to attacks.

Applications of greater complexity are unlikely to have all these components built into the
application’s code itself. For example:

• Applications deployed across clustered servers

Chapter 2 : Protection Measures

15

• Distributed applications
• Applications where a significant part of the business logic is external to the

application (e.g. a mobile app that communicates with a central server)
• Detection point sensors deployed in related applications (e.g. databases, file

integrity monitoring systems, anti-virus systems) and infrastructure components
(e.g. web application firewalls, network firewalls).

If there is no capability to modify the source code or build AppSensor in from the start of a
development, AppSensor concepts may all have to be externalized such as in a web
application firewall (WAF) or logging system that communicates to a network firewall.

Different implementation models are discussed further in Parts II and IV.

Part 1 : AppSensor Overview

16

Chapter 3 : The AppSensor Approach

Stop! Develop and operate secure applications first

Do not progress any further until this important information is understood. It has already
been stated that AppSensor does not detect software weaknesses or vulnerabilities, and
instead it is used to detect users trying to find vulnerabilities.

If in any doubt, make sure security considerations are already integrated into software
acquisition and development practices using the techniques described in the Software
Assurance Maturity Model41 (SAMM), other software assurance models and frameworks.
Consider the guidance listed by DACS/IATAC42, ENISA43 and OWASP44, such as from
BITS45, CMU46,47,48, CERT49, ISO/IEC 2703450, NIST51, SAFECode52, and the
DoHS/SwA Forum53,54, and publicly available information about actual assurance programs
(e.g. Microsoft SDL55, Oracle SSA56 and the ongoing BSIMM57 study and related work58
such as vBSIMM59 for software vendors from FSISAC). Practices should commonly
include, but are not limited to:

• Creation and maintenance of coding and development standards
• Role-specific application security training
• Source code control and protection
• Security requirements
• Architectural and design reviews
• Source code review
• Security testing
• Infrastructure hardening
• Secure application deployment
• Backup and recovery processes
• Vulnerability assessment and penetration testing
• Patch management program
• Incident response plan.

OWASP’s Application Security Guide for Chief Information Security Officers (CISOs)60
discusses application security from governance, compliance and risk perspectives, the
parallel CISO Survey and Report61 provides tactical intelligence about security risks and
best practices.

The objective must be to identify and treat vulnerabilities before software is released into
production environments, and to ensure those environments are secure and continue to be
maintained in that manner.

Chapter 3 : The AppSensor Approach

17

Other preliminary requirements

If an application has known vulnerabilities, fix those first. Do not attempt to use
AppSensor to prevent the exploitation of vulnerabilities already known about – a single
specially crafted payload, maybe perfected elsewhere, could be sent to the application to
exploit it regardless of whether AppSensor is used or not.

Similarly, ensure the supporting network and application’s host infrastructure (e.g. servers,
workstations devices, other hardware as appropriate) are hardened, administrative access
requires strong authentication, appropriately authorized ingress and egress network firewall
rules exist, and that all system components have relevant security patches tested, deployed
and verified.

Before embarking on the adoption of AppSensor, organizations must decide what needs to
be protected and with how much effort. This can normally be linked with the outputs from
an existing risk assessment processes. Identification and risk assessment will provide insight
into the applications, but most importantly allows organizations to rank them based on
their own business-relevant criteria. The criteria may be from the organization’s viewpoint,
but it is sometimes necessary to take into account the value of the data and system from
other perspectives such as its users, other parties and society.

The application risk assessment should also identify common dependencies such as shared
components, identical data access, common hosting or inter-related back-end systems
which may mean all applications need to be considered at the greatest risk classification. An
understanding of the dependencies and inter-relationships is necessary to ensure
AppSensor detection points are selected and applied appropriately, and in the most efficient
manner. Although it is usual to treat each application as a single item, in some cases, it may
be possible to partition an application into sections, with different risk ratings, and this
could be used to allocate AppSensor detection points in a more targeted manner.

One possibility to consider is whether the application can be partitioned into public areas,
authentication, private areas for authenticated users and perhaps back-office functionality
such as a web-based content management system or other website administration
functionality. AppSensor defends against an attacker who might be able to find a
vulnerability; for an unknown vulnerability, organizations do not know the likelihood or
impact, but should know the exposure. Derive the impact from the risk assessment for the
whole application.

Architecture

Conceptually, AppSensor can be considered to comprise of two modules, a detection unit
and a response unit. The detection unit is responsible for identifying malicious behavior
based upon defined policies. Detection points can be integrated into presentation, business
and data layers of the application. The detection unit reports activity to the response unit.

Part 1 : AppSensor Overview

18

The response unit will take an action against the user. The action taken will depend upon
whether the event is a suspicious situation or is obviously an attack.

AppSensor should be integrated into an application such that a specific exception will be
thrown whenever the application detects a suspicious or attack event. AppSensor’s
detection unit should be aware of the exception thrown, and catalog the event together
with relevant details. The response unit will take action against the user responsible using
techniques such as a user warning, account lockout, application administrator warning, etc.
Consequently AppSensor must have appropriate rights and hooks within the application to
perform such response actions.

Although this guide discusses AppSensor on its own, as if it is something separate to the
application, the concept is often highly integrated within an application’s source code.
Other architectures are certainly possible, may have certain benefits, and are discussed in
Part IV : Demonstration Implementations. When reading “AppSensor”, consider it to mean
“those parts of the application and related systems that perform attack detection and
response functionality”, regardless of how/where it is performed.

The process

AppSensor can be applied to existing application code, or built into the requirements for
new projects, whether developed in-house or out-sourced. The planning stages are
probably the most time-consuming aspect of implementing AppSensor.

The implementation must ensure that high confidence in attack identification is not
compromised by adding inappropriate detection points, or designing them in a way that
leads to additional events being detected that are not attacks. The method presented also
tries to build in consideration of business operations and usability, so that not only is the
high degree of confidence in attack identification maintained, but processes are not unduly
disrupted and the users are not subjected to difficulties through simple human error. In
other words, building in a degree of human fault tolerance.

Although AppSensor works best within the authenticated portion of an application, it is
also possible to apply the principles to other areas. In the latter, the range of "normal
behavior" may be wider, the identity and location of users may be harder to pinpoint and
some detection points may no longer be necessary. But the same benefits are possible.

AppSensor's individual detection point ideas are not necessarily novel, but extend common
security principles. Some similar ideas may already exist in an application, but these will
typically be implemented as isolated processes and some may be undertaken reactively to
events or performed largely in a manual way. Some examples of these include:

• Counting multiple failed authentication attempts to lock a user account
• Detecting use of invalid HTTP methods to block requests

Chapter 3 : The AppSensor Approach

19

• Checking the IP address during a session and terminating the session if the IP
address changes

• Logging unexpected requests
• Investigating suspicious events at a later date.

AppSensor focuses and formalizes this approach. AppSensor is about implementing
adaptive measures to add instrumentation and controls directly into an application in
advance so that all these events (and more) are centrally analyzed and responded to. It is
necessary to build applications securely in the first place, and understand the risks the
application faces. If an application has centralized and standardized modules for input and
output validation, authorization and security event logging, these can provide a head start
which can be extended to included AppSensor-like capabilities.

In general, the four stages necessary to adopt AppSensor are planning, implementation,
deployment and operation. These should be incorporated into existing software acquisition
and development practices, and are not meant to map to any particular software
development life cycle.

Roles

The types of personnel involved in these stages for in in-house development process are
dependent on each organization’s structure and culture. However, successful
implementation requires a mix of skills and it is usually requires a collaborative effort
between Development, Information Security and Operational teams.

• Business owners will need to determine and approve the level of resources to
commit for each application and also the rules of engagement for responding to
attack events

• Designers, architects, information security staff and lead developers will have to
consider how the agreed approach can be implemented by development, network
and operational teams

• Developers and testers will need to undertake verification activities to ensure the
AppSensor design has been implemented and tuned correctly, so that it does not
affect normal usage and does not have any adverse side-effects

• Operation security, development leads and others as required will monitor
AppSensor activity and respond to relevant alerts.

Where development is outsourced, there will be additional involvement from procurement
and legal roles during the planning stage in particular, and the implementation stage will
largely relate to the outsourced development provider.

Part III : Making It Happen describes the process of adopting AppSensor in greater detail.
But in the next chapter further detail is provided on the necessary components.

Part 1 : AppSensor Overview

20

Chapter 4 : Conceptual Elements

Introduction

The primary elements that need to be considered when adopting AppSensor are detection
points, possible response actions available when an attack is identified, and the thresholds
at which these occur. These are considered briefly here to provide background to the
subsequent more detailed discussions of the methodology in Part III : Making It Happen.
The Glossary should also be referred to.

Approach

The commonly cited process model for IDPS comprises information sources, analysis and
response. Analysis approaches are usually either misuse detection or anomaly detection:

• Misuse detection identifies specific malicious activity (single or multiple events) by
comparison with predefined attack patterns (also known as signature-based
detection)

• Anomaly detection identifies unusual activity that is outside normal legitimate
bounds.

AppSensor does not fit cleanly into either of these since it does not attempt to define
numerous attack patterns (misuse detection) but instead primarily focuses only on blatantly
malicious events but can also include predefined extreme trend aberration limits. This
actually provides a unique benefit in that previously unknown attacks can also be detected,
that is unavailable in any other defensive mechanism regardless of cost.

The approach pursued in this book and the demonstration code examples relate to defining
application-specific events with related thresholds for attack detection and response.
Statistical models also have strengths and weaknesses; as does machine learning, but these
are not considered here.

Detection

It is necessary to understand what constitutes an attack, and how threats go about
identifying, and probing targets, developing exploits and executing the exploit to achieve
the desired result (e.g. data extraction, code/data addition, modification or deletion, denial
of service). Although reports on application vulnerability prevalence from static (source
code) and dynamic testing, and information from actual breaches of confidentiality are
useful, there are other projects22,62,63,64,65,66,67 providing tools and invaluable data about how
attackers perform reconnaissance before the creation and deployment of an exploit.

The Common Attack Pattern Enumeration and Classification (CAPEC)68, a dictionary of
common approaches used to attack software, can be used to identify attack patterns. The

Chapter 4 : Conceptual Elements

21

results69 from the 2011 ModSecurity SQL Injection Challenge70 revealed that although it
only took a matter of hours for attackers to find an exploit (evasion of a WAF using a
negative security model to protect a known vulnerable web application), the number of
requests submitted in this time was in the 100s.

Suspicious or an attack?

When detecting malicious activity, the application must distinguish between two possible
scenarios.

Firstly, the some detected activities might equally have been caused by an unintentional user
mistake, or by a crafty attacker snooping around or seeking to mask their other attacks.
Since the detected activity could result in an undesirable system response, it is important
not to disregard this type of activity altogether. This type of event will be referred to as
“Suspicious” because it might be an attack. Examples of suspicious events are:

• Data is submitted for a username that includes the two characters ‘; at the end –
this could simply be the result of the user accidentally hitting these tow keys on
their keyboard when attempting to press enter, or it could be an attempt to
discover a SQL injection vulnerability on the log in page.

• A web form is submitted from the middle of a multi-step check-out process
without the previous steps being completed – the user might have bookmarked a
web page and gone back to that, or it could be a forced browsing attempt to bypass
business logic and perhaps obtain goods without payment.

Secondly, the event could be clearly an intentional malicious activity. These types of actions
will never occur as the result of a user’s mistake, are not permitted normal operations, and
are therefore highly likely to be an attack against the application. This type of event will be
referred to as an “Attack”. Examples of attack events are:

• Data is submitted for a parameter’s containing 0 OR 1=1--‘ in the value which is
normally an integer – This is clearly a SQL injection attack regardless of whether it
is successful or not, and would never occur as the result of some sort of user error.

• Hundreds of files are uploaded for a user’s avatar image in their profile – an
individual user will never do this and it indicates some form of automated attack.

It is important to accurately classify detected events as suspicious or attacks so that the
responsive action is not unjustly performed against a non-malicious user. Another way to
think about these two categorizations is to ask the following questions:

• Is it impossible for the event to occur as the result of a typographic error, or a copy
& paste mistake, or an inadvertent key press by the user?

Part 1 : AppSensor Overview

22

• Does the user have to leave the normal flow of the application to perform the
activity?

• Are additional software tools or special knowledge needed to perform the
identified activity?

If the answer to at least two of these is “yes”, it is almost certainly an attack event.

User identification (attribution)

The AppSensor technique in general works best where the user can be identified, such as
within the authenticated part of an application, or where the “user” is a defined external
application, service or other systems. However, system trend type detection points (see
later), do not track individual users at all – they track groups of users – and are therefore
always candidates for use regardless of knowledge about an individual attacker’s identity.

But even in the case of a highly distributed attack, AppSensor could be used to identify if
an attack is under way and will provide insight into the attack, making it a useful operational
tool.

In general, the normal approach is to use passive identification techniques:

1. Prioritize tracking exceptions by known users when possible (most granular) – this
works in authenticated-only sections of the application

2. Consider tracking both known and unknown users in places where authentication
is not required, but use the preference of user tracking – works in all locations

3. Utilize system user exceptions in cases where the action is not user-specific or it
should be tracked across the whole system, not per-user.

Consider just doing the first of these initially, but design for the case of unknown and
system users. Some frameworks may enforce a session identification value even for
unauthenticated users. In other situations it may be possible to consider hardware
identifiers, or certificates, or a combination of HTTP headers71 such as User-Agent Accept-
Language with the remote IP address (and possibly X-Forwarded-For or Via) for web
requests, or user-agent fingerprinting techniques72,73. Some of these could be spoofed by
the user. Also remember that for web systems, requests from a single user at a fixed
location can be drawn randomly from a larger pool of IP addresses, and requests from a
single user’s mobile device can change source network repeatedly due to switching between
mobile network base stations and from mobile network to WiFi and vice versa.

Not all types of event detection always need to identify individual users (e.g. system trends).
Additionally AppSensor does not necessarily need to be perfect – just good enough to
identify an attack with an appropriate degree of certainty. This level of confidence will
depend upon the type of application, degree of assurance required and the types of
response actions possible.

Chapter 4 : Conceptual Elements

23

Ensure the user identification techniques proposed are permitted in the relevant
jurisdictions and if user opt-in is required, or opt out allowed.

Sensors

Detection points are instrumentation sensors, normally embedded directly within the
application code. While it is possible, and sometimes very desirable, to have detection
points in other systems, for the purposes of the current discussion this guide will mainly
focus on in-code detection points.

AppSensor can be thought as an input validation pattern for applications. In traditional IDS
information may come from network traffic and host logs. In AppSensor’s case, the
information will typically originate from data input validation practices undertaken by the
application. This input validation should be being undertaken anywhere trust boundaries
are crossed. So if something is going to be consumed; it must be validated. During the
input validation it either passes the criteria the programmer had in mind; or it fails and an
exception is thrown – that exception being thrown contains valuable information.

The data/access validation code should often already exist in a securely coded application;
it is then only necessary to add “instrumentation” to collect that information together, and
act on it. For a whitelist input validation check for example, the primary logic already exists
but would be modified to call the AppSensor components (modifications shown in bold).

Figure 2 PSEUDO CODE ILLUSTRATING THE ADDITION OF APPSENSOR DETECTION POINT LOGIC WITHIN EXISTING
INPUT VALIDATION CODE

if (Value in Whitelist) then

 [existing normal process execution];

else

 [send event to AppSensor];

 [existing exception/error handling];

end if;

Some detection points may not exist in the existing code at all, as would be the case for
many blacklisting input validation checks. In this case all the code would be new (bold).

Figure 3 PSEUDO CODE ILLUSTRATING THE ADDITION OF COMPLETELY NEW APPSENSOR DETECTION POINT LOGIC

if (Value in Blacklist) then

Part 1 : AppSensor Overview

24

 [send event to AppSensor];

end if;

The best detection points are custom ones, designed and optimized specifically for how the
application works and the risks it faces. But AppSensor has identified over fifty examples
which can be used as the basis for defining custom detection points, used “as is” or used as
something to help stimulate ideas. The AppSensor detection points are defined with
descriptions, considerations and examples on the OWASP website74, are reproduced in the
Detection Points section of Part VI : Reference.

Thresholds to determine an attack

As discussed above, attack determination must take into account whether each detected
event is simply suspicious or actually an attack event. When developing a response policy, it
is vital to determine the appropriate thresholds for response actions. The objectives are to
select thresholds and response actions that:

• Deter malicious activity
• Prevent determined attackers from successfully identifying vulnerabilities
• Minimize the impact when any false positives are recorded (non-malicious activity)

In general, attack determination should use the approach:

• React immediately to malicious events
• Monitor suspicious events.

This means that every time a detection point that represents a malicious activity is activated,
the response should be activated immediately (i.e. the threshold is “1 event”). And typically,
a response should be undertaken for a small number of detection point activations that
represent suspicious activity (i.e. the threshold is for example “3 events”). These always
need to be customized to meet the specific needs of the organization and the application
itself. The simplest implementation would be to consider the total number of activations
across all detection points, but more granularity in response can be obtained when
thresholds are be defined per detection point, per type of detection point or per group of
detection points.

Response

Action and inaction

A response policy should be established which sets specific thresholds and response actions
based on the detected actions of each user (or all users in a group, or all users). In

Chapter 4 : Conceptual Elements

25

AppSensor a response is a change in application behavior; it is not any form of retaliation.
The term “countermeasures” could be used, but AppSensor used the term “response” to
suggest a much wider range of actions than purely offensive ones. The response aims to
defend the application, its users and everyone's data:

• Organization data
• User data (sometimes including PII/personal data)
• Data belonging to other parties (e.g. suppliers, customers and partners).

Detection of events is not useful without an automated response to deter and prevent a
successful compromise. Some of the most commonly implemented response actions and
their pros and cons are shown below.

Table 1 PROS AND CONS OF THE MOST COMMONLY IMPLEMENTED RESPONSES

Responses Aspect

User Notification Description Provide a visual warning message to the user to deter further attack activity. For
example “A security event has been detected and logged”.

 Pros May deter a casual attacker by alerting them that their activities are being
monitored.

 Cons Will not deter a determined attacker and provides the attacker with some
knowledge of what events are being detected as malicious.

Account Logout Description Log the account out.
 Pros Causes difficulty with to most automated attack tools since the session will be

interrupted after a small number of interactions. Logging out the user also
provides a clear indication that the performed actions are being monitored and
the application is responding to attacks.

 Cons Automated tools can be modified to automatically re-authenticate to bypass this
response action.

Account Lockout Description Lock the user account. The user account could be permanently locked, unlocked
automatically after a pre-set period (e.g. 30 minutes), or unlocked manually after
the user has contacted the help desk.

 Pros Locking the account will cease the attack activity (if authentication is required).
 Cons If the organization or application does not control the creation of accounts, then

the attacker could generate numerous accounts and use each one until it is
locked.

Administrator Notification Description Notify the administrator via email or other methods of the malicious activity.
 Pros An administrator could take additional actions or enable additional logging

capabilities in real time. Notification is especially effective for system trend
events which require human analysis.

 Cons If used too often, this notification could become another type of information
overload which is mostly ignored.

Part 1 : AppSensor Overview

26

Response selection

The definition of thresholds is inherently tied to the selection of response actions. The
thresholds and response actions must be customized to meet the specific needs of the
application, and normal user behavior. Two contrasting examples are:

• A highly sensitive application operating within a restricted environment may be
configured such that even the most subtle suspicious activity is considered to be an
attack (all have threshold “1”) where lockout and administrative notification is
appropriate

• A public website is regularly scanned by search engines each indexing hundreds
pages/day and must not be blocked as it might otherwise affect customers arriving
from natural searches, but some sort of limits need to be imposed to prevent
competitors copying data off the site to undertake daily price comparisons; some
source IP addresses might be excluded from response actions or have very high
thresholds, whereas other sources of unauthenticated users have lower thresholds
before rate limiting or blocking responses are activated.

The power of AppSensor is its placement within the application for detection, and its
ability to respond to malicious activity in real time. The most common response actions are
user warning messages, log out, account lockout and administrator notification as noted
above. However, since AppSensor is connected into the application, the possibilities of
response actions are limited only by the current capabilities of the application, or what it is
extended to be able to do. Other ideas for response actions are documented on the
OWASP website75, are summarized in the Responses section of Part VI : Reference. There is a
useful description of US legal considerations of more invasive responses in the recently
published book “Offensive Countermeasures: The Art of Active Defense”76. What is legal,
moral, or culturally acceptable will be different in other jurisdictions, and also depends on
an organization’s sector, regulations, industry standards, the type of application users and
the purpose/functionality of the application.

The AppSensor Pattern

The above ideas are summarized in the following conceptual elements:

Table 2 LIST OF CONCEPTUAL ELEMENTS IN THE APPSENSOR PATTERN

Element Description

Detection Point A specific point during the execution of a program that allows event generation
Event An observed occurrence in an application that is monitored and analyzed to determine

attacks
Event Manager This collects event notifications from the detection points and polls the event analysis

engine for any appropriate response actions to execute

Chapter 4 : Conceptual Elements

27

Event Analysis Engine Used for the analysis and processing of incoming event data to compile, store and process
them to determine if an attack has occurred

Event Store The storage mechanism for events
Attack Store Storage mechanism for attacks, which are produced by the analysis of events
Response The action taken as a result of attack recognition
Reporting Client An application that provides data visualization e.g. a dashboard

The terms are defined more fully in the Glossary, and are illustrated in the figure below.

Schematic Arrangement of AppSensor Conceptual Elements

Part II : Illustrative Case Studies

28

Part II : Illustrative Case Studies

On the following pages examples of how AppSensor can be used for a range of different
software application architectures and business risk.

Chapter 5 : Case Study of a Rapidly Deployed Web Application

29

Chapter 5 : Case Study of a Rapidly Deployed Web Application

Table 3 PROPERTIES FOR THE CASE STUDY OF A MINIMAL APPSENSOR IMPLEMENTATION FOR A SMALL RAPIDLY-BUILT
WEB APPLICATION THAT ALREADY HAS A STRONG INPUT VALIDATION MODULE

Background An entrepreneurial micro business has developed a web product to help financial
service companies. All web application functionality requires the users to be
authenticated. There are no public parts of the application except for the log in page.

The company will publish the web product to market as soon as possible but also needs
to demonstrate robust defenses to its customers who will want to perform their own
penetration testing.

The business’s own development team has created a parameter input validation
framework that checks every single request’s URL, parameter names and parameter
values. The web application’s entry points are known and are defined in an existing
database table which is updated at each release. The team have decided to use
AppSensor-like capabilities to warn them about forced browsing to invalid URLs,
missing mandatory parameters, the submission of additional or duplicated parameters,
and invalid parameter value data types.

Note that additional input validation exists, but initially this will not be linked into the
attack detection and response system. Just URL, parameter names and value data types.

Objectives 1. Immediately identify any non-normal use of the application
2. Slow down an attack using compromised user credentials

Detection points The detection points only need to be added within the existing global input validation
module. The detection points selected are shown below. All exist within the application
code.

Area ID Scope Detection Description AppSensor Refs
Request i Every request Invalid URL ACE3, IE2
 ii Every request Invalid parameter names RE5, RE6
 iii Every request Invalid parameter value type RE8, IE2

R01 also occurs for “404 not found” responses.

Response actions
and thresholds

All events share the same response. Thresholds are all one (i.e. immediately, so there is
no need to undertake counts over time periods). Only one SMS alert will be sent per
request/response cycle (e.g. not per parameter).

ID (from above) Threshold Response Description AppSensor Refs
i, ii, iii Any 1 event Log out authenticated user and

send SMS alert to development
team

ASR-J, ASR-B

This will require the ability to:

• initiate a response for each detection point event
• terminate sessions and log out users, and send SMS alerts
• whitelist certain IP addresses to suppress the response actions (e.g. external

vulnerability scanner, the company’s own penetration testers)

Part II : Illustrative Case Studies

30

Chapter 6 : Case Study of a Magazine’s Mobile App

Table 4 PROPERTIES FOR THE CASE STUDY OF A MAGAZINE’S MOBILE APP TO IDENTIFY AUTHENTICATION ATTACKS,
ACCOUNT-SHARING AND BLATANT XSS ATTEMPTS

Background A well-respected business magazine has developed a new mobile application with a
native front end to support the needs of it's existing client base as well as reach new
customers. Most application functionality requires the users to be authenticated, which
is undertaken via server-side components. There is a small public portion of the
application that shows a portal-style page with headlines from the top stories.

This is the first mobile application written by the internal development team. The team
is made up of a mix of web developers and back-office developers. The business
customer has two serious concerns:

• Loss of revenue due to users sharing accounts
• Loss of readership due to defacement of magazine content

In addition, the development team has another concern:

• The authentication and authorization framework used is new to the team
since they are accustomed to the typical web session handling (cookie)
model, whereas the new model uses access tokens.

Authentication will require communication with the magazines internet-facing systems
to minimize critical functionality in the application itself. Some magazine content is
stored locally on the devices to improve response times. The team has decided to use
AppSensor-like capabilities to warn them about account sharing, code injection
attempts, and to monitor access to the authentication portion of the application closely.

Objectives 1. Detect attacks against the authentication component (The team intends to start
with the authentication component, and add monitoring to the authorization
component if necessary in the future)

2. Identify account-sharing between users
3. Detect XSS attempts that could lead to defacement.

Detection points The detection points need to be added to the authentication component and within the
existing global input validation module. The detection points selected are shown below.
All exist within the application code.

GEO location as a detection point has to be used carefully. There are many use cases
where geo-location may change for a completely valid reason.

Area ID Scope Detection Description AppSensor Refs
Authentic
ation

i Every auth attempt Use of Multiple Usernames AE1
ii Every auth attempt Multiple Failed Passwords AE2
iii Every auth attempt High Rate of Login Attempts AE3
iv Every auth attempt Utilization of Common

Usernames
AE12

 v Every auth attempt Deviation from normal GEO
Location

AE13

Request vi Every server request Cross-site scripting (XSS)
attempt

IE1

Local vii Every cache read Data integrity fault IE4

Chapter 6 : Case Study of a Magazine’s Mobile App

31

cache

Response actions
and thresholds

The thresholds are set high enough to ensure the activity is likely malicious, and so the
responses are more strict. Detection points monitoring events occurring at the
magazine’s servers have more authority than events detected locally on the device
hosting the app.

ID (from above) Threshold Response Description AppSensor Refs
i, ii, iii, iv Any 10 events Alert operations staff ASR-B

Any 25 events Block IP address (and
customer account if known)
for whole site (manual reset by
operational administrator)

ASR-L, ASR-K

v Any 1 event within
1 hour of previous
access

Notify user of invalid usage,
log user out

ASR-E, ASR-J

Any 5 events within
1 month

Block IP address (and
customer account if known)
for whole site (manual reset by
operational administrator)

ASR-L, ASR-K

vi 1 event Block request ASR-G
Any 3 events Log user out ASR-J
Any 6 events by
user and/or
individual IP
address

Block IP address (and
customer account if known)
for app (manual reset by
operational administrator)

ARS-L, ASR-K

vii Any 3 events Alert operations staff ASR-B

Non singular event thresholds refer to per user rolling 24 hour periods unless specified
otherwise.

This will require the ability to:

• Notify the operations staff via email/SMS
• Perform blocking of IP addresses
• Verify a users' geo-location at a high level (maybe accurate within 200-300

miles)

Part II : Illustrative Case Studies

32

Chapter 7 : Case Study of a Smart Grid Consumer Meter

Table 5 PROPERTIES FOR THE CASE STUDY OF A SMART GRID CONSUMER METER FOR THE DETECTION OF ATTEMPTED
AND ACTUAL TAMPERING.

Background Gas and electricity smart meters are beginning to replace traditional meters and allow
remote usage monitoring, configuration and can offer some benefits to both the
supplier and consumer. Remote connectivity may use an embedded SIM card to
connect with a mobile network provider, or in the case of broadband-connected home,
utilize the existing WiFi connection. Customers often have concerns about privacy,
confidentiality of data, difficulties in changing their supplier and health due to the use
of mobile phone and WiFi technology.

Mobile technicians connect to smart meters using an infrared optical port which is
more reliable in the many different locations that the meters can be installed in. The
technicians use security codes to authenticate and then may alter the configuration or
collect information. The long highly-random security codes could be identified by brute
force and dictionary attacks.

The same functionality is also available remotely, but the optical port is much more
exposed.

Objectives 1. Identify attacks against authentication functions
2. Detect other extremely unusual activity

Detection points The detection points must be built in to the meter’s logic.

Area ID Scope Detection Description AppSensor Refs
Optical port i Every auth attempt >10 attempts per minute AE3
 ii Every auth attempt 6 failed security codes AE2
Configuration iii Each access Updated UT1
Configuration iv Every flash image Update received -
Communications v Each outbound

connection
Connection made to unapproved
destination

IE2

Cover vi Enclosure opened Physical tamper switch to detect
enclosure removal

RP2

Response actions
and thresholds

The automated response actions must not disrupt consumers’ supplies under any
circumstance. Logging an alert messages to the supplier’s head-end systems are the only
response actions.

ID (from above) Threshold Response Description AppSensor Refs
(All) 1 event Log locally ASR-A
i, ii, iii, v Any 3 events Alert message to head-end system

with copy of configuration and recent
log items

ASR-B

iv, v 1 event Alert message to head-end system ASR-B

These require local logging and alert message signaling capabilities. Non singular event
thresholds refer to rolling 24 hour periods. No more than one alert message to be sent
in any 60 minute period.

Chapter 8 : Case Study of a Financial Market Trading System

33

Chapter 8 : Case Study of a Financial Market Trading System

Table 6 PROPERTIES FOR THE CASE STUDY OF A FINANCIAL MARKET TRADING SYSTEM FOR THE DETECTION OF
COLLUSION BETWEEN TRADERS.

Background The operator of a financial trading tool is concerned about collusion between buyers,
between sellers and between buyers and sellers. They may attempt to manipulate prices
to inflate them, perform insider trading, and undertake accommodation trading.

The company cannot track user-user communications through other channels (e.g.
instant messaging, telephone, email and SMS) but has complete insight into the
activities undertaken using the software application developed internally.

By building detection capabilities directly into the software application, it negates the
requirement for centralized collection, logging and analysis.

Objectives 1. Detect signs of collusion for further investigation
2. User-specific monitoring but must take into account the actions of other users

Detection points All detection points are related to trading activities. Detection point iii requires an
examination of multiple group relationships to identify similar patterns.

Area ID Scope Detection Description AppSensor Refs
Trading i Every trade Unexpectedly low price -
 ii Every trade Unexpectedly high price -
 iii Every trade Similar actions taken by pairs

or groups of users
-

 iv Every trade High trading speed UT2
 v Every trade Unexpected trading pattern UT4

Many other types of fraud detection could be implemented in a similar in-application
manner.

Response actions
and thresholds

No disruption to trading is permitted. All actions are recorded to an audit trail.

ID (from above) Threshold Response Description AppSensor Refs
i, ii, iv Any 10 events Alert anti fraud team ASR-B
iii, v 1 Alert anti fraud team ASR-B

The thresholds can be adjusted on a per-user basis so that suspected misbehavior can
be watched more closely.

Part II : Illustrative Case Studies

34

Chapter 9 : Case Study of a B2C Ecommerce Website

This example illustrates an initial standalone implementation where the development team
have embedded the detection points into their own business-to-consumer (B2C)
ecommerce website source code.

Table 7 PROPERTIES FOR THE CASE STUDY OF A B2C ECOMMERCE WEBSITE

Background The retailer’s ecommerce channel accounts for 25% of their turnover. The website is
comprised primarily of a product catalogue, shopping basket and check-out system,
customers must register to check-out & pay, but can then also manage their accounts,
submit reviews and take part in focus group discussions.

The website is custom built and maintained in-house. The application has been through
a number of changes to remove vulnerabilities. There are no generic input validation
and exception handling modules.

Objectives 1. Identify generic attacks as soon as possible so they can be monitored.
2. Detect specific attacks against the custom logic in the product catalogue, shopping

basket, checkout and payment functions
3. Identify attacks against database content

Detection points In this initial implementation, the development team want to limit the number of
detection points to less than ten, albeit some of these will occur in multiple instances.
For example all requests will have some generic blacklist detection points, and all
database query results sets will be validated against expected record count ranges (e.g.
always none, always one, 2-10, 11-100 and 101+). The detection points selected are
shown below. All exist within the application code, except for the last one which is
implemented as triggers in the database that initiate a special web service call to the
application.

There are no site-wide (all user) thresholds.

Area ID Scope Detection Description AppSensor Refs
Request i Every request Invalid/incorrect HTTP verb RE1, RE2, RE3, RE4
 ii Every request SQL injection attempt CIE1
 iii Every request Cross-site scripting (XSS)

attempt
IE1

Catalogue iv Product display Product value mismatch IE4
Basket v Basket handling Basket value mismatch IE4
Payment vi Payment

authorization
Card authorization failure (Custom)

 vii Order completion Price mismatch between order
& payment

IE4

Database viii Every SELECT query Returned record set size
incorrect

CIE2

 ix - Database table integrity fault IE5

The events are logged into a database application log table.

Table 7 continued...

Chapter 9 : Case Study of a B2C Ecommerce Website

35

Response actions
and thresholds

The response actions were selected to block blatant abusers of the site and use alerting
to operations staff for most other detected events. Threshold comparisons (per IP
address and per user) will only include events in the previous 24 hours.

ID (from above) Threshold Response Description AppSensor Refs
i, ii, iii Any 1 event Block request ASR-G
 Any 3 events by

user
Log out authenticated user ASR-J

 Any 6 events by
user or and
individual IP
address

Block IP address (and
customer account if known)
for whole site (manual reset by
website administrator)

ASR-L, ASR-K

iv, v Either 1 event Alert operations staff ASR-B
 Any 2 events Block IP address for dynamic

areas (1 day auto-reset)
ASR-I

vi 3 events Alert operations staff, and
redirect back to shopping
basket summary

ASR-B, ASR-G

vii 1 event Alert operations staff, put
order on hold, and block future
order check-out for the
customer (manual reset)

ASR-B, ASR-D, ASR-I

viii 1 event Alert operations staff, abort the
current process, display an
error page, and block the
customer account (manual
reset)

ASR-B, ASR-G, ASR-E,
ASR-K

ix 1 event Alert DBA and operations staff ASR-B
(All) 1 event Increase application logging

granularity and indicate on
monitoring dashboard

ASR-A, ASR-C

This will require the ability to:

• count detection points events for each threshold per IP address, and per
user, and do this for every request

• change application logging level, raise alerts to operations staff, change the
status of an order, terminate website user sessions, redirect responses, block
individual requests, disable check-out functionality for individual users, block
access to the whole website for an IP address and for individual IP addresses,
reset blocks

• display a monitoring dashboard

Part II : Illustrative Case Studies

36

Chapter 10 : Case Study of B2B Web Services

AppSensor applied to a system that has a small number of strongly authenticated (system)
user accounts.

Table 8 PROPERTIES FOR THE CASE STUDY OF B2B WEB SERVICES

Background A manufacturer exposes selected suppliers to its acquisition systems via web services.

The permitted web service request source locations are controlled by network firewall
rules which are monitored and which have robust change control processes.
Additionally customers must have a current, valid and non-revoked X.509 certificate.

Security requirements were defined at the start of the implementation of the services,
and were verified during design reviews, static code analysis (code review), dynamic
testing. An independent specialist security company undertakes penetration testing at
each release. There is ongoing external and internal vulnerability assessment scanning
daily.

Suppliers have strict security obligations placed on them and their development
processes. However, the manufacturer is concerned about misuse of the web services
by a rogue insider within any of the supplier organizations.

Objectives 1. Block clearly malicious requests to allow time for further investigation

Detection points The detection points are primarily built into the application’s input validation module,
but detection points i and ii rely on an internal logging module. Checking the result of
the XML parser vi is a separate output validation step that had to be added.

Area ID Scope Detection Description AppSensor Refs
Requests i Every request Invalid entry point ACE3, IE2
 ii Every request High rate requests UT2
XML
parsing

iii Every request Does not match schema IE4
iv Every request Invalid signature IE4
v Every request Invalid values/attributes IE2

 vi Every request Parser error returned CIE2

Response actions
and thresholds

Suppliers are not allowed access to the production systems until their methods of
interaction have been tested and approved. The threshold before response is therefore
strict.

ID (from above) Threshold Response Description AppSensor Refs
(All) Any 3 events Terminate request, log user

out, lock user account, raise
syslog event, and send email
alert to service owner and
operations team

ASR-G, ASR-J, ASR-K,
ASR-C, ASR-B

The threshold comparison reviews all events in the previous 7 day period.

Chapter 11 : Case Study of a Document Management System

37

Chapter 11 : Case Study of a Document Management System

AppSensor applied to an internal client-server application containing very sensitive
information, which could affect national security if compromised.

Table 9 PROPERTIES FOR THE CASE STUDY OF A DOCUMENT MANAGEMENT SYSTEM

Background A government agency gathers a large amount of information from disparate sources
and stores this in a document management system, which is only available to known,
strongly-authenticated users on an internal private network.

The information is tagged with a custom classification system and access rights are
strictly enforced. However, the agency is still concerned with the amount of data and
the possibility of rogue employees going beyond the needs of their assigned work,
mining the data for personal gain, or on behalf of organized crime or other nation
states.

The agency is confident in the authentication and authorization security controls
enforced in the document management system, but have decided to add AppSensor
functionality to detect suspicious usage of valid functionality.

Objectives 1. Monitor users behavior
2. Identify suspicious usage

Detection points The detection points are added into the access control library.

Area ID Scope Detection Description AppSensor Refs
Access
Control

i Every document
access request

Rate of document access UT2

 ii Every search Frequency of use UT4
 iii Every document

display
Frequency of use UT4

The agency has identified a potential detection point external to the application – an
existing data loss prevention (DLP) system – but have decided to implement that in a
later phase.

The events are logged to a high-integrity database.

Response actions
and thresholds

Only responses that are transparent to the employee are implemented. The

ID (from above) Threshold Response Description AppSensor Refs
i 48 per hour Alert operations staff ASR-B
ii, iii +1,000% over 5 d Alert security staff ASR-B

When the DLP integration is undertaken it is intended use disabling of functionality
(ASR-I) when an attack is detected to limit the impact as much as possible.

Part II : Illustrative Case Studies

38

Chapter 12 : Case Study of a Credit Union’s Online Banking

A statistical approach applied to customer-facing banking web applications where there was
a significant concern regarding malware-infected customer desktop and mobile devices.

Table 10 PROPERTIES FOR THE CASE STUDY OF A CREDIT UNION’S ONLINE BANKING

Background A credit union is redeveloping its online banking systems. It has mature software
development practices where security is considered at many stages of the development
lifecycle, and has made a significant investment in infrastructure protection. In the
redevelopment the credit union wants to take the opportunity to build in advanced
attack impact-minimizing techniques to protect the web applications. The primary
concerns are customers whose own computers have been compromised by malware
(e.g. Citadel, KINS, SpyEye, Zeus), and secondly other fraudulent activity. The credit
union maintains data flow diagrams for each business process and has identified all the
state-changing steps deemed to be higher risk. This has been complemented by an
analysis of known web security incidents from other banks77 in order to define
placement of detection points that can feed event information into an existing fraud
prevention analysis engine, developed by the credit union’s statisticians and actuaries,
but which currently lacks the user and context specific information available from the
online customer systems.

Objectives 1. Detect early signs of attacks
2. React in order to minimize the impact of the attack

Detection points Request detection points are numerous and are of two main types; these are
complemented by reputational data from other internal and external anti-fraud systems.

Area ID Scope Detection Description AppSensor Refs
Request - Every request Usage of a process step UT1
 - Every request Per-request token integrity check IE4
 - Every request Known trojanized browser attack IE3
Reputation - Every request Address, IP and card blacklists RP2
 - Each session Customer profiling RP2
 - Each session Third party fraud scoring RP2

The events are sent to the centralized fraud analysis engine that uses a highly
customized stochastic model to identify malicious behavior. In this case, the events
recorded are not only misuse, but also per-user usage patterns.

Response actions
and thresholds

The response action is determined in real time at each and every detection point
activation whether to allow the process to continue, or to perform some other action.

ID (from above) Threshold Response Description AppSensor Refs
(All) (Probabilistic) Proceed ASR-P

Proceed but track ASR-A, ASR-D
Prevent transaction ASR-G
Log user out ASR-J
Flag for further investigation ASR-C
Redirect customer to free AV ASR-E

Part III : Making It HappenChapter 12 : Case Study of a Credit Union’s Online
Banking

39

Part III : Making It Happen

This section describes the process of planning, implementing and operating application-
specific attack detection and response. The process is technology agnostic and attempts to
be descriptive rather than prescriptive, providing awareness, describing the problem set,
outlining different approaches at a higher level, and some generic approaches. It also
provides many reference materials. Success comes down to many details and the process
should be adapted to an organization’s own culture, its working practices and, most
importantly, the risks it faces.

Part III : Making It Happen

40

Chapter 13 : Introduction

The process to implement AppSensor should not be long and complex, and it is important
to focus on a minimal set up that provides sufficient detectability of attacks. There is no
need to be overwhelmed by all the attacks possible. Keep in mind AppSensor should not
be trying to detect all malicious behavior – AppSensor only needs to detect enough
obviously behavior to make a decision about the intent of a user as to whether they are
malicious or not.

The previous illustrative case studies in Part II can also be used as short-cut design patterns.
Further inspiration is available in Chapter 1 : Application-Specific Attack Detection & Response -
Technique adoption, and the examples in Part IV : Demonstration Implementations. The remaining
content of this Part III provides information to build knowledge more about the concepts,
to implement a more formal process, to gain a deeper understanding, and to learn from
experience gained with actual production implementations.

Process, culture and technology agnostic

In this guide no particular development methodology is required or assumed. The
suggested process can be adapted to local methods and culture, and to suit each
organization's business processes. For many organizations, the steps can be built into
applications through a process of continual improvement and are well-suited to Agile
methodologies.

The methodology described here does not identify which technologies should be used. If in
doubt, initially teams should use what they know best and are familiar with.

Begin with a pilot application

Organizations thinking about AppSensor often begin with a pilot application to learn the
techniques and build up attack detection skills. This is sometimes an internal application
only used by developers or created as a proof-of-concept trial. Consider utilizing non-
disruptive response actions only and log everything. However, do give consideration to the
issues raised in the remainder of this Part III to help ensure a successful, and extensible,
pilot.

Suggested method

Part I described how real-time detection and response to be built into applications.
Whenever possible, AppSensor capabilities should be defined in project requirements from
an early stage, but software can also be refactored or its capabilities enhanced. The
additional coding should be subject to the same secure development process as another
other software changes. This includes risk analysis, design, code review, testing, operational
enablement, etc.

Chapter 13 : Introduction

41

The recommended approach is to include the following aspects within the organization’s
own software development practices, in whatever way they are structured, ordered and
practiced:

• Design
o Strategic requirements
o Detection point selection
o Response action selection
o Threshold definition

• Implementation
• Verification
• Deployment
• Operation

This method leads to the creation of requirements, user stories and test cases. For more
formal development practices and for procurement documentation, further reference
materials may be required such as schedules of detection points, thresholds and responses.

AppSensor and Security in the Software Development Life Cycle

If organizations already have, or are in the process of building, a comprehensive
programme60,61 to include security throughout the development life cycle (SDLC),
considerations for AppSensor should be addressed in the same program.

Some more common secure SDLC (S-SDLC) are cross-referenced in the four tables below.
The mappings indicate where the use of AppSensor is likely to require changes to existing
application security practices. At the time of writing this version of the AppSensor Guide
the relatively new ISO/IET 2703450 is neither complete nor mature enough to provide a
similar cross-reference.

Of course, these illustrative mapping are not the only activities that are needed to develop
secure software – a requirement before even considering AppSensor (see Part 1 : AppSensor
Overview - Chapter 3 : The AppSensor Approach - Stop! Develop and operate secure applications first).

Part III : Making It Happen

42

The most relevant activities from the Open Software Assurance Maturity Model (Open
SAMM)41 version 1.0, that align with aspects for using AppSensor, are shown in the table
below:

Table 11 APPSENSOR ASPECTS MAPPED TO OPEN SAMM ACTIVITIES

AppSensor OWASP Open SAMM
Aspect Function Security Practice Activity Code and Description

Design Governance Policy & Compliance PC 1.A Build and maintain compliance guidelines
PC 2.A Build policies and standards for security and compliance

Education & Guidance EG 1.B Build and maintain technical guidelines
Construction Threat Assessment TA 1.A Build and maintain application-specific threat models

TA 1.B Develop attacker profile from software architecture
TA 2.A Build and maintain abuse-case models per project
TA 3.B Elaborate threat models with compensating controls

Security Requirements SR 1.A Derive security requirements from business functionality
SR 1.B Evaluate security and compliance guidance for

requirements
SR 2.A Build an access control matrix for resources and

capabilities
SR 2.B Specify security requirements based on known risks
SR 3.A Build security requirements into supplier agreements

Security Architecture SA 1.B Explicitly apply security principles to design
SA 2.B Identify security design patterns from architecture
SA 3.A Establish formal reference architectures and platforms

 Verification Design Review DR 1.A Identify software attack surface
Implementation Governance Policy & Compliance PC 2.B Establish project audit practice
Verification Construction Security Architecture SA 3.B Validate usage of frameworks, patterns, and platforms
 Verification Design Review DR 1.B Analyze design against known security requirements

DR 2.A Inspect for complete provision of security mechanisms
Security Testing ST 1.A Derive test cases from known security requirements

Deployment Deployment Vulnerability
Management

VM 1.B Create informal security response teams
VM 2.A Establish consistent incident response process

Operational
Enablement

OE 1.A Capture critical security information for deployment
OE 1.B Document procedures for typical application alerts

Operation Deployment Environment
Hardening

EH 1.A Maintain operational environment specification
EH 3.A Identify and deploy relevant operations protection tools

Operational
Enablement

OE 2.B Maintain formal operational security guides

The most relevant activities from the Building Security In Maturity Model (BSIMM)57
version 6, that align with aspects for using AppSensor, are shown in the table on the
following page.

Chapter 13 : Introduction

43

Table 12 APPSENSOR ASPECTS MAPPED TO BSIMM ACTIVITIES

AppSensor BSIMM
Aspect Domain Practice Activity Code and Description

Design Governance Strategy and Metrics SM1.6 Require security sign-off
Compliance and Policy CP1.3 Create policy

CP2.3 Implement and track controls for compliance
CP2.4 Paper all vendor contracts with software security SLAs
CP3.2 Impose policy on vendors

Intelligence Attack Models AM1.1 Build and maintain a top N possible attacks list
 AM1.3 Identify potential attackers
 AM1.4 Collect and publish potential attack stories
 AM2.1 Build attack patterns and abuse cases tied to potential

attackers
 AM2.2 Create technology-specific attack patterns
Security Features and
Design

SFD1.2 Engage SSG with architecture
SFD3.1 Form a review board or central committee to approve and

maintain secure design patterns
Standards and
Requirements

SR1.1 Create security standards
SR1.3 Translate compliance constraints to requirements
SR2.2 Create a standards review board
SR2.5 Create SLA boilerplate
SR3.2 Communicate standards to vendors

Implementation Intelligence Security Features and
Design

SFD1.1 Build and publish security features

SSDL
Touchpoint
s

Architecture Analysis AA1.1 Perform security feature review
AA1.2 Perform design review for high-risk applications

Verification SSDL
Touchpoint
s

Architecture Analysis AA2.1 Define and use AA process
Code Review CR2.2 Enforce coding standards

 Security Testing ST1.1 Ensure QA supports edge/boundary value condition
testing

 ST1.3 Drive tests with security requirements and security features
 ST3.5 Begin to build and apply adversarial security tests (abuse

cases)
Deployment Deployment Software Environment SE2.2 Publish installation guides

Configuration Mgmt
and Vulnerability Mgmt

CMVM1.
1

Create or interface with incident response

Operation Governance Compliance and Policy CP3.3 Drive feedback from SDLC data back to policy
Intelligence Attack Models AM1.5 Gather attack intelligence
Deployment Software Environment SE1.1 Use application input monitoring

 SE3.3 Use application behaviour monitoring and diagnostics
Configuration Mgmt
and Vulnerability Mgmt

CMVM1.
2

Identify software defects found in operations monitoring
and feed them back to development

CMVM3.
3

Simulate software crisis

Part III : Making It Happen

44

The high-level areas from the BITS Financial Services Roundtable Software Assurance
Framework45 January 2012 version, that align with aspects for using AppSensor, are shown
in the table below.

Table 13 APPSENSOR ASPECTS MAPPED TO BITS SOFTWARE ASSURANCE FRAMEWORK AREAS

AppSensor BITS Framework
Aspect Area

Design Threat Modelling
Implementation Security Software Assurance Development Standard

Coding Practices
Verification Security Testing
Deployment Pre-Implementation Practices
Operation Post Implementation Phase Controls

The high-level processes from Microsoft Security Development Lifecycle (MS SDL)55
Process Guidance version 5.2, that align with aspects for using AppSensor, are shown in
the table below:

Table 14 APPSENSOR ASPECTS MAPPED TO MS SDL PROCESSES

AppSensor MS SDL
Aspect Phase Process

Design Requirements Establish security requirements
 Security and privacy risk assessment
 Design Analyze attack surface
 Threat modelling
Implementation - -
Verification Verification Attack surface review
Deployment Release Incident response plan
Operation Response Execute incident response plan

Next steps

The following two chapters describe the most typical AppSensor implementations. The
following chapters can also be read to provide additional ideas and considerations for a
more formal approach and/or complex AppSensor deployment.

Implementation issues are also discussed in the comparative research and experiment
undertaken independently by Pål Thomassen “AppSensor: Attack-Aware Applications
Compared Against a Web Application Firewall and an Intrusion Detection System”33. This
paper also includes a large number of useful references for further reading.

Chapter 14 : Design and Implementation

45

Chapter 14 : Design and Implementation

The design stage includes identifying strategic considerations, sensor selection and
positioning, and determination of the appropriate type of response to block or mitigate
attacks based on an analysis of business risk, process criticality and user experience
requirements.

Management support

The implementation of AppSensor should not be undertaken in isolation from other
information security initiatives. Consideration should be given to the effects on all users
and especially any legal, regulatory and contractual obligations. Clearly low-risk, internal
only applications with a small user base may well have many fewer considerations, but even
with these aspects like monitoring of staff could be an issue. In all cases the event data is
likely to be valuable and could contain intellectual property.

Existing change management processes that include security, privacy and compliance risk
assessment should be leveraged to gain management understanding and support. After all,
implementing AppSensor should be a success story so give everyone a chance to be part of
the success story.

Organizational policy

It is helpful to agree some sort of high-level guidance on what automated actions are
deemed to be acceptable – determined by a range of appropriate stakeholders such as
business and product managers, development management, software architects, lead
developers and legal/compliance officers. The stakeholders could include representatives
from human resources, customers or partner organizations depending upon the types of
users. This is necessary even if a very Agile development method is used. The “policy”
should consider the organization's risk tolerance and the desired user experience (e.g.
acceptability of changes to service level and function availability, changes to usability,
legality).

Remember "users" are not always people and can be other information systems. The
selected response actions will also depend on the purpose of the application such as
whether it is a sales channel, a marketing asset, a service for citizens, a high-availability
process or safety critical system.

The important point to re-emphasize is that AppSensor-like functionality must never affect
normal users. This is quite difficult for conventional defensive mechanisms, and should be
straightforward for applications. Therefore any concerns about the effect on (normal) users
can often be discounted, to allow the group to focus on what the business considers is
unreasonable and at what point it should take action and how. An organization’s

Part III : Making It Happen

46

information security policy and incident response plan may help determine the approach,
but often consideration of application response is unlikely to have occurred previously.

A policy is mainly focused on the acceptable responses, but in turn this can help define
what type of attack detection is required. Here are some different, and sometimes
contradictory, points of view various organizations may have:

• Only allow a few security events that are obviously attacks or several minor events
which are just suspicious

• Do not prevent users doing anything, but log, monitor and alert fervently
• Never log out or lock out site administrators, but ensure they are aware of all

suspicious and attack events, and know that their own activity is being recorded in
tamper-evident audit logs with any AppSensor alerts being sent to their supervisors

• Any two attacks each with more than 75% certainty that it is an attack must log the
user out and lock their account immediately, and this can only be reset by two
administrators from different locations acting together

• Never disable any functionality
• Authenticated administrators who have access to the most functionality and the

greatest data access permissions should have the strictest thresholds before a
response action is undertaken

• Active (against the user) responses will only be used for (malicious) users external
to the corporate network

• Active responses will only be used for (malicious) users internal to the corporate
network

• Application functionality will not be changed unless the user's source location is in
a higher-risk country

• Ensure the (malicious) user is oblivious to the response actions being taken
• Nothing must be done which might affect WCAG 2.0 Level AA Conformance
• Public unauthenticated users are the least trusted and should have the most strict

thresholds (i.e. lowest number of events before an attack is determined).

Some AppSensor policy requirements can usually be gleaned from existing application
requirements. For example, it may be necessary to ensure that the response actions do not:

• Undermine advertising claims about service provision (e.g. capacity, rate of use)
• Contradict the organization’s culture, mission or approach
• Contravene contractual obligations such as service level agreements (e.g. uptime)
• Conflict with a corporate policy or other mandate
• Break a regulatory requirement
• Perform any illegal act in the jurisdiction of the application and/or the users.

Chapter 14 : Design and Implementation

47

It can be productive to discuss the examples above in a workshop-style discussion to help
define some high-level policies before attempting to specify appropriate detection points,
responses and related thresholds. The facilitator should be able to steer the group so that
relevant aspects are covered.

Another approach to developing a high-level policy is to work through the main entry
points or functionality for the target application(s) and, from the perspective of each user
role, write some general rules for response that are allowed and appropriate. Take into
consideration the effect the response actions might have on users and other systems, as
well as the particular application. At this stage it is better to focus less on technical issues
such as “how do we do this”, and more on user experience and business risk viewpoints.

Try to define 10-15 rules that apply to all users. However it is likely there will be demands
for greater granularity in the response actions, and architects and developers may want to
allow for this in their specifications and designs.

Architecture

Another factor in what is achievable using AppSensor is how the functionality can be
implemented. The architecture of the target application(s), environments, and availability of
source code all influence what is possible. Code can be completely custom-built or it could
consume demonstration code produced for the OWASP AppSensor Project. For a new
application, AppSensor functionality can be defined in requirements documentation for in-
house (e.g. functional specifications) or out-sourced development using an invitation to
tender (ITT), request for proposal (RFP), functional specification associated with a draft
contract, etc.

The key components required are:

• Detection points within the execution path of an application’s program that allows
event generation when a tracked observable occurrence takes place

• Event store to record events
• Event analysis engine that analyses incoming event data to determine whether an

attack is taking place, based on a specified policy (of detection point activity and
related time-dependent thresholds)

• Event manager that monitors the event analysis engine for any appropriate
response actions to execute

• Responses taken as the result of attack recognition
• Reporting client for presentation of data stored in the event analysis engine.

The detection points generally need to be located within the application code base, and
where there are existing modules performing centralized input valid and output validation,
this can reduce the impact of additional code. In certain cases there may be sufficient event

Part III : Making It Happen

48

information in application logs, and those could be used for attack determination by an
event analysis engine. But the use of existing logs alone is unusual and if the granularity of
event information is so good, the detection points probably already exist.

Attack determination logic will need to be developed. This would typically be in local code,
using a standalone service engine or using some form of events and log management
system such as for Security Information Event Management (SIEM), threat information
store, other continuous monitoring systems, or fraud detection systems. If source code is
not available or cannot be changed, consider whether application logs can be used as a
source of event data – but these are not normally adequate. Otherwise consideration could
be given to externalizing the detection to a proxy (e.g. a proxy such as a web application
firewall, filter or guard). For more inspiration see the example implementations in Part IV :
Demonstration Implementations.

When an application is deployed using multiple hosts and there is a centralized analysis
engine, consideration about how events from multiple hosts are aggregated, correlated and
analyzed.

Where necessary, integration with other systems must be considered as early as possible.
These may include:

• Network firewalls and used for blocking response actions
• Intermediate network points (e.g. local stations, aggregators, collectors, proxies,

traffic and load balancers)
• Application firewalls as detection points and/or response actions
• Electronic mail and other messaging systems for alerts
• Systems providing information as reputational detection points
• Related applications as detection points
• Security vulnerability information, reporting, virtual patching78,79 and related

management systems
• Other operational logging, monitoring and management information systems.

For inter-system communication, ensure there is adequate system identification assurance
and that sufficient protection exists for the confidentiality and integrity of messages.

Detection point selection

A full list of example detection points is included in Table 32 in Part VI : Reference - Detection
Points - Listing. At first consider implementing just 5-10 detection points for most
applications. In many cases a “single” detection point could actually monitor many different
URLs (e.g. input validation exception in a centralized module that checks every parameter
name and value). In other cases a single generic type of detection point may need to have
multiple specific instances (e.g. validating the output of database queries).

Chapter 14 : Design and Implementation

49

The six best detection point types

Detection points for the following six types of event are considered to be very good attack
identifiers and should be considered first:

• Authorization failures (e.g. resource or action requested with insufficient privileges)
• Client-side input validation bypass (e.g. data format mismatch or missing

mandatory values)
• Whitelist input validation failures (e.g. invalid data type or data length/range)
• Authentication failures (e.g. password change failures, re-authentication failure)
• Blatant code injection attack (e.g. common SQL injection strings)
• High rate of function use (e.g. requests/pages/views/windows per 5 minutes).

Part II : Illustrative Case Studies provides additional inspiration for detection points. Many
additional ideas for detection point selection are provided in Chapter 16 : Advanced Detection
Points.

Document the aims and requirements of each detection point selected, like any other
software requirement.

Thresholds and responses

If possible, begin implementation of AppSensor in areas of the application where users are
already authenticated such as customers, clients, colleagues or citizens. By default, use the
following attack detection thresholds:

• 3 events due by any detection points activated by a single user in a 24 hour period
• 6 events due by any detection points activated by a single user in a 4 hour period

And, initially perhaps only consider the following responses:

• Account log out
• Account lock out for a fixed time period
• Administrator notification

The thresholds and actions can then be combined. For example:

• If any 3 detection points are activated in 24 hours, create a support event ticket and
send an email alert to operations team

• If any 6 detection point are activated in 4 hours, log the user out and lock the
account for 2 hours

Part III : Making It Happen

50

To begin with operate only with alert responses until the number of such situations
becomes known and confirmed that it does not affect any normal application usage.

Part II : Illustrative Case Studies shows other thresholds and responses. Many additional ideas
and considerations are provided in Chapter 17 : Advanced Thresholds, where the use of existing
application functionality for responses is also discussed.

Planning for operation

In whatever way the threshold and response selection are implemented, ensure they can be
easily customized through future configuration changes rather than code modification.
Example alterations that should be allowed for are:

• Amending an existing attack detection threshold (e.g. the number of events and/or
the time period)

• Amending the response action of an existing threshold (e.g. to another one or
more supported actions)

• Adding new thresholds across single, all or any group of detection points (e.g. any
N events across detection points A and B only in period P)

• Deleting an attack detection threshold.

It may also be necessary to clear or reset all event data. Some broader questions to consider
when considering the implementation are:

• Should there be an option to overrule all responses so that they log only?
• Could this "log only" option for certain source locations (e.g. an IP address) which

applies to only certain strongly authenticated users and is of limited time duration,
raises administrative alerts when set, removed or expires, and includes a process for
management approval?

• Can AppSensor data be exported into risk management and vulnerability
management systems?

• Can AppSensor data be exported in real time to security integration manager (SIM)
systems?

An AppSensor implementation that detects attacks in real time is likely to cause significant
difficulties for functional and security testing. The “log only” concept mentioned above
could be utilized for these situations. Further considerations are discussed in the advanced
discussions in Chapter 16 : Advanced Detection Points and Chapter 17 : Advanced Thresholds.

Implementation

Altering existing code always introduces risks, and future maintainability must be
considered. Where possible build for an extensible architecture so that the minimum
amount of effort is used for changes to other applications or during the design and

Chapter 14 : Design and Implementation

51

implementation of AppSensor for new applications. Consider if a service-orientated
approach can be designed, such as illustrated in the example implementation described in
Chapter 20 : Web Services (AppSensor WS).

The implementation is always application, framework, language, deployment and
architecture specific. The detection points are usually highly integrated within the
application, but the event store, event analysis engine, attack detection and response
selection may be less so. The types of response actions chosen may mean changes to the
application code unless they are all externalized (e.g. to network devices).

For all code modifications, ensure these follow the same software development life cycle
practices as other application code, including secure coding practices. In particular, assume
tuning of all settings and thresholds will be required. Develop test cases or unit tests for
each detection point, threshold activation and response.

For outsourced development, identify who owns code and any intellectual property.

Threshold and response selection configuration settings must have sufficient protection to
prevent them being modified by the application itself or by unauthorized users. Consider
restricting knowledge about the precise detection points and configuration.

Part III : Making It Happen

52

Chapter 15 : Verification, Deployment and Operation

Introduction

This chapter looks at the key steps for a successful deployment of AppSensor to a
production environment.

Verification

Like for all software development, ensure AppSensor's correct implementation is verified
(the correct detection points are activated, event data are recorded, attack detection occurs
as planned and the correct responses take place) through the use of testing processes in
development, in QA, at deployment, at launch and periodically thereafter. Unit tests should
have been created during the specification or design stages, but a mixture of approaches is
recommended:

• Unit tests written for the AppSensor functionality
• Using example attacks
• Running an application security scanner against the application
• Mimicking the behavior of desirable search engine robots.

Any settings that can be used to change or override AppSensor behavior (e.g. to set all
actions to “log only”) must also be tested.

It is also useful to have AppSensor enabled during usability testing so that any concerns
about the impact on normal application usage can be addressed, and evidence gathered to
document these concerns to be unwarranted.

Do not attempt to verify AppSensor by testing the implementation with known one-shot
attacks (e.g. exploits of known weaknesses). Fix the issue instead, or otherwise mitigate it.
AppSensor does not protect vulnerable applications. Its purpose is not to detect every
attack possible, but only to detect enough to identify a user as an attacker, and then
respond in an appropriate manner.

Deployment

Utilize existing change control processes for deployment. Build in time to allow tuning of
the system, especially to configure response thresholds.

AppSensor event timestamps must be synchronized with trusted time sources to allow
cross-system event correlation and to support incident investigations.

Additional defenses in production environments may change or could mask information
that would be identified as malicious events by the AppSensor detection points. Therefore,

Chapter 15 : Verification, Deployment and Operation

53

re-run verification checks to ensure the deployed application responds in the same manner
as in non-production systems.

Operation

Logging, signaling, monitoring and reporting

Where possible event and attack data should be incorporated into centralized logging and
monitoring systems. These data can complement other event logging information from
network and host devices.

It is recommended that standards-consistent logging formats are utilized whenever
possible. But where nothing exists, or application-specific logs are required, AppSensor has
defined the following formats for logging:

• Events

Attacks and responses may be defined in the future. The syntaxes are enumerated in Part
VI : Reference - File Data Logging Format. See also Part III : Making It Happen - Chapter 18 :
AppSensor and Application Event Logging.

Signaling may also be required to forward event, attack and response data to other devices
such as network firewalls, application firewalls, traffic management devices, and other
business systems including management reporting, CRM and correlation engines (e.g. fraud
management). Furthermore signaling of information can be used to share attacker data
within industry exchanges, or with regulators, or open Computer Emergency
Response/Readiness Teams (CERTs).

The data format suitable for signaling is context-specific but for compatibility could use
industry and government formats such as one of the following.

• Common event format (CEF)80
• The XML schema Incident Object Description Exchange Format (IODEF)81 and

email format X-ARF (Extended Abuse Reporting Format)82 for sharing computer
security incident information by Computer Security Incident Response Teams
(CSIRTs)

• Structured Threat Information eXpression (STIX)83 for cyber threat intelligence
information, sponsored by the office of Cybersecurity and Communications at the
U.S. Department of Homeland Security

• The schema Cyber Observable eXpression (CybOX)84 for the specification,
capture, characterization, and communication of events or stateful properties that
occur in the operational cyber domain, also sponsored by the office of
Cybersecurity and Communications at the U.S. Department of Homeland Security

Part III : Making It Happen

54

• Industry-specific standards (e.g. ANSI C12.2285 message services for smart grids,
Automated Copyright Notice System86 for copyright infringement notices)

• Vendor-specific standards (e.g. Vocabulary for Event Recording and Incident
Sharing87 common language for describing security incidents).

The protocol/format selected should be compatible with an organization’s own standards
and the receiving systems, or allow automated conversion using a filter into such a format.
Consideration must be given to the adequate identification of event and attack data sources,
and to prevent modification, interception, deletion and replay of data. The sensitivity of
data included in the signaled information should also be considered to determine the
necessary measures to prevent unauthorized access while in transit and at rest.

Organizations that deploy AppSensor-like capabilities are encouraged to tag event data with
the example detection point and response types, so that data has greater future inter-
operability.

AppSensor has defined the following formats for signaling:

• Events:
o JSON – AppSensor Event Format (AEF)
o AppSensor event data using Common Event Format (CEF)

Attacks and responses may be defined in the future. The syntaxes are enumerated in Part
VI : Reference - Signaling Data Exchange Formats..

AppSensor event and attack data should arise infrequently in a well-designed and properly
verified implementation. Thus the requirements for logging, monitoring and reporting on
these data may be different than other sources of security event data:

• Usage by normal users should not generate any event data
• Attack event data has a very degree of high confidence

Consequently there is no need to examine large quantities of data to identify attacks. This
alters the requirements for reports and visual dashboards. Combining AppSensor data with
other noisier source may mask important information. However, combining data provides a
wider view of all types of attack (network, host and application).

Dashboards

By its nature, the high-confidence attack data and application insight available using
AppSensor tends to be a different from many other types of security event data. A pure
AppSensor-only dashboard for a single application ought to look like the mock-up shown

Chapter 15 : Verification, Deployment and Operation

55

in Figure 4 below i.e. empty. This is because the actions of normal users, even non-malicious
users making mistakes, should not usually be AppSensor events.

Figure 5 illustrates how specific an AppSensor attack determination event should be. And
Figure 6 shows how data could be shared with other applications such as a CRM in real
time.

Part III : Making It Happen

56

Figure 4 AN IMAGINARY APPSENSOR DASHBOARD UNDER NORMAL OPERATIONAL CONDITIONS I.E. BLANK

Figure 5 THE IMAGINARY APPSENSOR DASHBOARD WHEN A USER IS IDENTIFIED AS AN ATTACKER

Figure 6 THE IMAGINARY APPSENSOR DASHBOARD DEMONSTRATING WHAT ELSE APPSENSOR COULD DO

Chapter 15 : Verification, Deployment and Operation

57

These present very clear information and no drill down is required. Actions have already
been undertaken automatically to the defined policy. Of course, some ability to view
multiple and past events is needed. This is quite different to the usual view of security event
dashboards, where large volumes of data need to be aggregated, collated, analyzed and
presented in an understandable manner.

However, AppSensor dashboards can be created using the functionality built into popular
security event management tools and log visualization tools like Logstash with Kibana,
OSSEC with Analogi, Loggly, Solar Winds and Splunk. Most products classified as Security
(Incident) Event Management (SIEM) systems are also capable of consuming AppSensor
event and attack data when suitably formatted and sent. See Part V : Model Dashboards -
Chapter 27 : Security Event Management Tools for some examples. But as mentioned above, it
may be necessary to segregate AppSensor data from the noise of other less-specific event
data. Some organizations use AppSensor data primarily to enhance the analysis of other
security event data.

Application-specific dashboards rendering AppSensor data have already been created and
demonstrated. Furthermore, where event and attack data are being gathered primarily using
the ModSecurity web application firewall, or that format has been used to log such data
elsewhere, the jwall.org Audit Console88 or WAF-FLE89 could be used. For ideas about
using these, see Part V : Model Dashboards - Chapter 28 : Application-Specific Dashboards.

Bug, defect and vulnerability tracking systems can also be used to expose knowledge from
AppSensor data. See Part V : Model Dashboards - Chapter 29 : Application Vulnerability Tracking
for further ideas.

Operational tuning

Attack detection thresholds and responses will need to be amended during operation. This
may be due to selecting incorrect values during planning, or due to unknown information
related to the application and its users, or due to changes in the application’s functionality
or usage over time. See the advanced discussions in Chapter 16 : Advanced Detection Points -
Optimization and Chapter 17 : Advanced Thresholds and Responses - Threshold tuning.

The work to ensure the thresholds and response configuration can be configured separately
from the code will be vital here. All changes must of cause go through relevant risk
assessment and change management processes to ensure they do not have an adverse effect
on normal users, the security of the application and its data, any compliance or other
business mandates. Where possible, real application usage should also be replayed through
test systems to assess the changes. Even with complete regression testing of an application,
it is still advisable to allow new and updated AppSensor detection points to only use non-
disruptive responses initially (e.g. logging changes, alerting administrators), or consider only
applying them to a subset of users to confirm the dynamics in production systems.

Part III : Making It Happen

58

Review, change control and remodeling

There should be a periodic review of the AppSensor implementation to ensure it is
operating correctly. Consideration of AppSensor should be built into change management
practices so that software releases do not adversely impact upon AppSensor and that
opportunities for additional detection points can be considered.

Control validation

Periodically run AppSensor unit tests against the production environment to ensure the
defensive measures are in place, working as expected and that event information flows
through to the appropriate operational and management reports.

Incident management

Consider how event and attack data from AppSensor should be incorporated into
centralized incident identification and management processes, and update the incident
response plan to take into account the automatic actions undertaken by AppSensor. Build
AppSensor-sourced events into incident response plan scenarios and tests.

When application security incidents occur, consideration should always be given to how the
root cause could have been prevented or the “kill chain” broken. The first reaction should
not be to alter AppSensor detection points, thresholds and responses to match a particular
attack. It is certainly valid to consider how the incident circumvented all controls, and
whether the attacker could have been detected sooner, but the root cause is usually related
to activities earlier in the SDLC.

Chapter 16 : Advanced Detection Points

59

Chapter 16 : Advanced Detection Points

Introduction

This chapter examines a more formal approach to the selection and definition of detection
points.

Approach

In more advanced AppSensor implementations, the aim should also be for simplicity, not
complexity. It is important not to be overwhelmed by the many choices available; the ideas
in Part II : Illustrative Case Studies show how detections points can be used in practical
implementations.

Additional code increases complexity. However if an existing application has already been
developed with security built in, obvious locations for detection points are likely to already
exist (e.g. input validation, exception handing, logging) and similarly some local response
actions may already be being used (e.g. reject the input, ask the user to re-enter text, log the
user out, etc).

At first, consider the detection requirements to create an initial model, and then look at
how to optimize this model and check it using attack analysis before considering the
response actions in Chapter 17 : Advanced Thresholds and Responses.

The analysis is suitable both for consideration during procurement, as well as development
processes. Outsourced development and services could be asked to implement AppSensor
and provide access to the event data.

Inspirational detection points

Many standard example detection points have been documented. The detection point IDs
and titles are summarized in Table 32 in Part VI : Reference - Detection Points - Listing. They are
also arranged there in various categorizations.

Each example detection point type is described in more detail in the subsequent tables.
Some of the terminology, considerations and examples tend to be web application biased
due to the significant proportion of software applications that are now delivered in this
manner. However, the approaches can be used in many other sorts of architectures and
technologies, and just need to be viewed in an alternative manner.

The reputation detection points could be treated in one of two ways.

• Like any other detection point contributing to the count of suspicious events
• Used to alter threshold levels, or associated response actions such as logging level.

Part III : Making It Happen

60

The former should be used with caution since they could lead to event data collection
where the confidence in knowing these are attack events is reduced.

Detection point requirements

Given the strategic requirements such as a policy and architectural approach (discussed
previously), the scope of the application(s) must be understood. Existing applications
should have documentation relating to their structure and functionality; these may be some
of the artifacts produced during design and/or risk assessment processes. Where possible
ensure the following are known:

• The different roles users fall into, and how these are allocated
• All the valid application entry points (e.g. for desktop applications all user interface

controls, for web applications whether POST and/or GET should be used and
whether SSL/TLS is mandatory, optional or prohibited)

• Which of the entry points change state
• Which users/roles have access to these entry points
• The broad functionality blocks and trust boundaries (e.g. data flow diagrams)
• The various inputs for each entry point (form, URL query string and path

parameters, HTTP headers including cookies), and their data types and acceptable
values

• Which of the inputs may be manipulated by users and whether the interface for
doing that is constrained (e.g. radio buttons and select elements) and whether there
is any client-side validation for any of the elements

• Whether there is functionality relating to authentication and session management.

Additionally, access to source code of an existing application can aid detection point
selection and positioning, since there will be greater knowledge about data flow and security
mechanisms that already exist.

Firstly it is necessary to identify possible (candidate) detection points. The candidate
detection points can be selected using application risk classification, threat assessment (e.g.
attack surface modeling, threat analysis, misuse/abuse cases, common attack patterns) or
combinations of these.

A broad-brush approach to select candidate detection points is to base it solely on the
category types most appropriate for various application risk ratings. For example: “All Class
X applications will have whitelist input validation detection points”. Risk is organization
dependent and may change as threats alter. However, this type of approach is not
recommended until a number of applications have been "instrumented" so that the
organization has sufficient experience, and has been able to adjust the detection points to
match its own risk needs. The knowledge can then be applied to target other applications in
the organization’s portfolio with a similar risk profile. It is a good way to extend a tried and
tested approach.

Chapter 16 : Advanced Detection Points

61

The actual threats, possible vulnerabilities and the potential impacts can also be used to
select candidate detection points. Remember it is not always the best approach to use
AppSensor to detect individual specific attacks - keep in mind the need to look for clearly
malicious general behavior (before an actual vulnerability is discovered and an exploit
created). In an earlier implementation guide90 there is a multi-part chart cross-referencing
the detection points with two well-known classifications:

• Web Application Security Consortium (WASC) Threat Classification91
o Attacks
o Weaknesses

• OWASP Top Ten 2010 - The Ten Most Critical Web Application Security Risks.

These can be used with individual application threat assessments and other forms of risk
analysis to identify candidate detection points from the standard examples. Consideration
should also be given to additional custom detection points for specific business logic
threats that have been identified. The OWASP Cornucopia92 card game has cross-
references between application security requirements and AppSensor detection points.

Model creation

Once there is a list of candidate detection points, they should be specified further to define:

• Purpose
• General statement of its functionality
• Details of any prerequisites
• Related detection points.

The examples and considerations in the schedule of example detection points (Part VI :
Reference) can be used as a guide here. Each application may require multiple versions of the
same detection point e.g. IE3 whitelist validation of parameter names, IE3 whitelist
validation of IP addresses, etc.

For each point begin a specification sheet like the examples in Figure 34 and Figure 35 in Part
VI : Reference - Detection Points - Detection point specification sheets. These should identify the
AppSensor identity code and the more specific purpose for the particular application.

The "Series" number in the figures will be used as the starting point numbering for
sequential numbering of each detection point instance e.g. IE1-1001, IE1-1002, etc. It is
possible to have identical AppSensor detection point identity codes (e.g. IE1) but with
different purposes (e.g. the whitelist is source IP addresses rather than parameter values)
and those should have a different series numbering e.g. 1000, 2000, etc. Where data will be
aggregated by some other system, rather than just locally, it will be necessary to differentiate
the event sources, and some form of identity standard should be considered. The

Part III : Making It Happen

62

shorthand might be IE1-1012, but the full identity might include the host, application name
as well. For example, “WEB05-WEBSHOP-IE1-1012”.

At this stage, these specification sheets should be independent of where the detection
points will be located, and should not include any consideration of response actions.

Aggregating detection points need slightly different specification. The trend and
comparison period for each detection point must also be identified. For example these
might include both technical and business tests:

• 5 different usernames tried in 30 minutes (AE1)
• The source location changes to any other continent (SE5)
• Number of orders placed in 1 hour (UT1)
• Number of logouts in 5 minutes (STE1)
• Number of new site registrations in 15 minutes (STE3)
• Number of shopping carts abandoned in 1 hour (STE3).

Once the draft specification sheets are complete, it can be useful to also create a high-level
overview of the application showing the main processing blocks/functionality perhaps in
the style of a data flow diagram. Then, using a list of the site's functionality and/or different
usage scenarios together with the specification sheets, mark up the approximate positions
of the various detection points identified. Many usage scenarios will have very similar data
flows and can be grouped together.

Identify other systems the application exchanges data with and optionally include an
indication of known trust boundaries. Examine the charts and look for additional detection
point requirements. For example, consider input validation and the number of returned
records (CIE2).

These should begin to show how it makes sense to undertake the discrete generic pre-
processing detection points in centralized functionality since it will be common to almost
all requests. The discrete business layer detection points will be associated with particular
application functions.

Create a summary sheet that defines the proposed detection point locations for each type
such as the examples in Figure 36 and Figure 37. In these, whitelist input validation (a
discrete business layer detection point) may occur in very many locations in the application
code, and discrete generic pre-processing detection points are likely to exist in very much
fewer, and possibly a single, locations. The content of these schedules is entirely dependent
on what is necessary for the particular organization, and in some cases not everything will
be finalized at this stage.

Chapter 16 : Advanced Detection Points

63

This is the initial AppSensor model for an application, comprising the specification sheets
and optional diagrams.

Optimization

The candidate detection points should now have initial specifications. It is necessary to
make sure the purposes and descriptions created perform correctly. Beginning with the
specification sheets and data flow diagrams, optimize the detection point model in three
ways:

• To maintain a high confidence in attack identification through adjusting the
sensitivity

• To consider relationships with other systems and the effects these may have on
detection points

• To determine if any detection points can be removed to eliminate overlaps and
duplicates.

High confidence in attack identification

During this stage, consider what could go wrong with input data. Ensure that the detection
points are tuned to detect malicious behavior and not just user errors – some could be
specified in a way that leads to events occurring due to normal behavior. In Figure 1 the
range of user behavior was used to illustrate that malicious attacks are different to normal
application use. Figure 7 below shows how this approach can be applied to individual input
values where the type and format of an acceptable value may have some tolerance between
what is acceptable and what is unacceptable:

Figure 7 THE SPECTRUM OF APPLICATION ACCEPTABLE USAGE ILLUSTRATING HOW NORMAL USE REQUIRES INPUT
VALIDATION TO CATER FOR A RANGE OF USER-PROVIDED INPUT

Some "invalid" user data examples are shown in Figure 8 on the following page. Users may
copy and paste information into form fields, or put the data in the wrong field, or use an
unexpected format such as when entering a phone number. Applications should allow
some degree of variation in user behavior and thus allow for normal user error.

It is necessary to check the proposed detection points will not inadvertently flag what might
be normal behavior as an attack. For each detection point, examine possible scenarios

Part III : Making It Happen

64

where the detection point might be fired by normal, or non-malicious use. This will help
tune the system helping us choose appropriate response actions (later). For each detection
point consider:

• Automated non-malicious systems (e.g. web crawlers)
• Human error (misunderstanding, typographical)
• Input device errors (e.g. conversion of voice to text, truncation of a URL in a link

sent by email)
• Specificity of error threshold (e.g. space, hyphen and parentheses characters in a

telephone number, past/future application changes (e.g. old URLs, changes to
forms)

• Network configuration and architecture.

For example, an application's entry points are well defined and a detection point is chosen
to be activated when a request is made for any other URL (e.g. force browsing, URL
whitelisting). The application may be able to monitor HTTP “not found” (response status
code 404) errors and other invalid URLs using an internal module or it could consume such
data from another device (e.g. web server logs or a web application firewall) if this can be
done in real time. But a public web application is is likely to receive a large number of non-
malicious 404s and these will not normally be attacks. The ability for AppSensor to
maintain a high degree of confidence in attack identification in this example this depends
upon the way the detection point and response are specified.

Another example would be an invalid ID parameter. If the options are provided to the user
in a constrained interface element like a form select element, it is more suspicious than if
there are some unexpected characters in a form text element.

Figure 8 THE SPECTRUM OF APPLICATION ACCEPTABLE USAGE SHOWING HOW SOME UNACCEPTABLE DATA INPUT ARE
MUCH MORE LIKELY TO INDICATE A MALICIOUS USER

Some examples for detection points which could be susceptible to these types of sensitivity
problems are expanded upon in Part VI : Reference - Detailed descriptions of detection points.
Consider these in the target application(s) and the way in which the input aspect (URL,
headers, parameter name or value) might conceivably be provided by the user.

Chapter 16 : Advanced Detection Points

65

The actual context is also important. If a data entry form has some presentation-layer
(client-side) validation in addition to equivalent matching server-side validation, and the
submitted data includes problems which the presentation-layer validation should have
caught, the acceptability of the inputs may be different. If there is also type and format and
lengthy validation on the client side, the above diagram changes considerably as shown in
Figure 9.

Figure 9 THE SPECTRUM OF APPLICATION ACCEPTABLE USAGE SHOWING HOW APPLICATION-SPECIFIC KNOWLEDGE
INCREASES THE ABILITY TO DIFFERENTIATE BETWEEN NORMAL AND MALICIOUS INPUT

Relationships with other systems

Similarly, if a request or data are received from a trusted information system, the standard
of tests to validate the data could be stricter. XML data which has been validated by an
XML Firewall should be of higher quality, and less prone to human errors, than that in an
RSS feed pulled directly from another website. Do not trust either source completely, but
consider the seriousness of a detection point being activated from a more reliable source.

Therefore consider the original source of data being processed. Was it user-generated
content, or was it retrieved from a reliable source; if the latter what verification has already
been performed? This analysis may lead to the creation of additional detection point
instances of the same detection point identity code, but they have different requirements
and are used on different types of input.

Overlaps and duplicates

Finally, it is necessary to remove any duplication of effort - using the same detection point
more than once on the same input or using another detection point which does not add any
further value.

This process is undertaken by examining the model to check that detection points with the
same functionality are not being repeatedly called on the same data. Note that the same
detection points may correctly occur many times within the processing of a request such as
when each parameter value is checked against a whitelist.

Part III : Making It Happen

66

It is also possible that some detection points have been specified in a manner which negates
the need for others. Check whether a very specific detection point is already tested in a less
specific detection point. For example if AE10 (adding additional POST variables) is
proposed for the application's authentication module and broad request validation includes
RE5 (additional/duplicated data in request) it may be possible that AE10 is not adding any
further detection. Provided these are given identical priority, there is no need for both, or
the RE5 could be modified to capture the functional area or purpose, which might them be
used to affect the response action. But note it may still be useful to record that the action
was the more specific AE10 (as well as RE5), and another option would be to alter the
specification for RE5 so it can activate AE10 type events at the same time, if it knows it is
an authentication request.

Figure 33 (in Part VI : Reference - Detection Points - Related types) uses link arrows to show
possible inter-relationships between detection points. Depending upon how the detection
points have been specified, the source of a link arrow might be a more generic version of
the destination of the link arrow. This does not mean the source necessarily caters for all
possibilities, but can be useful in avoiding duplication. But check that removing a detection
point does not mean that an aspect is left uncovered in another attack. Then update the
specifications and charts with any changes required.

Next create test cases for requests that should activate the detection points. Try to create
separate tests for each detection point, and this may mean hundreds of test cases since they
will include at least one for every parameter submitted in requests.

Lastly, review application design/functionality that changes the flow through code and
especially any blocking actions (e.g. redirects, session termination, custom error page
display). Check whether any of these circumvent or prevent detection points from being
activated. For example the application might already lock an account for 20 minutes after
three invalid passwords are provided in a 24hr period but AE2 (multiple failed passwords)
may have been specified requiring a different number.

Attack analysis

The last stage recommended for detection point selection is to undertake an attack analysis.
Although this step can be bypassed, it is useful to work through what will happen in real
attack situations. Select attacks that have been identified from threat assessments, or if this
is not available consider those from, for example:

• Common Attack Pattern Enumeration and Classification (CAPEC)68
• WASC Threat Classification v2.091
• Studies of attack methods69,92,93,94,95,96,97.

Chapter 16 : Advanced Detection Points

67

Use both likely attacks identified during risk assessments as well as feasible but much less
likely attacks. Remember, AppSensor is concerned with identifying and stopping attacks
against unknown vulnerabilities such as:

• SQL injection point introduced during a change to the application which was
missed due to insufficient testing

• Zero day vulnerability in a code library used by the application.

For each attack, consider a range of valid and invalid application entry points, and check
the model through using the real attacks. Examine all the detection points which might be
activated, ignoring for the moment what their response may be. List all the detection points
for each attack scenario and determine whether these are reasonable, and provide sufficient
coverage. Then consider if it is possible for human or transmission errors to generate the
same situation. If so, reassess the detection points proposed.

If necessary, re-iterate through detection point selection steps to finalize the selection of
detection points. This process creates the following artifacts:

• Detection point specifications
• Schedule of detection point locations
• Test cases.

The attack detection thresholds and responses can now be defined.

Part III : Making It Happen

68

Chapter 17 : Advanced Thresholds and Responses

Introduction

This chapter presents additional detail on defining attack determination thresholds and
choosing responses appropriate to the business and the application users.

Approach

In AppSensor a response is an action taken as the result of attack recognition i.e. a change
in application behavior; it is not any form of retaliation. The response aims to defend the
application, its users and everyone's data:

• Organization data (e.g. business data, intellectual property, source code)
• User data (sometimes including PII/personal data)
• Data belonging to other parties (e.g. suppliers, customers, clients, partners).

Having defined a policy (see Chapter 14 : Design and Implementation), this should include a
small number of high-level rules, and the type of acceptable response actions will already be
largely defined.

Conventional defenses vs. AppSensor defenses

Traditional defensive mechanisms are often much more limited in the types of automated
response actions possible. They might only include simple allow or deny:

• No change (e.g. continue logging/monitoring)
• Process terminated (e.g. reset connection).

The capabilities of AppSensor are potentially much wider – whatever the application does
or could be coded to do. A full spectrum of responses might very feasibly include:

• No change (same as traditional defenses)
• Logging increased
• Administrator notification
• Other notification (e.g. other system)
• Proxy
• User status change
• User notification
• Timing change
• Process terminated (same as traditional defenses)
• Function amended

Chapter 17 : Advanced Thresholds and Responses

69

• Function disabled
• Account log out
• Account lock out
• Application disabled
• Collect data from user.

Additionally, since an application has knowledge about the user’s roles and permissions, it
is entirely possible to define response actions that target individual users, groups of users or
all users. There could even be multiple tiers of response, dependent upon the user's actions
over periods of time.

AppSensor can be used flexibly and does not need to do everything itself. Response actions
could be undertaken by:

• Application itself
• Another system (e.g. application firewall, network firewall, another application).

While the process is primarily interested in real-time responses, the (actual or planned)
capabilities of the application and related system components should be considered first. It
may be possible to leverage these existing capabilities, or extend them, to provide the
selected response actions.

The recommended approach is to consider the general countermeasures required, rather
than the specifics for each detection point. Threshold definition (later) can link multiple
detection points with multiple response actions.

Built-in potential

Many applications already have discrete (unconnected) security control responses built in.
This might include functionality such as:

• Terminating a request when blacklisted inputs are received
• Fraud detection
• Adding time delays to each successive failed authentication attempt
• Locking a user account after a number of failed authentication attempts
• Application honey pot functionality
• Logging a user out when they utilize the browser's “back” button
• Terminating a session if a user's geo-location changes
• Blocking access by certain IP addresses when malicious behavior is detected
• Recording unexpected actions.

Part III : Making It Happen

70

But these are usually implemented as isolated processes and some may be undertaken
reactively to events, or using post transaction processes, or performed largely in a manual
way. AppSensor needs to focus and formalize these approaches.

The above functionality might be able to be used, or converted into modules which a
centralized analysis engine could call to invoke response. Therefore, do try to identify the
following capabilities in functional specifications and deployed code:

• Application logging (e.g. security events, audit trails)
• Changes to logging level
• Alerting (e.g. email, SMS)
• User messages
• User logout
• Account lockout
• Redirects (web).

Other things like disabling individual functions or disabling the whole application are much
less likely to exist.

Inspirational responses

Table 47 in (Part VI : Reference - Responses) lists examples of some common AppSensor
responses categorized by their effect on the user i.e. from the user's viewpoint. These range
from responses which are transparent from the user's point of view, to passive, and then to
more disruptive active responses, and ultimately intrusive.

The subsequent Table 48 categorizes these by their general purpose (logging, notifying,
disrupting, blocking). It also shows the broad purposes, whether the target of the response
affects a single user or all users and the duration of the action. The full definitions are
maintained on the OWASP website98, and are reproduced in the Responses section of Part VI
: Reference.

Many other actions can be mapped to one of the example responses listed, but there may
be other special types of action a particular application, or related system, can perform.

Attack identification threshold definition

Initially exclude the consideration of detection points in the modifying class, since these are
normally used to adjust default thresholds and actions. Thresholds need to be set for how
many events are allowed to be created before an attack event is confirmed and the
predefined response is made. There are other considerations for thresholds, discussed
below, and in practice a mix of threshold settings will usually be required.

Chapter 17 : Advanced Thresholds and Responses

71

For initial implementations, such as for a pilot, simply set an overall threshold for a count
of all detection point events over a time period. It is also possible to set thresholds for
individual responses for single or groups of detection points.

Threshold period

Any threshold of more than “1” only has meaning over a certain time period. For example
with a threshold of “3” events, if a user performs three suspicious actions in a short period
of time, this might be significant and a response undertaken. But if these three actions
occur over the course of several days, it may be considered a much lower risk.

Therefore for each threshold greater than “1”, define the period. For user-specific
detection points (as opposed to application-wide “all user” ones), normally use “previous
24 hours” as the threshold period. Beware of using terms like “today” or “this week” in
threshold definitions because events just before the period rollover (e.g. just prior
midnight) might not be counted against the threshold. The time period over which each
threshold applies needs to be long enough to cater for slow attacks, but will need to be
selected with consideration of any active responses that have time factors such as lockout
period.

Note that it may make sense to use other time periods in each application. If a threshold
period is tied to session length, a log out response (if used) will reset the period. Also
consider how/when session-related data are stored and cleared in the application.

Tiered responses

Some AppSensor implementations set a number of different response actions to occur,
even for a single detection point activation. For example, it might make sense to display a
warning message to the user each time this occurs (i.e. at “1 event”) and log them out the
fifth time it occurs (e.g. at “5 events over the last 14 days”).

Overall user threshold (“One user”)

If a user activates many different detection points, it might be they do not trigger any
individual detection point threshold (assuming they are all greater than “1”). Consider
setting another threshold (more than 1) for all cumulative detection point activations for
each user. For example “Any 12 events over the last 24 hours”.

Fuzzed responses

Some attackers may try to avoid attack detection capabilities built into applications. This
may not be an issue if the detection points provide sufficient coverage, but another
approach is to introduce some degree of randomness into the response selection so an
attacker cannot necessarily determine whether they have been detected.

Part III : Making It Happen

72

Beware of complexity

The following discussion mentions many possibilities and considerations. Overly complex
response rules and interactions are:

• Difficult to understand
• Cause unforeseen side-effects
• Can lead to bypass situations.

Response threshold definition defined on a per detection point basis, or detection point
type basis, allows for more fine-grained tuning.

Thresholds for aggregating detection points

Some detection points require multiple user interactions to occur before they can be
activated, such as:

• Use of Multiple Usernames (AE1)
• Multiple Failed Passwords (AE2)
• Detect Large Number of File Uploads (FIO2)
• Speed of Application Use (UT2)
• High Number of Logouts Across the Site (STE1)
• etc.

These were referred to as “aggregating” detection points previously. These should all have a
response threshold of “1”, but within the detection point itself some view needs to be
taken of what “multiple”, “large number”, “speed”, “high number”, etc mean – and over
what sampling periods.

Unless the application has only a few users, system trend detection points monitoring “all
users” (e.g. STE1, STE2, STE3) are usually best defined with percentage changes over a
particular time period (e.g. “200% increase over one hour”). Such trend monitoring will not
be useful without an automated response, as the value of this monitoring is in actively
identifying and stopping an attack. It will be necessary to collect usage data over a period of
time before setting the thresholds, and the thresholds may need to change as use of the
application varies due to interest, time of day, seasons and external events.

Thresholds for user event and user trend detection points

It is important to separate the application's own responses from those of AppSensor. An
application may lock accounts due to multiple failed authentication attempts or it might
block requests using a disallowed HTTP method. But AppSensor still needs to record and
monitor these to undertake responses in addition to the application's normal behavior.

Chapter 17 : Advanced Thresholds and Responses

73

Two approaches need to be considered:

• Whether the responses are dependent upon user role (e.g. authenticated versus
unauthenticated)

• Whether responses are set on a per-detection point basis, or a per application basis.

The high-level rules should provide guidance on the first of these. If AppSensor is only
implemented for the authenticated part of an application, or there is only one role, this
question needs no further consideration. Applying different thresholds to different roles
does create additional complexity, and some detection points and responses may not be
valid for certain roles (e.g. authentication and session management exception types).

Further to the previous discussion, consider using the rule that three suspicious events is
equivalent to a single attack event. This weighting could be altered for each detection point,
rather than just on suspicious versus attack, but the recommendation is not to alter
weightings and instead alter thresholds (number and period) only.

It may be undesirable to repeatedly count identical events over time. Some example could
be:

• Multiple use of the same wrong password for a single account name
• Repeated reload of the same web page with exactly the same invalid data.

Each detection point will have its own threshold of a small number of security events
before a response action is taken. Then also consider the total number of security events
generated by all detection points – the latter should normally all be set with the same period
e.g. one day. Sample individual and overall thresholds are shown in Table 15 and Table 16
below.

Table 15 EXAMPLE THRESHOLDS AND RESPONSES FOR INDIVIDUAL PER USER DETECTION POINTS

Detection Point Role Threshold Period Response Response Code

RE1-001 Authenticated 2 1 hour Request terminated + Account
lockout 30 minutes

ASR-G, ASR-K
Public 5 1 day

RE6-102 Authenticated 10 5 minutes Security violation message +
Account logout

ASR-E, ASR-J

CIE1-001 Authenticated 3 15 minutes Security violation message +
Function disabled

ASR-E, ASR-I

HT3-005 Authenticated 1 NA Admin alert + Proxy to alternative
system

ASR-B, ASR-N

Part III : Making It Happen

74

A threshold of "1" or a percentage comparison, such as shown for the HT3 detection point
in Table 15 above, means the threshold is reached immediately, and no time period needs to
be defined. The longer the period, the stricter is the policy.

Response threshold definition based on a per detection point basis allows more fine-
grained tuning. However it is usual to have both thresholds for each detection point and an
overall limit on the total number of any detection points activated in a time period. The
time period over which each threshold applies needs to be long enough to cater for slow
attacks, but will need to be selected with consideration of any active responses that have
time factors such as lockout for a period. Having the overall limit can help allow the
individual thresholds to be much more tightly set.

Table 16 EXAMPLE MULTIPLE THRESHOLDS AND RESPONSES FOR THE OVERALL NUMBER OF EVENTS PER USER IN A
SINGLE FIXED TIME PERIOD

Detection Points Threshold Period Response Response Code

(All) 5 24 hours Security violation message ASR-E
(All) 30 24 hours Security violation message + Account logout ASR-E, ASR-J
(All) 45 24 hours Security violation message + Account lockout 5

minutes
ASR-E, ASR-K

(All) 60 24 hours Security violation message + Account lockout 30
minutes

ASR-E, ASR-K

(All) 100 24 hours Security violation message + Account lockout
indefinite

ASR-E, ASR-K

Consideration also needs to be given to situations where multiple detection points are
activated with a single user action (“event landslides”). This is not unlikely and two
examples are:

• A SQL injection attack leads is detected as a Command Injection exception
(CIE1), but also fails Input Exception whitelist checks (IE2) and Request
Exception due to other missing parameters (RE6)

• Separate Input Exception validation checks may identify problems with many
different parameter values (e.g. IE2, IE2, IE2, IE3, IE4, IE4).

In these cases, one request could lead to an individual detection threshold being exceeded
more rapidly than expected or even the overall threshold being reached very quickly. It is
important to record every event, but for some applications one mitigation against event
landslides could be to limit the contribution to the overall threshold as only one security
event per user interaction (e.g. request/response cycle, key depress, process activation,
message). If possible, make this a configurable setting.

Chapter 17 : Advanced Thresholds and Responses

75

In a more advanced implementation may be able to track the exact event details, so that
duplicate suspicious security events are not necessarily counted twice. For example, if a user
submits an authentication form with the same wrong password twice, that doesn't usually
provide twice as much evidence of an attack i.e. if AE5 (Unexpected Quantity of
Characters in Password) is activated twice with the same value, this may be less significant
than two AE5 activations by the same user but with different values.

Security event logs may include a confidence rating, defining how certain the event
identification is. In AppSensor, the detection points should have been selected and their
sensitivity tuned so that the confidence is very near 100% all the time. In other words,
weighting based on confidence should not be required.

It may therefore be appropriate instead to define multiple overall thresholds, each with
different time periods.

Table 17 EXAMPLE RESPONSE THRESHOLDS FOR THE OVERALL NUMBER OF EVENTS PER USER FOR A RANGE OF TIME
PERIODS

Detection Point Threshold Period Action Response Code

(All) 5 1 day Security violation message ASR-E
(All) 6 2 days Security violation message ASR-E, ASR-J
(All) 8 1 week Security violation message + Account lockout

indefinite
ASR-E, ASR-K

Different thresholds and response actions could be based on the application's risk
classification.

These might also have permutations for different roles. Initially keep thresholds simple, but
allow for multiple thresholds over different time periods for different user roles, even if
they are not implemented initially.

Thresholds for system trend detection points

It is difficult to provide general guidance on system trend response actions. But having an
automated response to a sudden significant shift in system activity is one of the benefits of
using AppSensor. “Significant” is application, business, environment dependent. It may
also be time and season dependent.

The thresholds to initiate a response need to be considered once the range of normal
behavior has been examined over a period of time. This also needs to consider special
situations that could alter the normal patterns of usage such as vacations, time of day,
newsworthy events and marketing activities, so that benign but variable site usage is not
flagged as an attack. Therefore thresholds would usually include administrator notification

Part III : Making It Happen

76

levels before disabling a particular feature or the whole site. The existing AppSensor
documentation provides a good example of this:

Table 18 EXAMPLE RESPONSE THRESHOLDS FOR A SYSTEM TREND DETECTION POINT MONITORING THE USAGE RATE
OF AN APPLICATION'S "ADD A FRIEND" FEATURE

System Trend Delta Action Response Code

+1000% (5 minutes) Administrator notification ASR-B
+200% (15 minutes) Administrator notification ASR-B
+200% (60 minutes) Administrator notification ASR-B
+500% (15 minutes) Administrator notification ASR-B
+1000% (15 minutes) Temporarily disable Add a Friend feature ASR-I

System trend events should not be included in the overall (user) threshold mentioned
above. By their nature they are very specific and will rarely add anything to knowledge
about an individual user. Similarly there is no need for an overall system trend threshold.

Thresholds for modifying detection points

The reputational detection points (RP1-4) can be used to dynamically alter thresholds in
real time. For example if an organization tracks the national terror threat level and such
aspects are considered relevant to the application, the thresholds could alter in response to
this (RP4). However, the degree of trust in the source, availability and accuracy of
information needs to be considered with each detection point. Some (like the national
terror threat example) would require a threshold of "1" if the intention is to make a change
in AppSensor's response as soon as the event occurs.

Any change that disables a user, feature or the whole application could be used to perform
a denial-of-service attack, and therefore responses to activation of detection points in the
modifying class should be chosen conservatively.

Overall summary

For all thresholds, define whether counts are ever reset, e.g. at the end of a session, when
an application is restarted.

Figure 40 in Part VI : Reference - Responses shows part of an example schedule documenting
the application's threshold settings. This shows that some of the session management
exceptions only have meaning for a period that equals the session length, and that some
aggregating detection points will have thresholds of "1" where they act like an off/on
switch.

Chapter 17 : Advanced Thresholds and Responses

77

Threshold tuning

Once the thresholds and actions have been determined, final tuning of the model should be
undertaken to ensure that the combined model behaves as required. Tuning is usually best
accomplished by facilitating a discussion which includes members from various parties
concerned with the application.

For each of the attacks defined in threat models, or the attacks reviewed when defining
detection points, examine whether the responses are as desired.

1. Examine typical user activities and introduce all types of input which could be
accidental to check how much tolerance there is for:

a. Misunderstandings
b. Typing errors
c. Copying and pasting formatted text
d. Navigation changes such as using bookmarks, partial links or the back and

forward buttons
2. Consider slow and fast use of the application, and how often each function might

be requested
3. Consider the response to static content (e.g. RSS feeds, style sheets, video, images,

JavaScript files, HTML files) requests
4. Consider requests for missing content
5. Examine carefully activities that can lead to active responses that disable part or all

the application
6. How do the range of available responses affect the wider system and related

systems (interdependencies and interoperability)?
7. Identify situations where multiple detection points might all occur with a single

users interaction (e.g. a single web request, an individual button click) and ensure
the response actions are appropriate

8. Consider the effect of the planned responses on other metrics such as uptime of
the application and other systems, application response times, user satisfaction,
throughput requirements and other business measures.

Some organizations may be able to use information from usability testing studies to assist
with the second item. For example, disabling the whole application could stop further
recording of security events and even prevent an administrator from re-enabling the
application if that function is usually undertaken using a web interface that is part of the
application.

Modify the detection points, attack thresholds and responses if necessary.

Part III : Making It Happen

78

Chapter 18 : AppSensor and Application Event Logging

Introduction

Application security event logging and audit trails are not a requirement to adopt
AppSensor, but they should already be present in securely designed applications. For
further information see the OWASP Application Logging Cheat Sheet99.

AppSensor is not directly concerned with the wider needs for application event logging. It
is not necessary to have application logging to implement AppSensor. However, there is
some synergy in that well implemented application event logging could be used or extended
to be an AppSensor event store.

Application event logging is necessary but not equivalent to its AppSensor counter part.
Another way of thinking about this is that if the application throws an exception it logs it
and continues execution. Where AppSensor differs is that it analyzes these exceptions and
potentially alters the application’s behavior. In AppSensor there is already a very high
confidence in the events because they are baked into the application. Event logs of these
activities contain high-value information for centralized logging and monitoring systems.

Application event logs

Application logs sometimes neither record sufficient security events nor adequate detail
about these. Whenever a detection point is activated it is necessary to capture and record
that information. The minimum information that should be collected for each event is:

• Date and time
• Entry point (e.g. the event activated by a user such as clicking a button, URL for a

web application)
• User identity (e.g. authenticated user ID, location, IP address, token)
• Any data submitted
• Malicious activity
• Whether it is suspicious or an attack.

In practice, a wider range of information can be beneficial both for attack determination,
and for other operational activities such as user experience, performance monitoring, error
investigation and incident response. Some suggestions for comprehensive combined
application security event logging with AppSensor detection point information capture is
shown in Table 19 below. Further explanation and guidance is available100,101,102,103,104,105.

It is useful to ensure events can be grouped by request (multiple events may occur for a
single request/response) by recording a unique action/request ID in the logs, including
details of which AppSensor detection points were activated if applicable (code location and

Chapter 18 : AppSensor and Application Event Logging

79

instance) and including any AppSensor response actions taken and the final status. These
might be added to the normal application security event logging, or be recorded in
supplemental files/data stores. For a web application, the fields might be as shown below
(see the references at the end of the previous paragraph for a description of these fields).

Table 19 TYPICAL EVENT LOGGING PROPERTIES FOR WEB APPLICATIONS

Logged information Property Logged information Property

When Event date/time AppSensor detection Sensor ID
Log date/time Sensor location

Security event Type AppSensor Detection Point ID(s)
Severity Description
Confidence Message
Custom classification(s) Optional supporting

details
Request headers

Owner Request body
Location Host Response headers

Service/application name Response body
Port Error stack trace
Protocol Error message
HTTP method Other system response
Entry point Result (including

AppSensor response)
Status

Request number Reason for status
Request Purpose HTTP status code

Target AppSensor Result Response ID(s)
User Source Description

Identity Message
HTTP user agent Record integrity Identity
Client fingerprint Hash

Similar properties could be defined for other types of application.

With such logged event data, and suitable detection points calling the logging mechanism,
these could then be analyzed to determine attacks.

If separate AppSensor event logs are maintained, instead of incorporating such event data
into generic application event logs, see the recommended format defined in Part VI :
Reference - File Data Logging Format.

Web server logs

On the topic of existing logs, the question of using web server logs is often raised since
these are often enabled by default. Common Log File Format106 includes insufficient
information, but Extended Log File Format107 is widely supported by web servers are will
usually be configured to provide the following information for each request:

Part III : Making It Happen

80

• Event date/time
• URL path
• HTTP method
• Source IP address
• Source user agent
• Query string
• Bytes transferred
• Response status code.

Given only this data, and without adding any further detection points, it may be possible to
implement a subset of AppSensor detection point categories simply by mining the web
server logs. The detection points that could be implemented in this manner, without any
further knowledge of the application, are shown in Table 20.

Table 20 POSSIBLE DETECTION POINTS IF THE ONLY EVENT SOURCE ARE WEB SERVER LOGS

Detection Point Category ID Title

Request Exception RE1 Unexpected HTTP Command
RE2 Attempt to Invoke Unsupported HTTP Method

Authentication Exception AE3 High Rate of Login Attempts
File IO Exception FIO1 Detect Large Individual File

FIO2 Detect Large Number of File Uploads
System Trend Exception STE1 High Number of Logouts Across The Site

STE2 High Number of Logins Across The Site
STE3 High Number of Same Transaction Across The Site

The main difficulty is the lack of attribution to user identity apart from IP address and
possibly a fingerprint that includes the user agent. By tuning the application to use specific
status codes for different events it may be possible to extend the use of web server logs
further, but if the application is to be modified, implementing application event logging
would be a better approach.

Additionally web server logs are generally voluminous. This combined with the lack of
detailed application-specific attack intelligence makes them generally very unsuitable for
AppSensor-like attack detection. Therefore this method is not discussed further in this
guide.

Chapter 19 : AppSensor and PCI DSS for Ecommerce Merchants

81

Chapter 19 : AppSensor and PCI DSS for Ecommerce Merchants

Introduction

Merchants with web-facing ecommerce applications need to protect cardholder data,
whether or not a hosted payment page solution has been implemented.

Requirement 6.6

The Payment Card Industry (PCI) Security Standards Council requires in-scope public
facing web applications to address new threats and vulnerabilities on an ongoing basis PCI
Data Security Standard (DSS) in requirement 6.6. One of the two options to meet this
requirement is to undertake reviews using manual or automated application vulnerability
security assessment tools or methods, at least annually and after any changes. The other
option is to detect and prevent attacks continuously. In PCI DSS version 2.0 (issued
October 2010), this method was worded as follows:

[by] Installing a web-application firewall in front of public-facing web applications

In PCI DSS version 3.0108 (issued November 2013), the wording was updated to:

[by] Installing an automated technical solution that detects and prevents web-based attacks (for
example, a web-application firewall) in front of public-facing web applications, to continually
check all traffic.

In the related document Summary of Changes from PCI DSS Version 2.0 to 3.0108, this
change is described as a clarification and:

Increased flexibility by specifying automated technical solution that detects and prevents web-based
attacks rather than “web-application firewall.” Added note to clarify that this assessment is not
the same as vulnerability scans required at 11.2.

This does suggest that a web application firewall (WAF) is not the only option to be
considered to meet this requirement, and that it is possible that AppSensor-like approach
could also be used. The relevant testing procedure is stated as:

Examine the system configuration settings and interview responsible personnel to verify that an
automated technical solution that detects and prevents web-based attacks (for example, a web-
application firewall) is in place as follows:
- Is situated in front of public-facing web applications to detect and prevent web-based attacks.
- Is actively running and up to date as applicable.
- Is generating audit logs.
- Is configured to either block web-based attacks, or generate an alert.

Part III : Making It Happen

82

The choice of WAF, AppSensor or a synergistic combination should be discussed with the
merchant’s acquiring bank, PCI Qualified Security Assessor109 (QSA), or Internal Security
Assessor (ISA). All the above features of running, being up-to-date, generating logs and
configured to block and/or alert would also be a required part of the implementation.

SAQ A and SAQ A-EP

The PCI DSS self-assessment questionnaires (SAQs) A and A-EP are sometimes used by
ecommerce merchants where cardholder data functions are fully or partially outsourced
respectfully.

AppSensor may be the best way to detect malicious behavior in and around payment forms,
during checkout, on payment pages and even on payment service provider’s hosted
payment pages.

Regardless of the eligibility criteria and which SAQ is appropriate, AppSensor can help
provide additional assurance about the website’s integrity and give early warning of attacks,
possibly before they become anything more serious. AppSensor is a valuable application
security measure regardless of its compliance contribution.

Part IV : Demonstration ImplementationsChapter 19 : AppSensor and PCI DSS for
Ecommerce Merchants

83

Part IV : Demonstration Implementations

A large proportion of this guide has related to a description of the concept to provide
analysts, architects, designers and developers with the knowledge to implement this
approach in their own systems. This is because the approach is application-specific, and
there is no single implementation method or out-the-box solution. Part IV provides some
practical examples of how the concept can be deployed, including some standalone
components that could be utilized within an organization’s own deployments, or to act as
inspiration. The OWASP code/software/tooling portion of the project in the next two
chapters aims to build a reference implementation that can be used to implement the
concepts conveyed in this guide.

Part IV : Demonstration Implementations

84

Chapter 20 : Web Services (AppSensor WS)

Introduction

This is a reference implementation and is a development branch included within the scope
of the OWASP AppSensor Project called “AppSensor WS”. This more recent
implementation introduces a service-based model using SOAP web services instead of both
the detection/response and attack analysis code being combined as in the initial
“AppSensor Core” demonstration implementation - see Chapter 21 : Fully Integrated
(AppSensor Core) below.

AppSensor WS was begun as part of the Google Summer of Code (GSoC) 2012110,111 by
Rauf Butt with mentoring by John Melton and Kevin W Wall, building upon the code for
“AppSensor Core”. The OWASP GSoC112 initiative was promoted and administrated by
Fabio Cerullo and Jason Li. Subsequently it has been developed further by John Melton.

Description

[More???]

The application being protected (the client) communicates event information to, and attack
responses from AppSensor WS (the server) using web services engine. The detection
points, event monitor and responses have to be built into the client application at
appropriate points in the logic. Code from AppSensor WS is executed on demand when the
web services are called.

The web services are:

• /events
o POST with JSON event data
o GET with query string “earliest=[SOME_TIMESTAMP]”

• /attacks
o POST with JSON event data
o GET with query string “earliest=[SOME_TIMESTAMP]”

• /responses
o GET with query string “earliest=[SOME_TIMESTAMP]”

The format for the JSON event data is described in Part VI : Reference - Signaling Data
Exchange Formats.

Figure 10 SCHEMATIC ARRANGEMENT OF THE APPSENSOR WS REFERENCE IMPLEMENTATION

Part IV : Demonstration ImplementationsChapter 20 : Web Services (AppSensor
WS)

85

The web services engine can be incorporated directly into Java projects, or used as a
standalone system to support non-Java applications. The engine could also be ported to
other languages.

AppSensor scope

Like AppSensor Core below, the selection of detection points, where they are added, and
how the software responds, are (client) application and organization dependent. However,
the following detection point and response categories are supported by the analysis engine
web services (the server):

Table 21 LIST OF DETECTION POINT CATEGORIES SUPPORTED BY APPSENSOR WS

Category Detection Point
Description ID Title

Request Exception RE1 Unexpected HTTP Command
 RE2 Attempt to Invoke Unsupported HTTP Method
 RE3 GET When Expecting POST
 RE4 POST When Expecting GET
Access Control Exception ACE1 Modifying URL Argument Within a GET for Direct Object Access Attempt

ACE2 Modifying Parameter Within A POST for Direct Object Access Attempt
ACE3 Force Browsing Attempt

Input Exception IE1 Cross Site Scripting Attempt
System Trend Exception STE1 High Number of Logouts Across The Site

Table 22 LIST OF RESPONSE CATEGORIES SUPPORTED BY APPSENSOR WS

Part IV : Demonstration Implementations

86

Category Response
Type Description Code Description

Silent User unaware of application's response ASR-A Logging Change
ASR-B Administrator Notification (SMS and email)

Active Application functionality reduced for user(s) ASR-I Function Disabled
ASR-J Account Logout
ASR-K Account Lockout

The individual interfaces can be extended in order to modify AppSensor for a particular
environment, and to support additional detection points and response actions.

Source code

The code is currently being developed and further extended. The latest source code is
available from:

https://github.com/jtmelton/appsensor

The previous source code and appsensor.jar file are available from [Check these please]:

http://mvnrepository.com/artifact/org.owasp.appsensor/AppSensor/0.1.3
.5

http://repo1.maven.org/maven2/org/owasp/appsensor/AppSensor/0.1.3.5/A
ppSensor-0.1.3.5.jar

The version at the time of writing is 0.1.3.5 and is issued under the BSD 3-Clause
License113.

Implementation

A developer guide has been provided at:

https://www.owasp.org/index.php/AppSensor-WS_Developer_Guide [Check]

Considerations

This Java implementation has the following dependencies: [Check]

• JUnit Java unit testing
• Mockito Java mocking framework

This AppSensor implementation is currently under development and is subject to change.

Part IV : Demonstration ImplementationsChapter 20 : Web Services (AppSensor
WS)

87

Related implementations

Chetan Karande has begun development of a node.js web services client. The code is
located at:

https://github.com/ckarande/appsensor/tree/master/sample-apps/simple-
nodejs-ws-rest-client

[Are there PHP or .Net versions being developed by anyone??? If so who/where???]

.

Part IV : Demonstration Implementations

88

Chapter 21 : Fully Integrated (AppSensor Core)

Introduction

Prior to the development of the SOAP Web Services demonstration implementation,
Michael Coates and John Melton [anyone else? KW???] created a pure integrated Java
version. Like “AppSensor WS” above, this is a reference implementation and is a
development branch included within the scope of the OWASP AppSensor Project called
“AppSensor Core”.

Description

AppSensor Core handles the collection of event data, and selection of appropriate
responses based on a policy defined as a Java properties files. The detection points and
responses have to be built into the application at appropriate points in the logic. Code from
AppSensor Core is then executed during run time as events occur.

Figure 11 SCHEMATIC ARRANGEMENT OF THE APPSENSOR CORE REFERENCE IMPLEMENTATION

AppSensor scope

The selection of detection points, where they are added, and how the software responds,
are application and organization dependent. However, the following detection point and
response categories are supported:

Part IV : Demonstration ImplementationsChapter 21 : Fully Integrated (AppSensor
Core)

89

Table 23 LIST OF DETECTION POINT CATEGORIES SUPPORTED BY APPSENSOR CORE

Category Detection Point
Description ID Title

Request Exception RE1 Unexpected HTTP Command
 RE2 Attempt to Invoke Unsupported HTTP Method
 RE3 GET When Expecting POST
 RE4 POST When Expecting GET
Access Control Exception ACE1 Modifying URL Argument Within a GET for Direct Object Access Attempt

ACE2 Modifying Parameter Within A POST for Direct Object Access Attempt
ACE3 Force Browsing Attempt

Input Exception IE1 Cross Site Scripting Attempt
System Trend Exception STE1 High Number of Logouts Across The Site

Table 24 LIST OF RESPONSE CATEGORIES SUPPORTED BY APPSENSOR CORE

Category Response
Type Description Code Description

Silent User unaware of application's response ASR-A Logging Change
ASR-B Administrator Notification (SMS and email)

Active Application functionality reduced for user(s) ASR-I Function Disabled

ASR-J Account Logout

ASR-K Account Lockout

The individual interfaces can be extended in order to modify AppSensor for a particular
environment, and to support additional detection points and response actions.

Source code

The source code and appsensor.jar file are available from:

https://code.google.com/p/appsensor/

https://code.google.com/p/appsensor/downloads/detail?name=AppSensor-
0.1.3.jar

The version at the time of writing is 0.1.3 and is issued under the BSD 3-Clause License113.

Implementation

A developer guide has been provided at:

https://www.owasp.org/index.php/AppSensor_Developer_Guide [Check]

Part IV : Demonstration Implementations

90

Considerations

This Java implementation has the following dependencies:

• OWASP ESAPI Java library
• JavaMail libraries (activation and mail jar files)
• Servlet/JSP libraries
• Logging API library (log4j by default)

This AppSensor implementation is no longer under development.

Related implementations

This Java implementation method was utilized in the comparative research and experiment
undertaken independently by Pål Thomassen “AppSensor: Attack-Aware Applications
Compared Against a Web Application Firewall and an Intrusion Detection System”33. A
description of how AppSensor Core was implemented on SimpleShiroSecuredApplication
has been written by Mária Jurčovičová 114.

The AppSensor Core implementation has also been ported to .Net by Luke Briner and is
available to download at:

https://www.owasp.org/index.php/File:AppSensor_Core_-_dotNet.zip

See also Chapter 24 : Invocation of AppSensor Code Using Jni4Net.

Part IV : Demonstration ImplementationsChapter 22 : Light Touch Retrofit

91

Chapter 22 : Light Touch Retrofit

Introduction

In this demonstration implementation, an application has been instrumented with custom-
written code to show how AppSensor functionality can be retrofitted to an existing project.
The implementation does not make use of any AppSensor Project’s library code (as
described in the previous two chapters above).

The application used in this example is the bulletin board application phpBB115, released
under the GNU General Public License116. The implementation was performed in a
manner that effected as little of the original code as possible.

This demonstration implementation does not form part of the core development efforts
within the OWASP AppSensor Project.

Description

Detection points were added by the additional of minimal additional PHP code without
altering the phpBB source code. Additional fields were added to some of the application’s
database tables together with new tables for the event and attack stores. An existing phpBB
feature which allows “banning” of submissions by individual users was utilized as one
response by inserting records into the relevant database table; a second response was added
external to the code base by using the host firewall to block IP addresses.

Figure 12 SCHEMATIC ARRANGEMENT OF EXAMPLE LIGHT TOUCH RETROFIT TO EXISTING CODE

Part IV : Demonstration Implementations

92

AppSensor scope

The following detection point and response action categories are included:

Table 25 LIST OF DETECTION POINT CATEGORIES IMPLEMENTED IN THIS EXAMPLE LIGHT TOUCH RETROFIT

Category Detection Point
Description ID Title

Authentication Exception AE1 Use of Multiple Usernames
 AE2 Multiple Failed Passwords
Access Control Exception ACE3 Force Browsing Attempt
Input Exception IE2 Violation Of Implemented White Lists

IE3 Violation Of Implemented Black Lists
File IO Exception FIO2 Detect Large Number of File Uploads
Honey Trap HT2 Honey Trap Resource Requested
 HT3 Honey Trap Data Used
User Trend Exception UT4 Frequency of Feature Use

Table 26 LIST OF RESPONSE CATEGORIES IMPLEMENTED IN THIS EXAMPLE LIGHT TOUCH RETROFIT

Category Response
Type Description Code Description

Active Application functionality reduced for user(s) ASR-I Function Disabled

ASL-L Application Disabled

In this case, the response action function disabling utilizes phpBB’s inherent “block”
functionality and application disabling is accomplished by blocking using the host network
firewall level. In this implementation, it was accomplished by using the “netsh advfirewall
firewall” command117 for Windows Firewall, but iptables could be used on *nix systems,
and similarly for other operating systems; an external network device could also be used.

Source code

The phpBB bulletin board application can be downloaded at:

https://www.phpbb.com/downloads/

PHPIDS as a blacklist input exception detection point. PHPIDS, default_filter.xml and
converter.php can be downloaded from:

https://phpids.org/downloads/

Part IV : Demonstration ImplementationsChapter 22 : Light Touch Retrofit

93

The additional database SQL scripts and PHP files can be downloaded at:

???TBC??? [check]

This is proof of concept code and is neither optimized nor production-ready.

Implementation

Developer notes are included within the file containing the source code.

Considerations

The PHP implementation of the event manager needs permissions to perform real-time
changes to the host-based firewall. This could be changed to signal a separate network
firewall instead.

This implementation is no longer under development.

Related implementations

None.

Part IV : Demonstration Implementations

94

Chapter 23 : Ensnare for Ruby

Introduction

Ensnare is a gem plugin for Ruby on Rails developed to allow the rapid configuration and
deploying a basic malicious behavior detection and response scheme.

It was created by Andy Hoernecke and Scott Behrens and uses a combination of honey
traps to entice malicious users, and a configurable suite of responses to confuse, allude,
delay, or stop an attacker. The documentation states Ensnare was partially inspired by Ryan
Barnett's blog posts about honey traps118,119.

This production implementation does not form part of the core development efforts within
the OWASP AppSensor Project.

Description

Ensnare uses honey trap type of detection points referred to as “traps” which can be
benign cookies, parameters, bad paths, or even regular expressions of known attack
signature such as from a scanner. When a trap is triggered, the event (“violation”) is logged.
When predefined threshold of violations is reached for a user, based on username, session
or IP address, the predetermined response is deployed into the response.

Custom traps can also be created in the application, and Ensnare allows violation logging
from anywhere in the application.

AppSensor scope

The following detection points are available as standard:

Table 27 LIST OF DETECTION POINT CATEGORIES IMPLEMENTED IN ENSNARE

Category Detection Point
Description ID Title

Honey Trap HT1 Alteration to Honey Trap Data
 HT2 Honey Trap Resource Requested
 HT3 Honey Trap Data Used

However custom detection points can be created, and for example the project’s
documentation mentions violations of the application's authorization controls.

The following response action categories are defined:

Part IV : Demonstration ImplementationsChapter 23 : Ensnare for Ruby

95

Table 28 LIST OF RESPONSE CATEGORIES IMPLEMENTED IN ENSNARE

Category Response
Type Description ID Titles

None No response ASR-P No Response
Passive Changes to user experience but nothing denied ASR-E User Notification

ASR-F Timing Change
Active Application functionality reduced for user(s) ASR-G Process Terminated

ASR-H Function Amended

ASR-I Function Disabled

Source code

Ensnare’s source code is located at:

https://github.com/ahoernecke/ensnare

Implementation

Documentation for Ensnare can be found at:

https://github.com/ahoernecke/ensnare/wiki

Considerations

This implementation is currently under development and is subject to change.

Related implementations

None.

Part IV : Demonstration Implementations

96

Chapter 24 : Invocation of AppSensor Code Using Jni4Net

Introduction

Dinis Cruz has used the OWASP O2 Platform120 C# REPL scripting environment to
invoke Java AppSensor and ESAPI methods from an existing .NET application using
Jni4Net121. Like the application described in Chapter 22 : Light Touch Retrofit,, it is another
example of retrofitting AppSensor to an existing project. However it does utilize the
AppSensor Project’s library code.

This demonstration implementation does not form part of the core development efforts
within the OWASP AppSensor Project. The O2 Platform has its own mailing list122.

Description

The core development efforts in Java are consumed within a .Net application which
exposes all the same capabilities.

Figure 13 SCHEMATIC ARRANGEMENT OF EXAMPLE APPSENSOR CODE INVOCATION USING JNI4NET

AppSensor scope

The detection points and response actions are identical to those described for AppSensor
Core above.

Part IV : Demonstration ImplementationsChapter 24 : Invocation of AppSensor
Code Using Jni4Net

97

Source code

The source code for the pilot demonstration can be found at:

http://github.com:DinisCruz/TeamMentor_3_3_AppSensor

This is proof of concept code and is neither optimized nor production-ready.

Implementation

The method of implementation is described at:

http://blog.diniscruz.com/2013/06/another-step-in-use-of-esapi-
and.html

A video of Denis Cruz’s presentation of the concept is available at:

http://www.youtube.com/watch?v=dzj3llZ9G6I

Considerations

This is purely demonstration code that illustrates an alternative method of implementation.

Related implementations

There is a .Net port of the Java AppSensor Core implementation - see Chapter 21 : Fully
Integrated (AppSensor Core).

Part IV : Demonstration Implementations

98

Chapter 25 : Using an External Log Management System

Introduction

An external log management system can be used to aggregate event data and generate some
types of responses such as alerts or network changes. An organization with a large number
of applications that already has some form of Security Information and Event Management
(SIEM) or other Continuous Security Monitoring (CSM) may benefit from this type of
approach.

This demonstration implementation does not form part of the core development efforts
within the OWASP AppSensor Project.

Description

Detection points are added into each application’s source code like a standard AppSensor
implementation. But information from the detection points are sent to an external log
aggregation and event management system. The external system is responsible for
determining the attack and initiating responses.

Events collected by detection points are sent to a centralized system using Common Event
Format123 (CEF) over syslog protocol.

Figure 14 SCHEMATIC ARRANGEMENT OF EXAMPLE EXTERNAL LOG MANAGEMENT SYSTEM

Part IV : Demonstration ImplementationsChapter 25 : Using an External Log
Management System

99

AppSensor scope

Any detection points capable of being added to the application(s) and elsewhere could
provide event data to the external system.

Although potentially any response is possible, assume the signaling is one-way from the
application(s) to the external system,. Then the most likely responses supportable via the
network are:

Table 29 LIST OF RESPONSE CATEGORIES POSSIBLY AVAILABLE TO AN EXTERNAL LOG/EVENT MANAGEMENT SYSTEM

Category Response
Type Description Code Description

None No response ASR-P No Response
Silent User unaware of application's response ASR-A Logging Change

ASR-B Administrator Notification
ASR-C Other Notification

Active Application functionality reduced for user(s) ASR-L Application Disabled

Of these, administrator notification is the most common (and not necessarily the most
effective use of AppSensor capabilities).

Source code

No source code is available.

Implementation

This method still requires the addition of detection points to application code, which is
application dependent. All other conceptual elements are undertaken external to the
application(s).

An example message structure is shown on the next page. This utilizes predefined and
custom key-value pairs in the extension part of CEF:

• User agents string
• Application detection point identifier
• AppSensor detection point category
• HTTP status code
• Request ID (a unique identifier for each application request)
• Local log identifier
• Degree of confidence (in the example 100%).

Part IV : Demonstration Implementations

100

Figure 15 EXAMPLE USE OF COMMON EVENT FORMAT FOR EVENT SIGNALING

src=10.25.102.65

suser=W0005

proto=TCP

dpt=80

proc=httpd

request=/catalogue/showProduct/

requestMethod=GET

deviceExternalID=AppSensor06

msg=Cross site scripting attempt in parameter prodid

cat=detection

act=block

cs1Label=requestClientApplication cs1=Mozilla/5.0 (Macintosh; U; Intel Mac OS X
10.6; en-GB; rv:1.9.2.17) Gecko/20110420

cs2Label=AppSensorSensorID cs2=R03

cs3Label=AppSensorDetectionType cs3=IE1

cs4Label=StatusCode cs4=403

cn1Label=RequestID cn1=000070825566

cn2Label=AppSensorLogID cn2=1650833

cn3Label=Confidence cn3=100

Considerations

This method may not be completely “real time” nor provide feedback information for the
application(s) to adapt to the attack. See also Chapter 18 : AppSensor and Application Event
Logging for a discussion about generic application event logging.

AppSensor data might simply be used to enhance attack and threat intelligence for fraud
detection or advanced persistent threat identification.

Related implementations

Similar logging ideas could be implemented using the open source OSSEC or many
commercial log management systems.

Existing security monitoring systems should always be considered as a recipient of
AppSensor data, regardless of where the event analysis and event management is being
undertaken. Signaling AppSensor event and attack data to an event monitoring system adds
valuable information to an organization’s threat and attack knowledge.

Dinis Cruz has suggested that Google Analytics could be utilized to perform this type of
externalized data collection and analysis, but with limited ability for response. In some

Part IV : Demonstration ImplementationsChapter 25 : Using an External Log
Management System

101

systems, GA may be one of the few destinations that internal applications have been
allowed to communicate to.

Part IV : Demonstration Implementations

102

Chapter 26 : Leveraging a Web Application Firewall

Introduction

OWASP ModSecurity Core Rule Set is a free set of generic application protection rules for
the open source ModSecurity35 web application firewall (WAF). A number of rules
implement AppSensor behavior, albeit separate from the application’s source code.

Where there is no permission or ability to modify an application, the use of a WAF can
accommodate some AppSensor-like behavior, and may in fact be the only available way to
apply the concept to some legacy or commercial applications where the source code cannot
be altered. WAFs have other valuable uses too, and may already exist in the application’s
environment.

This demonstration implementation does not form part of the core development efforts
within the OWASP AppSensor Project. Instead, please refer to the actively maintained and
supported OWASP ModSecurity Core Rule Set Project36,124 which has its own mailing
list125.

Description

ModSecurity can be deployed embedded within the existing web server infrastructure or as
a reverse proxy server on the network. The latter has been used in this example so that it
can protect multiple back-end web servers. In this pure WAF implementation, all
AppSensor-like functionality in undertaken within the WAF, and none in the application
itself.

Figure 16 SCHEMATIC ARRANGEMENT OF EXAMPLE LEVERAGING A WEB APPLICATION FIREWALL

Part IV : Demonstration ImplementationsChapter 26 : Leveraging a Web
Application Firewall

103

AuditViewer126 is used to browse the event data, which are stored as logs on the file system
(indicated in the above diagram as accessible to both the event manager and the reporting
client).

In this implementation, only the AppSensor-relevant rules (see below) were enabled, with
all other rules disabled or removed. This was so the effect of AppSensor-like functionality
alone can be assessed without having to consider the effect of other WAF capabilities.

AppSensor scope

The following detection points have existing rules (some multiple especially for IE1) in the
Core Rule Set (CRS) at the time of writing:

Table 30 LIST OF DETECTION POINT CATEGORIES IMPLEMENTED IN MODSECURITY CORE RULE SET

Category Detection Point
Description ID Title

Request Exception RE1 Unexpected HTTP Command
 RE2 Attempt to Invoke Unsupported HTTP Method
 RE5 Additional/Duplicated Data in Request
 RE7 Unexpected Quantity of Characters in Parameter
 RE8 Unexpected Type of Characters in Parameter
Input Exception IE1 Cross Site Scripting Attempt
Encoding Exception EE2 Unexpected Encoding Used
Command Injection Exception CIE1 Blacklist Inspection for Common SQL Injection Values
 CIE4 Carriage Return or Line Feed Character in File Request
Honey Trap HT1 Alteration to Honey Trap Data

Part IV : Demonstration Implementations

104

Reputation RP3 Suspicious Client-Side Behavior

The rules are spread across the “base” rules and also the “experimental” ones included in
the CRS.

Application-specific custom ModSecurity rules can be written to extend these detection
points much further, and this is strongly recommended. However, some other AppSensor
detection points may be difficult to implement since the WAF will not have the same
access to user information and context the application has. Many more ModSecurity ideas
can be found in the recent book “Web Application Defender's Cookbook: Battling Hackers
and Protecting Users”127.

All AppSensor example response actions are potentially possible using ModSecurity:

Table 31 LIST OF RESPONSE CATEGORIES IMPLEMENTED IN MODSECURITY CORE RULE SET

Category Response

Type Description Code Description

None No response ASR-P No Response
Silent User unaware of application's response ASR-A Logging Change

ASR-B Administrator Notification
ASR-C Other Notification
ASR-N Proxy

Passive Changes to user experience but nothing denied ASR-D User Status Change
ASR-E User Notification
ASR-F Timing Change

Active Application functionality reduced for user(s) ASR-G Process Terminated
ASR-H Function Amended
ASR-I Function Disabled
ASR-J Account Logout
ASR-K Account Lockout
ASR-L Application Disabled

Intrusive User's environment altered ASR-M Collect Data from User

Configuration of ModSecurity is required to execute the responses based on individual
events or aggregated scoring.

Source code

ModSecurity, the OWASP ModSecurity CRS and AuditViewer respectively can be
downloaded at:

http://www.modsecurity.org/download/

Part IV : Demonstration ImplementationsChapter 26 : Leveraging a Web
Application Firewall

105

https://github.com/SpiderLabs/owasp-modsecurity-crs

http://www.jwall.org/projects/org.jwall.web.audit/source-
repository.html

Implementation

Follow the instructions included within the downloads, but also review the information
available at:

http://www.modsecurity.org/documentation/

http://blog.spiderlabs.com/modsecurity/

https://secure.jwall.org/web/audit/viewer.jsp

Considerations

ModSecurity is available for Apache, IIS and Nginx - see the download page listed above.

As mentioned above, to assess this method of implementation, it is best to disable or
remove other rules in the CRS, so the AppSensor-relevant aspects can be isolated. The
included rules should be modified and extended to be more specific to the application(s)
being protected.

Related implementations

Other WAFs may not be as configurable as the example here – AppSensor cannot be
implemented satisfactorily with only a generic negative security model. A small number of
more advanced load balancers that understand the HTTP protocol could support some
similar functionality. But note the comments in Chapter 2 : Protection Measures - Comparison
with .

A web application firewall can also be used as a:

• Reputational detection point, for example to send possible attack information to
the defended application (detection point type RP2) using HTTP request headers
or other signaling

• Response action on behalf of the defended application, for example to perform
increased logging (ASR-A), to proxy user requests to another system (ASR-N), to
disable functions (ASR-I), to disable the application (ASR-L) and to collect data
from a user (ASR-M).

Similarly other application firewalls (e.g. database) could be used for some detection points
and response actions.

Part V : Model Dashboards

106

Part V : Model Dashboards

Data visualization of real-time attack detection and response provides organizations with
much needed insight into whether their applications are under attack, and by whom. This
part introduces the necessary concepts for visualizing AppSensor data, and presents
example application-specific dashboards that have already been created.

Part V : Model DashboardsChapter 27 : Security Event Management Tools

107

Chapter 27 : Security Event Management Tools

Introduction

There are many open source and commercial tools for collecting, analyzing and visualizing
and exploring security event data. These support common event data formats. As discussed
in Part III : Making It Happen - Chapter 15 : Verification, Deployment and Operation the many
capabilities of event log management tools are not always necessary, since AppSensor data
has a high-confidence level and ought to be very information rich already. However, such
tools can be used to acquire and present AppSensor data.

Description

In Part III : Making It Happen - Chapter 15 : Verification, Deployment and Operation - Operation,
and imaginary AppSensor was illustrated.

AppSensor logging and signaling format could be used, but most event log management
tools are very flexible and even support event records comprised of simple name-value
pairs.

Figure 17 EXAMPLE APPSENSOR EVENT DATA USING DELIMITED NAME-VALUE PAIRS

Application=MyPortal|Function=View
Account|Entrypoint=/c/account/view.jsp|UserSaluation=Mr|UserFamilyName=Smith|Us
erPersonalName=Joey|Severity=2|Confidence=100|DetectionPointID=ACE3-
056|DetectionPoint=attempted to access an account belonging to someone
else|ResponseAction1Code=ASR-B|ResponseAction1Description=Syslog event
sent|ResponseAction2Code=ASR-C|ResponseAction2Description=Event notified to CRM
(ID 509578)|ResponseAction3Code=ASR-D|ResponseAction3Description=Fraud flag set
in CRM|ResponseAction4Code=ASR-I|ResponseAction4Description=Transactional
functionality disabled for this user

When this data is sent using a system component supporting syslog, it can be received by
security event management tools. An example of this in Splunk is illustrated in 0 and 0 on
the following page.

Part V : Model Dashboards

108

Figure 18 APPSENSOR DATA FEED ADDITION TO SPLUNK

Figure 19 APPSENSOR EVENT SUMMARY

Part V : Model DashboardsChapter 27 : Security Event Management Tools

109

Figure 20 APPSENSOR EVENT DETAIL

Users of such tools can then use the in-built capabilities to render, display and visualize the
AppSensor data. Other security event management tools can be used in the same manner.

See File Data Logging Format and Signaling Data Exchange Formats in Part VI : Reference for
further information about integrating AppSensor data with security event management
tools.

Part V : Model Dashboards

110

AppSensor coverage

Coverage of AppSensor event, attack and response events can be as little or as much as is
imported from logging or signaling, but is dependent upon the customization options of
the tool.

Part V : Model DashboardsChapter 28 : Application-Specific Dashboards

111

Chapter 28 : Application-Specific Dashboards

Introduction

A better representation of application attacks can be usually be achieved by building
custom dashboards instead of open source and commercial event log management tools.
The possibilities are greater, but possibly require more effort. Application-specific attack
dashboards are currently an aspect still being developed, and additional ideas and code
samples are likely to be available in the near future. Further ideas for information security
consoles and dashboards can be found at SecViz128.

Organizations may have their own application dashboards, and some of the ideas below
could be used to extend those.

Description

AppSensor WS

The project’s reference code implementation demonstrates how simply information from
the Event Analysis Engine can be rendered in a web page. See Part IV : Demonstration
Implementations - Chapter 20 : Web Services (AppSensor WS).

Figure 21 DETECTION POINT, ATTACK AND RESPONSE DATA DISPLAYED BY APPSENSOR WS

[JM – screen capture????]

Part V : Model Dashboards

112

Streaming Comet

Example application-specific dashboards were demonstrated at OWASP AppSec EU 2011.
The demos broadcast example event and attack data to a server which used the Comet
model to push real-time updates to an active web page console129.

Figure 22 AN EXAMPLE APPSENSOR DASHBOARD FOR AN ECOMMERCE WEBSITE

In this the detection points are shown relative to the application’s main functional areas are
listed across the top with an indicator “light” above each position.

Figure 23 AN EXAMPLE DETECTION POINT INDICATORS ON WEBSITE FUNCTIONALITY MAP

Part V : Model DashboardsChapter 28 : Application-Specific Dashboards

113

These light up red on attack detection and then fade through orange to yellow and white
again over a suitable time period, so they are not completely ephemeral.

Figure 24 ILLUMINATION OF DETECTION POINT INDICATORS

Trend monitoring detection points are showing a separate area at the bottom right of this
model dashboard. As data is dynamically updated, the rows change color to indicate
refreshes and indicators of trend direction.

Figure 25 SYSTEM TREND DETECTION POINTS

Figure 26 HIGHLIGHTING OF CHANGES TO SYSTEM TREND DETECTION POINTS

Part V : Model Dashboards

114

A panel is updated in real time as events occur. In this example where detection points also
exist in public areas, there are a larger number of events. The corresponding detection
point indicators are illuminated as events appear.

Figure 27 DETECTION POINTS EVENT LOG DISPLAY

Automated real-time responses are displayed in another panel.

Figure 28 RESPONSE EVENT LOG DISPLAY

Part V : Model DashboardsChapter 28 : Application-Specific Dashboards

115

This is of course all completely custom to the application and the individual organization’s
view of threats.

AppSensor coverage

Coverage of AppSensor event, attack and response events can be as little or as much as is
imported from logging or signaling, but is dependent upon the customization options of
the tool. But with all of these model examples, code can be developed to produce a custom
dashboard by the organization to suit their own business needs.

Part V : Model Dashboards

116

Chapter 29 : Application Vulnerability Tracking

Introduction

Software bug/defect/vulnerability tracking systems can also consume AppSensor data to
add intelligence for severity rating and prioritization. Knowledge about actual attacks and
how attackers may be getting close to vulnerabilities scheduled for mitigation is valuable
information. This class of software will usually have multiple methods of data import, and
will be preconfigured to consume data from commonly used commercial and open source
information security risk and vulnerability software.

Description

Application vulnerability tracking software usually supports a portfolio of projects or
applications.

An open source tool in this area is ThreadFix130 that facilitates the import, aggregation,
analysis and management of vulnerability data from security verification activities
throughout the software development lifecycle. This has the additional capability of
creating web application firewall (WAF) rules that can be deployed while vulnerabilities are
being investigated, corrected, tested, deployed and verified.

The default dashboard in ThreadFix displays vulnerabilities grouped by severity and by
most common by CWE159. It is possible to imagine how the very specific AppSensor data
could be overlaid to provide insight into which types of vulnerability might be being
actively targeted by different groups of users. This would not generally work as well with
less specific, and more voluminous, data from network devices.

Figure 29 and Figure 30 on the following page, illustrate a mock overlay of attacks grouped
by user group. Note the logarithmic scale. These could potentially also be made into more
detailed reports. ThreadFix and other tools in this class of software do not yet support this
capability, but could be extended to do so.

In practice, some of the most common CWEs such as configuration and information
leakage issues may not be included in AppSensor attack detection, and it may not be simple
to provide a mapping from detection points to CWEs.

Part V : Model DashboardsChapter 29 : Application Vulnerability Tracking

117

Figure 29 THREADFIX DASHBOARD SHOWING MOCK UP OF CWE VS ATTACK CHART OVERLAY

Figure 30 DETAILED VIEW OF CHART OVERLAY MOCKUP

Part V : Model Dashboards

118

Since tools like this also import static analysis (code review), a more useful possibility is
identifying attacks against particular filters, modules or functions. These could be mapped
during the detection point design specification stage, and saved in AppSensor logs or
included in AppSensor event signaling (see Signaling Data Exchange Formats and File Data
Logging Format in Part VI : Reference).

Similarly if application logging records the entry point (i.e. URL path), this could be used to
cross reference attacks and vulnerabilities. A mock-up of this addition to ThreadFix’s
vulnerability report drill down is shown below.

Figure 31 MOCKUP ILLUSTRATING HOW URL PATHS COULD BE USED TO MATCH VULNERABILITIES IDENTIFIED
THROUGH SECURITY SCANNING CORRELATE WITH WHERE ATTACKS ARE OCCURRING

Part V : Model DashboardsChapter 29 : Application Vulnerability Tracking

119

AppSensor coverage

Coverage of AppSensor event, attack and response events can be as little or as much as is
imported from logging or signaling, but is dependent upon the customization options of
the tool.

Part VI : Reference

120

Part VI : Reference

In this section, the primary reference information sources are included. Updates and new
reference materials are maintained on the OWASP AppSensor Project website1.

Part VI : Reference

121

Glossary

A glossary of terminology has been produced for the project to define what particular
terminology means in the context of application layer attack detection and prevention. In
some cases existing intrusion detection terminology is not consistent with an application
specific approach, is implementation specific, or has an alternative meaning in software
development that could lead to confusion.

Resources from US Committee on National Security Systems (CNSS)131, MITRE
Corporation132 and National Institute of Standards and Technology (NIST)27 were used to
find and determine names. Adopters are encouraged to use terminology that is consistent
with their own in-house standards and which are familiar to development teams.

Access Controller The access controller component performs the authorization
function in the event analysis engine. Based on the
authenticated user (client application/reporting client), the
access controller determines what functions and data are
available to said user and enforces access to those.

Attack Any kind of malicious activity that attempts to collect, disrupt,
deny, degrade, or destroy information system resources or the
information itself. Specifically within the context of AppSensor,
an attack is a collection of events that violates a specified
policy.

Attack Store The attack store is the storage mechanism for attacks, which
are produced by the analysis of events.

Authenticator The authenticator is the component that performs user
authentication. This functionality lives within the event analysis
engine. Note: This component is used to authenticate client
applications and reporting clients, NOT end users to the
client applications or reporting clients.

Client Application The client application is the business application that is being
protected by AppSensor. This is the application that will be
annotated with detection points, and will be protected by
responses.

Correlation Correlation refers to the determination of relation between
events based on some common set of data. For example, two
seemingly unrelated events generated by two different
application clients may be determined to be correlated
together due to their being caused by end users sharing a
common username.

Credential(s) The credential represents the object associated with identity

Part VI : Reference

122

assertion for client applications and reporting clients when
authenticating to the event analysis engine.

Detection Point A detection point is a specific point during the execution of a
program that is instrumented in a way that allows event
generation. In practice, the execution of the program could
involve components that are architecturally separate from the
running client application. For instance, a web application (A1)
could use a detection point in a WAF that is protecting A1.
This would still be considered a detection point for A1.

Event An event is any observable occurrence in a system and/or
network. Specifically within the context of AppSensor, an event
is an observed occurrence that is monitored, especially within
the application itself, with the intention that the occurrence be
considered in the set of occurrences analyzed to determine
attacks.

Event Analysis Engine The event analysis engine is the component of the AppSensor
architecture that represents the analysis and processing of
incoming event data. The events are compiled (and stored) in
the analysis engine, then processed to determine if and when
response actions are appropriate. All of the service level APIs
represented by “AppSensor WS” are exposed by this
component.

Event Manager The event manager collects event notifications from the client
application detection points and polls the event analysis
engine for any appropriate response actions to execute.

Event Store The event store is the storage mechanism for events.

Intrusion An intrusion is a successful attack.

Reporting Client The reporting client is the architectural component of
AppSensor that represents the data visualization e.g. a
dashboard. In general, this component views, but does not
produce, the data stored in the event analysis engine. This is
meant as a set of functionality to provide a useful
representation of the AppSensor data.

Response A response is the action taken as a result of attack recognition.
The goal of executing a response could be to gain or store more
information about the attack and/or prevent further attacks.

Resource A resource is a defined component of the application. This
could be at various levels of granularity, but generally
represents an accessible subset of the application (specific
component, specific URL, etc.)

Part VI : Reference

123

Role A role is an attribute assigned to a user that ties membership to
function. When an user has a given role, the user is granted the
rights of that role. When the user loses that role, those rights
are removed. The rights given to the role are consistent with
the functionality that the user needs to perform the expected
tasks.

Threshold A threshold is a value that sets the limit between normal and
abnormal behavior.

Trend A trend is the determination of a pattern or tendency of a series
of data points moving in a certain direction over time.

User An entity that has access to the protected application. This
could represent a human or a system, or possibly a collection of
either.

Part VI : Reference

124

Detection Points

Listing of detection points

The example AppSensor detection points are listed in Table 32 below with additional details
and examples for each category in the summary table below and subsequent twelve tables.
As discussed in Part III : Making It Happen, AppSensor only needs to detect enough
obviously malicious behavior to make a decision about the intent of a user, it does not need
to detect all malicious behavior. Thus only a small subset of detection points is usually ever
implemented for each application.

Table 32 SUMMARY OF APPSENSOR DETECTION POINT IDENTIFIERS AND TITLES GROUPED BY EXCEPTION CATEGORY

Category Detection Point
Description ID Title

Request Exception RE1 Unexpected HTTP Command
 RE2 Attempt to Invoke Unsupported HTTP Method
 RE3 GET When Expecting POST
 RE4 POST When Expecting GET
 RE5 Additional/Duplicated Data in Request
 RE6 Data Missing from Request
 RE7 Unexpected Quantity of Characters in Parameter
 RE8 Unexpected Type of Characters in Parameter
Authentication Exception AE1 Use of Multiple Usernames
 AE2 Multiple Failed Passwords
 AE3 High Rate of Login Attempts
 AE4 Unexpected Quantity of Characters in Username
 AE5 Unexpected Quantity of Characters in Password
 AE6 Unexpected Type of Character in Username
 AE7 Unexpected Type of Character in Password
 AE8 Providing Only the Username
 AE9 Providing Only the Password
 AE10 Additional POST Variable
 AE11 Missing POST Variable
 AE12 Utilization of Common Usernames
 AE13 Deviation from Normal GEO Location
Session Exception SE1 Modifying Existing Cookie
 SE2 Adding New Cookie
 SE3 Deleting Existing Cookie
 SE4 Substituting Another User's Valid Session ID or Cookie
 SE5 Source Location Changes During Session
 SE6 Change of User Agent Mid Session

Table 32 continued…

Part VI : Reference

125

Category Detection Point
Detection Point Category ID Title

Access Control Exception ACE1 Modifying URL Argument Within a GET for Direct Object Access Attempt
 ACE2 Modifying Parameter Within A POST for Direct Object Access Attempt
 ACE3 Force Browsing Attempt
 ACE4 Evading Presentation Access Control Through Custom POST
Input Exception IE1 Cross Site Scripting Attempt
 IE2 Violation Of Implemented White Lists
 IE3 Violation Of Implemented Black Lists
 IE4 Violation of Input Data Integrity
 IE5 Violation of Stored Business Data Integrity
 IE6 Violation of Security Log Integrity
 IE7 Detect Abnormal Content Output Structure
Encoding Exception EE1 Double Encoded Character
 EE2 Unexpected Encoding Used
Command Injection Exception CIE1 Blacklist Inspection for Common SQL Injection Values
 CIE2 Detect Abnormal Quantity of Returned Records
 CIE3 Null Byte Character in File Request
 CIE4 Carriage Return or Line Feed Character in File Request
File IO Exception FIO1 Detect Large Individual File
 FIO2 Detect Large Number of File Uploads
Honey Trap HT1 Alteration to Honey Trap Data
 HT2 Honey Trap Resource Requested
 HT3 Honey Trap Data Used
User Trend Exception UT1 Irregular Use of Application
 UT2 Speed of Application Use
 UT3 Frequency of Site Use
 UT4 Frequency of Feature Use
System Trend Exception STE1 High Number of Logouts Across The Site
 STE2 High Number of Logins Across The Site
 STE3 High Number of Same Transaction Across The Site
Reputation RP1 Suspicious or Disallowed User Source Location
 RP2 Suspicious External User Behavior
 RP3 Suspicious Client-Side Behavior
 RP4 Change to Environment Threat Level

This list, and the details in the later tables are maintained on the AppSensor website’s list of
detection points74. Always check there for the most recent information.

Part VI : Reference

126

Categorization of detection points

It is also useful to categorize these example detection points in other ways than exception
category.

Suspicious/Attack

They can be categorized based on malicious intent, as described at the beginning of this
chapter:

• Suspicious events which could occur during normal user experience with site or
browser or as the result of a non-malicious user error

• Attack event which are outside of the normal application flow, or requires special
tools or requires special knowledge.

The allocations to these categories are shown below in Table 33. This also indicates whether
the detection point collects information from each user (“One user”) or all users in
aggregate (“All users”).

Table 33 APPSENSOR DETECTION POINTS CATEGORIZED BY SUSPICIOUS AND ATTACK EVENTS

Source Detection Points
Category Suspicious Attack

One user Request RE3 RE5 RE6 RE1 RE2 RE4 RE7 RE8
Authentication AE1 AE7 AE13 AE2 AE3 AE4 AE5 AE6 AE8 AE9 AE10 AE11 AE12
Session SE3 SE5 SE1 SE2 SE4 SE6
Access Control ACE1 ACE3 ACE2 ACE4
Input Exception IE1 IE2 IE3 IE4 IE5 IE6 IE7
Encoding EE1 EE2
Command Injec. CIE1 CIE2 CIE3 CIE4
File IO FIO1 FIO2
Honey Trap HT1 HT2 HT3
User Trend UT1 UT2 UT3 UT4
Reputation RP1 RP2 RP3

All users System Trend STE1 STE2 STE3

Reputation RP4

Part VI : Reference

127

Discrete/Aggregating/Modifying

Another categorization has been provided that divides the detection points into three
classes:

• Discrete - Detection points that can be activated without any prior knowledge of
the user's behavior and thus are related to the scope of the request

• Aggregating - Detection points that require a number of prior identical events to
occur before they are activated and thus relate to activities over the duration of a
single or multiple sessions (of one or more users)

• Modifying - Detection points that are typically only used to alter the detection
thresholds or response actions

The detection points are categorized in this way in Table 34 below.

Table 34 APPSENSOR DETECTION POINTS CATEGORIZED BY WHETHER THEY ARE DISCRETE, AGGREGATING OR
MODIFYING

Source Detection Points
 Category Discrete Aggregating Modifying
One user Request RE1 RE2 RE3 RE4 RE5 RE6 RE7 RE8

Authentication AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE1 AE2 AE3 AE13
Session SE1 SE2 SE3 SE4 SE5 SE6
Access Control ACE1 ACE2 ACE3 ACE4
Input Exception IE1 IE2 IE3 IE4 IE5 IE6 IE7
Encoding EE1 EE2
Command Injec. CIE1 CIE2 CIE3 CIE4
File IO FIO1 FIO2
Honey Trap HT1 HT2 HT3
User Trend UT1 UT2 UT3 UT4
Reputation RP1 RP2 RP3

All users System Trend STE1 STE2 STE3

Reputation RP4

Part VI : Reference

128

Categorization overview

All these categorizations have been summarized in Figure 32 below. A large color version of
this diagram is available from the OWASP website133.

Figure 32 DIAGRAM SHOWING THE ASSIGNMENT OF DETECTION POINTS TO ALL THE CATEGORIZATIONS

Detection points AE13 and IE7 are not yet included in this diagram.

The diagram illustrates the following properties of the example detection points:

• Detection points within each exception category run across the diagram
horizontally, beginning with the Request Exceptions (RE) and finishing with the
Reputation ones (RP) at the bottom of the diagram

• Detection point names and exception category can be found by reading the identity
codes

• Discrete, aggregating and modifying detection points are separated and indicated
by the colored areas

• Suspicious events are bounded by the heavy dashed line
• The four "outcome" detection points are indicated using a hatched background.

Part VI : Reference

129

This diagram also shows a classification Signature vs. Behavioral used in version 1.1 of the
AppSensor book2. This classification has been deprecated because the term “signature” can
be mistakenly understood to mean a fixed pattern due its use in terminology for anti-
malware systems. The use of Discrete/Aggregating/Modifying describes the categorization
more accurately.

At a glance, it can be seen that all behavior-based detection points are of the suspicious
type, and all are of the aggregating class. The majority of the detection points are in the
discrete class, and of those, most detect attack events.

Additionally the detection points italicized and underlined are often used in generic pre-
processing or filter modules, rather than deeper within business logic.

Related types

Some detection points can be considered as more specific instances of others. For example
Unexpected Type of Characters in Parameter (RE8) could be a sub-type of Violation Of
Implemented White Lists (IE2) and/or Violation Of Implemented Black Lists (IE3). These
are illustrated in Figure 33. A large color version of this diagram is available from the
OWASP website134.

Figure 33 DIAGRAM SHOWING THE RELATED APPSENSOR DETECTION POINTS

Part VI : Reference

130

Detection points AE13 and IE7 are not yet included in this diagram.

It should also be noted that a few detection points detect an outcome/result, rather than
the input (e.g. user data submission in an HTTP request):

• Violation of Stored Business Data Integrity (IE5)
• Violation of Security Log Integrity (IE6)
• Detect Abnormal Content Output Structure (IE7)
• Detect Abnormal Quantity of Returned Records (CIE2)

In some circumstances RP3 Suspicious Client Side behavior might also be considered an
outcome/result–perhaps some XSS occurs on the response page once rendered by the
user's web browser. Some outputs are inputs to other processes, so the distinction is not
always clear.

Part VI : Reference

131

Detailed descriptions of detection points

Grouped by detection point category.

Table 35 DESCRIPTIONS OF REQUEST EXCEPTION (RE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

RE1 - Unexpected HTTP Command
An HTTP request is received which contains unexpected/disallowed
commands.

A list of accepted commands should be generated (i.e. GET and
POST) and all other HTTP commands should generate an event. See
HTTP/1.1: Method Definitions135. Browsers and proxies using the
HEAD method to check whether the content of a file has changed.

• Instead of a GET or POST request, the
user sends a TRACE request to the
application.

RE2 - Attempt to Invoke Unsupported HTTP Method
An HTTP request is received which contains a non-existent HTTP
command (does not match anything in this list: HEAD, GET, POST,
PUT, DELETE, TRACE, OPTIONS, CONNECT).

• Instead of a GET or POST request, the
user sends a TEST request to the
application (TEST is not a valid HTTP
request method).

RE3 - GET When Expecting POST
A page which is expecting only POST requests, is requested by HTTP
method GET. Some pages may be designed to receive both GET and
POST requests.

Some resources may allow both GET and POST methods e.g. an edit
form may be hyperlinked using a parameter value defining the record
to be edited, but the form is submitted by POST to itself. Users may
bookmark a page that is the result of a POST and return to it at a later
date.

• The user sends a GET request to a page
which has only been used for POSTs.

RE4 - POST When Expecting GET
A page which is expecting only GET requests, receives a POST.

See also RE3.
• The user utilizes a proxy tool to build a

custom POST request and sends it to a
page which has been accessed by GET
requests.

Table 35 continued…

Part VI : Reference

132

Detection Point Code, Name, Description and Considerations Examples

RE5 - Additional/Duplicated Data in Request
Additional unexpected parameters or HTTP headers, or duplicates,
are received with the request. Additional parameters may be an
attempt to override values or to exploit unexposed functionality.
Duplicated parameters may be an indication of attempted HTTP
parameter pollution. Beware of firing this detector when additional
cookies, not used by the application, are found (as opposed to
duplicated cookies) since these may relate to third-party code (e.g.
advertisements, analytics) or some other application. Note that extra
HTTP headers may be added by intermediate proxies, and unless the
network configuration is fixed (an internal network perhaps),
additional headers cannot be controlled and thus cannot be used to
infer existence of a potential attacker.

Links from third party sites/services may included additional
parameters (e.g. from search engines, from advertisements).
Additional cookies headers may be added by other applications or by
third parties such as advertisers, and there may be very little control
over these. Additional HTTP headers may be added by intermediate
network devices (e.g. for traffic management).

• Additional form or URL parameters
submitted with request (e.g. debug=1,
servervariable=2000).

• A parameter is defined more than once
in the URL Query String.

• An HTTP header is duplicated.
• An additional HTTP header is found.
• A URL path parameter with the same

name as a form parameter is sent with
the request.

RE6 - Data Missing from Request
Expected parameters or HTTP headers are missing from the request.
Bookmarking and use of a browser's "back button" can lead to
requests without the expected parameters.

A bookmarked page may be missing the required POST parameters
(see also RE3). Users may choose to send a blank or different User
Agent header value.

• A page is requested without any of the
required form parameters.

• The HTTP-Accept header is not
present in a request.

RE7 - Unexpected Quantity of Characters in Parameter
The user provides a parameter value with a large number of
characters.

If the input field does not have client-side validation and/or
MAXLENGTH attributes, a user might inadvertently copy in some
text that is longer than expected.

• The user submits a form field with more
characters than the form's maxlength
attribute and client-side validation
would allow

• The user submits data in a form's
hidden field which is longer than
expected.

RE8 - Unexpected Type of Characters in Parameter
The user provides a parameter value containing characters outwith the
expected range.

Text fields may include text from copy and paste operations that
contain illegal characters.

• The user sends an HTTP header
containing a line break character.

• The user sends a URL parameter value
that contains ASCII characters below 20
or above 7E.

Part VI : Reference

133

Table 36 DESCRIPTIONS OF AUTHENTICATION EXCEPTION (AE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

AE1 - Use of Multiple Usernames
Multiple usernames are attempted when logging into the application.
The assignment of login attempts to a user can be based on a
sessionID given to the user when they first visit the website.
Correlating based on IP address is difficult since multiple users could
be using the site from the same IP address (e.g. corporate NAT).

• User first tries username 'bob', then
username 'sue', then 'steve', etc.

AE2 - Multiple Failed Passwords
For a single username, multiple bad passwords, or other
authentication credentials, are entered. See Popularity is Everything136
section 4 - Attack-Detection Scenarios for ideas about tracking use of
unsuccessful passwords and looking whether these are used against
multiple accounts.
A users providing the same wrong password more than once may be
different to different wrong passwords. See Account Lockout,
Episode 76, OWASP Podcast137.

• User tries username:password
combination of 'user:pass1', 'user:pass2',
'user:pass3', etc.

• Multiple failed PINs are attempted for
the same customer account.

• In an online banking application, several
invalid mobile authentication codes,
transaction verification codes or
transaction authentication numbers are
submitted.

• A user provides the correct password,
but repeatedly fails to provide the
required second password correctly.

AE3 - High Rate of Login Attempts
The rate of login attempts becomes too high (possibly indicating an
automated login attack). The threshold should relate to a limit and
period appropriate to the application (e.g. total number in a second or
minute or hour).

• User sends the following login attempts
within 1 second - 'user1:pass1',
'user1:pass2', 'user2:pass3', 'user2:pass4'.

AE4 - Unexpected Quantity of Characters in Username
The user provides a username with a large number of characters
(see also RE7).

• The user sends a username that is 200
characters long when 6-8 are expected.

AE5 - Unexpected Quantity of Characters in Password
The user provides a password with a large number of characters.
Higher limits may be required for sites which allow users to have pass
phrases (see also RE7).

• The user sends a password that is 200
characters long, when 5-20 are expected.

• The user sends a PIN of 30 characters.

Table 36 continued…

Part VI : Reference

134

Detection Point Code, Name, Description and Considerations Examples

AE6 - Unexpected Type of Character in Username
The user provides a username which contains characters outwith the
expected range. Any characters below hex value 20 or above 7E are
often considered illegal (decimal values of below 32 or above 126).

Users may be confused between a username, customer identification
code and their account number, or even between offline and online
identifiers. Mis-typing might add a character like "]" or "#" if these are
adjacent to the ENTER/CR key. Whitespace may be appended to
values when copied from a spreadsheet cell (e.g. a line feed character
when cell values are copied and pasted from Excel). A password may
be put in the username field by accident.

• The user sends a username that contains
ASCII non-printable characters such as
the NULL byte.

AE7 - Unexpected Type of Character in Password
The user provides a password containing characters outwith the
expected range. Examples include null byte, and characters which
need the ALT key to be used.(see also AE6).

• The user sends a password that contains
ASCII characters below 20 or above 7E.

AE8 - Providing Only the Username
The user submits a POST request which only contains the username
variable. The password variable has been removed. This is different
from only providing the username in the login form since in that case
the password variable would be present and empty.

• The user utilizes a proxy tool to remove
the password variable from the
submitted POST request.

AE9 - Providing Only the Password
The user submits a POST request which only contains the password
variable. The username variable has been removed. This is different
from only providing the password in the login form since in that case
the username variable would be present and empty.

• The user utilizes a proxy tool to remove
the username variable from the
submitted POST request.

AE10 - Additional POST Variable
Additional, unexpected POST variables are received during an
authentication request (see also RE5).

• The user utilizes a proxy tool to add the
POST variable of 'admin=true' to the
request.

AE11 – Missing POST Variables
Expected POST variables are not present within the submitted
authentication request. (see also RE6).

• The user utilizes a proxy tool to remove
an additional POST variable, such as
'guest=true', from the POST request.

AE12 - Utilization of Common Usernames
Common dictionary usernames are used to attempt to log into the
application. Common usernames might be allowed during self-
registration or when editing account details.

• Log in attempted with usernames
"administrator", then "admin", then
"test"

AE13 - Deviation from Normal GEO Location
In some applications, most users log in from one or a just a few
geographic locations. If the application learns these GeoIP locations,
it can then detect when a user is logging into the application from a
different location. This would help to identify possible account
hijacking attacks (from phishing, banking trojans).

• A banking customer's IP address has
never been seen before when they log
in.

• A system attempts to authenticate to
web services from a different country.

Part VI : Reference

135

Table 37 DESCRIPTIONS OF SESSION EXCEPTION (SE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

SE1 - Modifying Existing Cookie
A request is received containing a cookie with a modified value. This
could be determined if the cookie is modified to an illegal value.
In a poorly designed application, the length of the cookie value, or the
combined size of all the cookies, might possibly exceed that which is
supported.

• The user utilizes a proxy tool to change
the encrypted cookie to an alternative
value which does not properly decode
within the application.

• The user modifies an unencrypted
cookie and sets an illegal value for a
particular variable.

SE2 - Adding New Cookie
A request is received which contains additional cookies that are not
expected by the application. A session cookie existing when it should
not (e.g. prior to authentication) is probably indicative of an attack.
But cookies may also be set by third party sites which get send with
the request - these may be harmless. Also consider what other
applications exist on sub-domains (e.g. www.example.com,
extranet.example.com and sales.example.com) which may also be
setting cookies.

• The user utilizes a proxy tool to add
cookies to the request.

SE3 - Deleting Existing Cookie
A request is received which does not contain the expected cookies.
The user may have bookmarked a page they had visited during a
previous authenticated session.
In a poorly designed application, the number of cookies might exceed
the allowed number supported by the user's browser.

• The user utilizes a proxy tool to remove
cookies or portions of cookies from a
request.

SE4 - Substituting Another User's Valid Session ID or Cookie
A request is received which contains cookie data that is clearly from
another user or another session.
A mis-configured proxy might send the same session ID or cookie for
all users.

• The user utilizes a proxy tool to
substitute valid data from another user
or session into the cookie. An example
would be changing some sort of
identification number within the cookie.

Table 37 continued…

Part VI : Reference

136

Detection Point Code, Name, Description and Considerations Examples

SE5 - Source Location Changes During Session

Valid requests, containing valid session credentials, are received from
multiple source locations indicating a possible session hijacking attack.
A full IP address may not be constant for some users during normal
use due to clustered proxies or while mobile. Enforcing single fixed IP
addresses for each session in an intranet application may be valid.
However, if the application is accessible over public networks,
changing IP address cannot be excluded and it may be more useful to
consider fixing just part of the IP address, or looking for more
significant changes such as when the user's IP address geo-location
region or country changes (see Autonomous System Number (ASN)
and Detecting Malice with ModSecurity: GeoLocation Data). Note:
source port number should not be used in checks since this usually
changes very frequently.
If the full IP address is used for this, it may change slightly from
request to request by the same user.

• User A's session is compromised and
User B begins using the account. The
requests originating from User B will
possibly contain a different source IP
address the User A. The source IP
addresses could be the same if both
users where behind the same NAT.

• An application at a fixed server location,
which calls web services, changes IP
address unexpectedly.

SE6 - Change of User Agent Mid Session
The User-Agent value of the header changes during a session. This
may indicate a different browser is now being used. Although this
value is under the control of the sender, a change in this may indicates
that the session has been compromised and is being used another
individual. This will likely not be the case that the user has simply
copied and pasted the URL from one browser to another on the same
system because this action would not copy over the appropriate
session identifiers. The User Agent string may change in some
browsers when the content type changes (e.g. from HTML to PDF).
This detection point may only be useful in environments where a
single browser is deployed. Optionally also include other HTTP
headers in this check. For example, the Accept-Encoding and Accept-
Language headers do not normally change and could be concatenated
with the User-Agent and hashed to created an identifier. The ideas138
described in Panopticlick139 and Javascript Browser Fingerprinting140
can also be used to fingerprint a particular client system but require
the use of client-side code. Application owners should check the
legality of collecting data, and whether it is considered "personal data"
which may have additional constraints in some jurisdictions.

• Mid session, the User Agent changes
from Firefox to Internet Explorer

Part VI : Reference

137

Table 38 DESCRIPTIONS OF ACCESS CONTROL EXCEPTION (ACE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

ACE1 - Modifying URL Argument Within a GET for Direct Object Access Attempt
The application is designed to use an identifier for a particular object,
such as using categoryID=4 or user=guest within the URL. A user
modifies this value in an attempt to access unauthorized information.
This exception should be thrown anytime the identifier received from
the user is not authorized due to the identifier being non-existent or
the identifier not authorized for that user.
Bookmarking , truncation, and mistyping issues could lead to some
access control exceptions.

• ? The user modifies the following URL
from /viewpage?page=1&user=guest to
/viewpage?page=22&user=admin

ACE2 - Modifying Parameter Within A POST for Direct Object Access Attempt
The value of a non-free text html form element (i.e. drop down box,
radio button) is modified to an illegal value. The value either does not
exist or is not authorized for the user.
(see also ACE1 regarding bookmarking)

• The user utilizes a proxy tool to
intercept a POST request and changes
the submitted value to a value that was
not available through the normal
display. For example, the user
encounters a dropdown box containing
the numbers 1 through 10. The user
selects 5 and then intercepts the request
to change the submitted value to 100.

ACE3 - Force Browsing Attempt
An authenticated or unauthenticated user sends a request for a non-
existent resource (e.g. page, directory listing, image, file, etc), or a
resource that is not authorized for that user.
Requests for non-existent resources may occur for many reasons such
as Benign Unexpected URLs - Part 1 - Missing (404 Not Found
Error) Files141

• The user is authenticated and requests
site.com/PageThatDoesNotExist.

• The user is authenticated and requests a
video they are not authorized to
download/view.

• An unauthenticated user (perhaps with a
session ID) requests a listing of a
directory detailed in the site's robots.txt
file.

ACE4 - Evading Presentation Access Control Through Custom POST
A POST request is received which is not authorized for the current
user and the user could not have performed this action without
crafting a custom POST request. This situation is most likely to occur
when presentation layer access controls are in place and have removed
the user's ability to initiate the action through the presentation of the
application. An attacker may be aware of the functionality and attempt
to bypass this presentation layer access control by crafting their own
custom message and sending this in an attempt to execute the
functionality.

• The application contains the ability for
an administrator to delete a user. This
method is normally invoked by entering
the username and submitting to
https://oursite/deleteuser Presentation
layer access controls ensure the delete
user form is not displayed to non-
administrator users. A malicious user
has access to a non-administrator
account and is aware of the delete user
functionality. The malicious user sends a
custom crafted POST message to
https://oursite/deleteuser in an attempt
to execute the delete user method.

Part VI : Reference

138

Table 39 DESCRIPTIONS OF INPUT EXCEPTION (IE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

IE1 - Cross Site Scripting Attempt
The HTTP request contains common XSS attacks which are often
used by attackers probing for XSS vulnerabilities. Detection should be
configured to test all GET and POST values as well as all header
names and values for the following values.
There are many patterns which could be XSS but may also be normal
user input to a free text field e.g. "Press the 'drop' button" if a pattern
were looking for a single quotation mark followed by SQL commands
like DROP, INSERT, UPDATE and DELETE. Applications that are
used to discuss or share information about programming, software
development and security may want to allow such free text input,
provided it is encoded/escaped correctly.

• The user utilizes a proxy tool to add an
XSS attack to the header value and the
'displayname' POST variable. The
header value could be displayed to an
admin viewing log files and the
'displayname' POST variable may be
stored in the application and displayed
to other users. Note, the following XSS
attacks would only be used by an
attacker to probe for vulnerability. An
actual XSS attack would be customized
by the attacker.

• A user sends payloads like
<script>alert(document.cookie);</scrip
t> <script>alert();</script>
alert(String.fromCharCode(88,83,83))

<IMG
SRC=javascript:alert("XSS")
> <BODY ONLOAD=alert('XSS')>

IE2 - Violation Of Implemented White Lists
The application receives user-supplied data that violates an established
white list validation. See AC3 (Force Browsing Attempts) about
requests for non-existent/unauthorised (i.e. not white listed) URLs.
(see also IE1).

• The user submits data that is not correct
for the particular field. This may not be
attack data necessarily, but repeated
violations could be an attempt by the
attacker to determine how an
application works or to discover a flaw.

IE3 - Violation Of Implemented Black Lists
The application receives user-supplied data that violates an established
black list validation. This may not be attack data necessarily, but
repeated violations could be an attempt by the attacker to determine
how an application works or to discover a flaw or to exploit a flaw.
This black list approach suffers from the potential for greater false
positives than IE2 above, and cannot be used to identify all potential
malicious data (see also IE1).

• URL in comment field identified as
suspected phishing and malware pages
using Google Safe Browsing API142.

• Parameter value matches a known SQL
injection pattern.

• Parameter value matches a known XSS
pattern.

Table 39 continued…

Part VI : Reference

139

Detection Point Code, Name, Description and Considerations Examples

IE4 - Violation of Input Data Integrity
The application receives HTTP header or body parameter values
which have been tampered with when no change should have
occurred.
This detection point should only be used with parameters that cannot
be altered by accident. Input types text and textarea would not
normally be suitable, even if the elements are disabled in the browser.
Be wary of assuming JavaScript will prevent modification of form
elements in all conditions.

• Hidden form field modified by client.
• Select list value submitted in response,

not sent by server as an available option
value.

• Cookie set by server has been
manipulated by the client.

• Cookie created by client instead of by
the server.

IE5 - Violation of Stored Business Data Integrity
User's input leads to violation of data integrity. • A user's action leads to a system

integrity error when writing to, or
updating, a database.

• Business rule checks detect that a user's
action is not compatible.

• Data accuracy checking detects
duplicate records for a user.

• User input leads to an unexpected file
change (e.g. .htaccess file overwritten,
page template changed).

• User's request leads to a new,
unexpected, outbound network
connection being made (e.g. mail sent to
an SMTP server, files downloaded from
a FTP server).

IE6 - Violation of Security Log Integrity
Security or audit log tampering detected. AppSensor may rely on the
accuracy of "log" data to make decisions when thresholds are reached.
This detector aims to detect the insertion of forged entries, corruption
of logs, unauthorised deletion of and changes to records.

See also:

• NIST SP 800-92 Guide to Security Log Management143
• Tamper Detection in Audit Logs144
• Forensic Tamper Detection in SQL Server145

• Special characters embedded in logged
data about a user's activity cause the
data to overwrite a previous log entry.

• Log file integrity is broken by
modification to an existing log entry.

IE7 - Detect Abnormal Content Output Structure
Output data is of an unexpected format, structure or contains
unexpected components.

• An abnormal number of inline scripts or
iframes are returned in an HTML page
indicating a successful XSS injection.

• An XML file generated utilizing user
input no longer matches the expected
structure/schema/document
declaration.

• Generated JSON data contains does not
match expected format.

Part VI : Reference

140

Table 40 DESCRIPTIONS OF ENCODING EXCEPTION (EE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

EE1 - Double Encoded Characters
An HTTP request is received which contains one or more double
encoded values.
Data supplied by other party systems may have encoding issues.

• The user sends encodes the % symbol
to %25 and appends 3C. The user is
sending %253C which may be
interpreted by the application as %3C
which is actually <.

EE2 - Unexpected Encoding Used
An HTTP request is received which contains values that have
encoded in an unexpected format (see also EE1).

• The user encodes an attack such as
alert(document.cookie) into the UTF-7
format and sends this data the
application. This could bypass validation
filters and be rendered to a user in
certain situations.

Part VI : Reference

141

Table 41 DESCRIPTIONS OF COMMAND INJECTION EXCEPTION (CIE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

CIE1 - Blacklist Inspection for Common SQL Injection Values
A request is received which contains common SQL injection attack
attempts. The point of this detection is not to detect all variations of a
SQL injection attack, but to detect the common probes which an
attacker or tool might use to determine if a SQL injection vulnerability
is present. Unless the site contains some sort of message board for
discussing SQL injection, there is little reason that the SQL injection
examples should ever be received from a user request (see also IE1).

• The user sends a request and modifies a
URL parameter from category = 5 to
category = 5' OR '1' = '1 in an attempt
to perform an SQL injection attack. The
user could perform similar attacks by
modifying POST variables or even the
request headers to contain SQL
injection attacks. ' OR '1'='1 ' OR 'a'='a '
OR 1=1-- xp_cmdshell UNION JOIN

CIE2 - Detect Abnormal Quantity of Returned Records
A database query is executed which returns more records than
expected.

• A query of a non-SQL dataset should
only return 1 record but 100 records are
returned.

• The application is designed to allow a
user to maintain 5 profiles. A user
makes a request to view all of their
profiles. The database SQL query,
which is expected to always return 5 or
less results, returns 10,000 records.
Something in the application, or user's
actions, has caused unauthorized data to
be returned.

• Extraction of data from an XML file
should only return one matching node,
but more than one is returned.

CIE3 - Null Byte Character in File Request
A request is received to download a file from the server. The filename
requested contains the null byte the file name. This is an attempted
OS injection attack.

• The user modifies the filename of the
requested file to download to contain
the null byte. The null byte can be
added by inserting the hex value %00.

CIE4 - Carriage Return or Line Feed Character in File Request
A request is received which contains the carriage return or line feed
characters within the POST data or the URL parameters. This is an
attempted HTTP split response attack.

• The user includes the hex value %0D or
%0A in the HTTP request POST data
or URL parameters.

Part VI : Reference

142

Table 42 DESCRIPTIONS OF FILE INPUT/OUTPUT EXCEPTIONS (FIO) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

FIO1 - Detect Large Individual File
A file upload feature detects that a large file has been submitted for
upload which exceeds the maximum upload size.

• The user attempts to upload a large file
to occupy resources or fill up disk
space.

FIO2 - Detect Large Number of File Uploads
A user uploads an excessively large number of files.
The limit and period used to determine the threshold rate is
application dependent, and may also depend on the user's role.

• A single user attempts to upload
multiple small files to occupy resources
or fill up disk space.

Part VI : Reference

143

Table 43 DESCRIPTIONS OF HONEY TRAP (HT) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

HT1 - Alteration to Honey Trap Data
Fake (not otherwise needed by the application) data sent to the user
and returned (e.g. as form, URL, cookie values or in the path or
HTTP header) is modified146. This is usually combined with making
the name or value a tempting item for an attacker to try modifying.
Similar techniques can also be used for the creation of accessible
CAPTCHA.

• Otherwise useless hidden fields, which
look like potential vulnerabilities, added
to some forms are sent back to the
server modified (e.g. <input
type="hidden" name="admin"
value="false" />)

• An additional URL parameter, which is
not used by the application, is modified
by the user (e.g. /account.jsp?debug=0).

• An additional fake cookie is added and
is modified by the user.

• URL rewriting is used and a fake
directory name is added; this is modified
by the user (e.g.
/orders/normaluser/display.php).

HT2 - Honey Trap Resource Requested
A purposely leaked resource that has no use in normal application use
is requested by a user. Ensure the resource is not linked from normal
application content such that a spider or robot might find the resource
in any case.

• Page, directory or other resource listed
in the application's robots.txt robots
exclusion file is requested by the user.

• URL identified only in HTML
comments is requested by the user.

• Unexposed server function call included
in Flash file source code is requested by
the user.

HT3 - Honey Trap Data Used
Special data sent or accessed by a user. For honey trap data that is
detected on egress only, use of outbound content monitoring (e.g. a
web application firewall or similar technique) may be helpful.

• Fake user name and password only
visible in source HTML code used to
attempt to log in to the application (e.g.
in HTML comments, in server-side
code 'accidentally' delivered to the user).

• A special code number or account name
is left in a discussion forum site; this is
then used in the application

• An attempt is made to authenticate with
the user name listed in the first row (e.g.
ID=1) of the application's database
table of Users.

• Data from a fake account record is sent
by the server and detected; this record
should not normally be accessible by
anyone using the application.

Part VI : Reference

144

Table 44 DESCRIPTIONS OF USER TREND EXCEPTION (UT) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

UT1 - Irregular Use of Application
The application receives an unusual pattern of requests for the same
page or feature from a user. The user may be sending different data
combinations or trying to detect errors in the page.
Use of bookmarked URLs and the "back" button might generate out-
of-sequence requests. See also related frequency of feature use in UT4.

• The user requests a particular page, such
as the address update page, numerous
times.

• The user requests a page out-of-
sequence, such as an intermediate step
in a multi-stage form , or a series of
actions that do not map to a valid
business process.

• The user only requests dynamic content,
and not the associated static files (e.g.
images, style sheets).

• The user sends a slow request/read in
an attempt at application denial of
service.

UT2 - Speed of Application Use
The speed of requests from a user indicates that an automated tool is
being used to access the site. The use of a tool undertaking a high
number of requests quickly may indicate unapproved content scraping
or data gathering, reconnaissance for an attack, or attempts to identify
vulnerabilities in the site. Slow usage (e.g. between account creation
and use) might indicate automated account creation that are then used
subsequently for attacks. If enforced inappropriately or too rigorously,
this detection point could lead to false positives.
Time periods need to be set broadly enough to cater for the normal
spread in user behavior. Some users may use automated tools that
store passwords securely to populate and submit authentication forms.

• The user utilizes an automated tool to
request hundreds of pages per minute.

• The user does not log in to the site until
a long time after their account is
created.

• New (uncached) static content such as
images and style sheets associated with
each page are not requested in a similar
time period as the page.

• A CAPTCHA challenge is responded to
more quickly than a human could
possibly do.

• The user's clickstream data velocity is
too high.

• The time interval between the
applications displaying a page/form and
the time for the user to complete the
page/form and submit it is too fast.

• A web scraping tool is used to obtain
content from a website.

UT3 - Frequency of Site Use
Change in how often the site is used by a user
Some users may correctly change their behavior in the frequency of
accessing the application.

• The user normally accesses the site once
per week, but this changes to many
times per day.

UT4 - Frequency of Feature Use
The rate of a user utilizing a particular application feature changes
dramatically.
It may be valid for some functionality may be requested repeatedly.
For example a real customer placing many orders, a press officer
publishing a backlog of press releases, or an administrator populating
a staff directory.

• The user submits many forum messages
in a short period of time.

• The user adds many new friends rapidly.

Part VI : Reference

145

Part VI : Reference

146

Table 45 DESCRIPTIONS OF SYSTEM TREND EXCEPTION (STE) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

STE1 - High Number of Logouts Across The Site
A sudden spike in logouts across the application could indicate a XSS
and CSRF attack placed within the application which is automatically
logging off users.

• The hourly usage of the log-off feature
of the application suddenly spikes by
500%.

STE2 - High Number of Logins Across The Site
A sudden spike in logins across the application could indicate users
being redirected to the site from a phishing email looking to exploit a
XSS vulnerability in the site.

• The hourly usage of the logon feature of
the application suddenly spikes by
1,000%.

STE3 - Significant Change in Usage of Same Transaction Across The Site
A sudden spike in similar activity across numerous users of the
application may indicate a phishing attack or CSRF attack against the
users; a rapid reduction in activity may indicate users are being
redirected elsewhere; a significant change in average transaction value
or other quantitative measure may indicate suspicious activity.
External events (e.g. a news item) may lead to additional unexpected
traffic which is not an attack.
A special requirement, situation or event may dramatically change the
rate of use of certain transactions. (See also UT4)

• The hourly usage of the update email
address feature of the application
suddenly spikes by 2,000%.

• A website is compromised and users are
redirected to a malicious site part-way
through a process; the number of
successful fully completed transactions
drops to nil.

• A number of slow requests/reads are
received in an attempt at application
denial of service.

• The find contacts functionality is used
excessively to identify related friends.

Part VI : Reference

147

Table 46 DESCRIPTIONS OF REPUTATION (RP) DETECTION POINTS

Detection Point Code, Name, Description and Considerations Examples

RP1 - Suspicious or Disallowed User Source Location
The user is identified as using an IP address associated with a blacklist
Considerations
Suspicious or invalid geo-location, IP addresses or IP address ranges
may be identified using a whitelist, internal blacklist, list of Tor
nodes147, HTTP blacklist148,149, list of spammers150 or known
botnets151.
"Suspicious" may also depend upon the type of user e.g. users in the
"CMS manager" role should be using an internal network IP address,
public users could be from anywhere, customers should only be
accessing the application from a particular geographical region, search
engine robots should be from a limited range of IP addresses. Take
care that "suspicious" does not contribute to greater false positives.
The currency and accuracy of needs to be considered when the
information is used in AppSensor. The method of challenge and
removal of inaccuracies, and the speed of this process, should also be
considered.

• A user with an external IP address is
accessing an internal application, which
should not be occurring.

• An authenticated user is accessing the
application using a known Tor node,
and attack detection thresholds are
made stricter.

• An authenticated user is accessing the
application from a known trustworthy
IP address, and thresholds for certain
activity (e.g. input data validation errors)
are relaxed slightly.

• The IP address of the payment
authentication server, used by the
application for credit card authorization,
changes.

RP2 - Suspicious External User Behavior
External (to the application) devices and systems (e.g. host and
network IDS, file integrity monitoring, disk usage monitoring, anti-
malware service, IPS, network firewall, web application firewall, web
server logging, XML gateway, database firewall, SIEM) detect
anomalous behavior by the user (e.g. session and/or IP address) or
suspicious user properties (e.g. fraud score, previously compromised,
unusual current/previous behavior). This information can be used by
the application to contribute to its knowledge about a potential
attacker. In some cases, the information could be detected by the
application itself (e.g. XSS pattern black listing), but may be more
effectively identified by the external device, or is not known to the
application normally (e.g. requests for missing resources that the web
server sees, but does not pass onto the application). The greater the
knowledge a device or system has about the application, the greater
confidence can be given to evidence of suspicious behaviour.
Therefore, for example, attempted SQL injection detected by a web
application firewall (WAF) might be given greater weight than
information from a network firewall about the IP address. The power
of AppSensor is its accuracy and low false positive rate, and the usage
of external data should be carefully assessed to ensure it does not
contribute to a higher false positive rate.
The level of trust in information from the external
device/system/organization needs to be considered.

• A network IDS has detected suspicious
activity by a particular IP address, and
this is used to temporarily tighten the
attack detection thresholds for requests
from all users in the same IP address
range.

• An application is using the ModSecurity
web application firewall with the Core
Rule Set, and utilises the anomaly score
data passed forward in the X-WAF-
Events and X-WAF-Score HTTP
headers (optional rules in
modsecurity_crs_49_header_tagging.co
nf) to adjust the level of application
logging for each user.

• Information from an instance of
PHPIDS suggests request data may be
malicious.

• An adverse score is indicated for the
user or IP address by a fraud detection
engine, or by an external reputation or
fraud rating service (e.g. Open Fraud
Detection Project).

• The username (email address) is related
to an account compromised by a data
breach (e.g.
http://www.haveibeenpwned.com/).

Table 46 continued…

Part VI : Reference

148

Detection Point Code, Name, Description and Considerations Examples

RP3 - Suspicious Client-Side Behavior
The application receives a report of client-side security policy
exceptions. Take care this information does not contribute to greater
false positives.

• An internal corporate intranet
application detects use of a non-
standard workstation configuration (e.g.
using JavaScript font or plugin detection
see SE6). An alert is raised for further
investigation.

• An online banking application receives
details of suspicious client-side
behaviour that would not be expected in
normal application use, via a Content
Security Policy152 violation report. The
application increases logging for the
user, and decreases the monetary limit at
which the user's payments require
manual authorization by bank staff.

• The HTTP user agent header value does
not agree with other indicators (e.g.
using JavaScript detection as in the first
example above)153.

• A honey client system monitoring the
web application reports unexpected
behavior in the generated web pages
output.

• A third-party monitoring system detects
page content that is unauthorised
and/or contrary to policy (e.g. structure,
included links, HTML validation,
inclusion of certain data such as
payment card data).

• Client-side code is injected that creates a
hash of the page content in the
receiving client web browser to monitor
for manipulated HTML code154.

RP4 - Change to Environment Threat Level
The general threat level (e.g. general risk of attack from the Internet,
or specific targeted attacks against an organization) is elevated. This
could also be used to change response sensitivity due to short-term
effects such as application upgrades/patching. This input could be
used to alter thresholds for AppSensor responses.

The detection point could receive specially crafted input from an
attacker, and therefore the information should be considered as
untrusted.

• A machine-readable threat index is read
from a third-party and is used to control
security logging levels.

• Business circumstances (e.g. increased
attention by activists) raises the
suspicion the application may be at
increased risk of mis-use, and response
thresholds for attack detection are
tightened for non-authenticated users.

• The Defense Condition Level
(DEFCON)155 is raised and response
thresholds are changed.

• Sensor signal missing.
• External power source disconnected.
• Firmware or software patch signing

check failure.

Part VI : Reference

149

Detection point specification sheets

Figure 34 EXAMPLE DETECTION POINT DEFINITION OVERVIEW SHEET FOR AN INSTANCE OF IE2

DETECTION POINT DEFINITION - OVERVIEW TYPE

II - Discrete / business layer

CODE/TITLE IE2 Violation of Implemented White Lists

SERIES/PURPOSE 3000 Detailed parameter validation against white list

DESCRIPTION Whitelists are defined in XML data associated with the application for each allowed form
and URL parameter. This detection point compares the parameter value with two
whitelists:

1) valid values: that can be used safely as inputs to subsequent processing

2) invalid values: that should be rejected, but might only be user error (soft
rejection)

Values that do not match either whitelist are invalid and impermissible (hard rejection).

PRE-REQUISITES All generic pre-processing detection points

RELATED DPS None

COMMENTS The parameters have been previously screened for missing/duplication/extra parameters
and values.

Some parameters can be defined but have NULL value.

Some parameter values may be lists (e.g. comma delimited) of other values.

CHANGE LOG DATE

19 Feb 2013

BY

CW

ACTION

Created

Part VI : Reference

150

Figure 35 EXAMPLE DETECTION POINT DEFINITION OVERVIEW SHEET FOR AN INSTANCE OF ACE3

DETECTION POINT DEFINITION - OVERVIEW TYPE

I - Discrete / generic pre-processing

CODE/TITLE ACE3 Force Browsing Attempts

SERIES/PURPOSE 1200 Validation of request URL against whitelist of allowable application surface

DESCRIPTION All permissible application entry points are defined in the database, together with whether
SSL/TLS is mandatory, optional or disallowed. The database also includes URLs of
dynamic (e.g. scripts) and static (e.g. style sheets, images, etc) content entry points.

This detection point is called for every HTTP request to the application.

This detection point checks the path and whether SSL/TLS is being used.

PRE-REQUISITES RE1, RE2

RELATED DPS RE3, RE4

COMMENTS This detection point does not validate user/role permissions for the URL or the
presence/absence of parameters.

CHANGE LOG DATE

19 Feb 2013

21 Feb 2013

21 Feb 2013

BY

CW

AK

MM

ACTION

Created

Note on exclusions added to comments

Detection point locations added

Part VI : Reference

151

Figure 36 PART OF EXAMPLE DETECTION POINT SCHEDULE FOR IE2

DETECTION POINT DEFINITION - OVERVIEW TYPE

II - Discrete / business layer

CODE/TITLE IE2 Violation of Implemented White Lists

SERIES/PURPOSE 3000 Detailed parameter validation against white list

LOCATIONS ID

IE2-3010

IE2-3011

IE2-3013

IE2-3020

OBJECT

username

password

resource

press_release

MODULE

site.dao.auth

site.dao.auth

site.dao.auth

site.dao.media

Figure 37 EXAMPLE DETECTION POINT SCHEDULE FOR AE3

DETECTION POINT DEFINITION - OVERVIEW TYPE

I - Discrete / generic pre-processing

CODE/TITLE ACE3 Force Browsing Attempts

SERIES/PURPOSE 1200 Validation of request URL against whitelist of allowable application surface

LOCATIONS ID

ACE-1210

OBJECT

URL

MODULE

site.dao.request

Part VI : Reference

152

Responses

Listing of responses

Table 47 SUMMARY OF APPSENSOR RESPONSE IDENTIFIERS AND TITLES, GROUPED BY THE EFFECT ON THE USER

Category Response
Type Description ID Titles

None No response ASR-P No Response
Silent User unaware of application's response ASR-A Logging Change

ASR-B Administrator Notification
ASR-C Other Notification
ASR-N Proxy

Passive Changes to user experience but nothing denied ASR-D User Status Change
ASR-E User Notification
ASR-F Timing Change

Active Application functionality reduced for user(s) ASR-G Process Terminated
ASR-H Function Amended
ASR-I Function Disabled
ASR-J Account Logout
ASR-K Account Lockout
ASR-L Application Disabled

Intrusive User's environment altered ASR-M Collect Data from User

ASR-P for “no response” is usually only output in logs to indicate an event did not initiate
an immediate response. For example the event might relate to an aggregating detection
point.

This list, and the details in the following tables are maintained on the AppSensor website’s
list of responses75. Always check there for the most recent information.

Part VI : Reference

153

Categorization of responses

The responses can be categorized by their purpose, whether the response affects one or all
users, and whether the response is an instantaneous single event, has a duration or is
permanent.

Table 48 ASSIGNMENT OF APPSENSOR RESPONSES TO CATEGORIZATIONS

Response Classifications
Purpose Target User Response Duration

Code Description Logging Notifying Disrupting Blocking One All Instantaneous Period Permanent
ASR-A Logging Change l l ¡ ¡ ¡
ASR-B Administ’r Notification l l l l l
ASR-C Other Notification l l l l
ASR-D User Status Change l l l
ASR-E User Notification l l l l l
ASR-F Timing Change l l l ¡ ¡ ¡
ASR-G Process Terminated l ¡ l l l
ASR-H Function Amended l ¡ l l l ¡ l ¡

ASR-I Function Disabled l ¡ l l l ¡ l ¡

ASR-J Account Logout l ¡ l l l l
ASR-K Account Lockout l ¡ l l l l ¡

ASR-L Application Disabled l ¡ l l l l
ASR-M Collect Data from User l l l
ASR-N Proxy l l ¡ l ¡
ASP-P No response
Key l always, ¡ sometimes

Part VI : Reference

154

Detailed descriptions of responses

Table 49 DESCRIPTIONS OF APPSENSOR RESPONSES LISTED ALPHABETICALLY BY CODE

Response Code, Name, Description and Considerations Examples

ASR-A - Logging Change
The granularity of logging is changed (typically more logging). • Capture sanitised request headers and response

bodies.
• Full stack trace of error messages logged.
• Record DNS data on user's IP address.
• Security logging level changed to include

'informational' messages.

ASR-B - Administrator Notification
A notification message is sent to the application
administrator(s).

• Email alert sent to everyone in the
administration team.

• SMS alert sent to the on-call administrator.
• Visual indicator displayed on an application

monitoring dashboard.
• Audible alarm in the control room.

ASR-C - Other Notification
Notification message sent to something or someone other than
Administrators (see ASR-B) or the User (see ASR-E). The
message recipient (e.g. firewall) could take some action
otherwise unavailable to the application (e.g. disruptive - the
application makes a silent response, but the firewall actively
intervenes and perhaps blocks the user).

• Broadcast event to SIEM.
• Signal sent to upstream network firewall,

application firewall (e.g. XML, web) or load
balancer.

• Alert sent to fraud protection department.
• Record added to server event log.
• Event highlighted in a daily management

report.
• Email alert to staff member's manager.
• Proactive entry added to customer support

system (e.g. "Someone had difficulty logging in
with this customer's username - request extra
validation for telephone enquiries").

ASR-D - User Status Change
A parameter related to the user is modified. This may have an
impact on functionality or usability of the application, but only
for the one user.

• Internal trustworthiness scoring about the user
changed.

• Reduce payment transfer limit for the
customer before additional out-of-band
verification is required.

• Reduce maximum file size limit for each file
upload by the forum user.

• Increase data validation strictness for all form
submissions by this citizen.

• Reduce the number of failed authentication
attempts allowed before the user's account is
locked (ASR-K).

Table 49 continued…

Part VI : Reference

155

Response Code, Name, Description and Considerations Examples

ASR-E - User Notification
A visual, audible and/or mechanical (e.g. vibration) signal or
message is activated, displayed, or sent by other means, to the
user.

• On-screen message about mandatory form
fields (e.g. "The 'occupation' must be
completed").

• On-screen message about data validation
issues (e.g. 'The bank sort code can only
contain six digits with optional hyphens').

• Message sent by email to the registered email
address to inform them their password has
been changed.

• On-screen message warning that they have
been detected performing malicious activity
(e.g. Mr Clippy idea)

ASR-F - Timing Change
The usual timescales to perform an operation are altered,
usually extended, or delays are added.

• Extend response time for each failed
authentication attempt.

• File upload process duration extended
artificially.

• Add fixed time delay into every response.
• Order flagged for manual checking.
• Goods despatch put on hold (e.g. despatch

status changed).

ASR-G - Process Terminated
An interruption to the sending, display or process, such that the
user has to start again, or start somewhere else. For
authenticated users, this would not include termination of their
session (see ASR-J). And, they would be free to attempt the
process again (e.g. access the resource after logging in, submit a
payment transfer, etc).

• Discard data, display message and force user
to begin business process from start.

• Redirection of an unauthenticated user to the
log-in page.

• Redirection to home page.
• Display other content (i.e. terminate process

but display the output of some other page
without redirect).

• Redirection to a page on another website.

ASR-H - Function Amended

Part VI : Reference

156

Response Code, Name, Description and Considerations Examples

The usual functionality is amended but not disabled (see ASR-
I).

• Limit on feature usage rate imposed.
• Reduce number of times/day the user can

submit a review.
• Additional registration identity validation

steps.
• Additional anti-automation measures (e.g. out-

of-band verification activated, CAPTCHA
introduced).

• Static rather than dynamic content returned.
• Additional validation requirements for delivery

address.
• Watermarks added to pages, images and other

content.
• Additional human interactive proof challenges

added due to the number of incorrect guesses
of CAPTCHAs outnumbering the correct
guesses by more than a certain factor (e.g.
Token bucket idea).

• Fuzz responses to mask real functionality or
increase attacker efforts to enumerate the
application or its data (e.g. random URL
generation using ADHD Spider Trap or
Weblabyrinth, realistic but invalid cipher text
data using techniques such as honey
encryption)

Table 49 continued…

Response Code, Name, Description and Considerations Examples

ASR-I - Function Disabled
A function or functions are disabled for one, some or all users.
Other functionality continues to work as normal. For changes
that affect multiple users, be careful the response cannot be
used too easily for denial of service.

• 'Add friend' feature inactivated.
• 'Recommend to a colleague' feature links

removed and disabled.
• Document library search disabled.
• Prevent new site registrations.
• Web service inactivated or cloaked.
• Content syndication stopped.
• Automated Direct Debit system turned off

and manual form offered instead.

ASR-J - Account Logout
The current session is terminated on the server, and the user is
logged out. Often undertaken in conjunction with process
termination (ASR-G) and sometimes lockout (ASR-K).

• Session terminated and user redirected to
logged-out message page.

• Session terminated only (no redirect).

ASR-K - Account Lockout
An account, session or source address is blocked from access
and/or authentication. If IP blocking is implemented, it is
recommended this is undertaken at the network layer using the
operating system (e.g. iptables, Windows firewall) or by a
network device (e.g. firewall).

• User account locked for 10 minutes.
• User account locked permanently until an

Administrator resets it.
• One user's IP address range blocked.
• Unauthenticated user's session terminated.

Part VI : Reference

157

Response Code, Name, Description and Considerations Examples

ASR-L - Application Disabled
The whole application is disabled or made unavailable. Be
careful the response cannot be used too easily for denial of
service.

• Website shut down and replaced with
temporary static page.

• Application taken offline.

ASR-M - Collect Data from User
This response is meant to be non-malicious in intent - it is
simply additional information gathering - and not retaliatory or
damaging to the user, their systems or data, nor make any
permanent change. An alert user might be aware of the action.
Be very wary of data collected and perform appropriate
validation and sanitization. Ensure any use of this type of
response is legally permissible in the relevant jurisdictions, and
complies with corporate policies and the application's terms of
use, privacy notice and corporate policies. To a certain extent,
any additional payload in a response might cause a user's
browser or computer to crash, and this might have unforeseen
circumstances.
The information collection could use techniques such as to
gather information on the user's browser and computer
configuration138, inject content into an HTTP response using
JavaScript to discover the user's real IP address156, embed a
decloaking engine to discover the real IP address of a web
user157, or use ModSecurity and BeEF to monitor the
attacker158.

• Deploy additional browser fingerprinting using
JavaScript in responses.

• Deploy a Java applet to collect remote IP
address.

• Deploy JavaScript to collect information about
the user’s network.

• Record mobile phone fingerprint and IMEI
number.

Table 49 continued…

Response Code, Name, Description and Considerations Examples

ASR-N - Proxy
Send the request to a different back-end location. For
redirection that the user will be aware of, see See ASR-G
instead.

• Requests from the user invisibly (from the
user's perspective) passed through to a
hardened system.

• Requests are proxied to a special honeypot
system which closely mimics or has identical
user functionality.

ASR-P - No Response
There is no response. This could be used to record in logs that
a detection event did not lead to any particular response action.

• A detection point fired, but the threshold for
response has not been reached.

Letter “O” is not used for a response code.

Part VI : Reference

158

Thresholds and responses definition sheets

Figure 38 EXAMPLE THRESHOLD SCHEDULE NO1

RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

 OVERALL NUMBER OF SECURITY EVENTS

 CODE

(All)

SERIES

-

THRESHOLD

3

PERIOD

1 day

RESPONSES

ASR-K

Figure 39 EXAMPLE THRESHOLD SCHEDULE NO2

RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

 OVERALL NUMBER OF SECURITY EVENTS

 CODE

(none)

SERIES

-

THRESHOLD

-

PERIOD

-

RESPONSES

-

 SYSTEM TRENDS (INDIVIDUAL DETECTION POINTS)

 CODE

STE3

STE3

SERIES

-

-

THRESHOLD

+200%

+1,000%

PERIOD

1 hour

1 hour

RESPONSES

ASR-B

ASR-I

Part VI : Reference

159

Figure 40 EXAMPLE THRESHOLD SCHEDULE NO3

RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

 OVERALL NUMBER OF SECURITY EVENTS

 CODE

(All)

(All)

SERIES

-

-

THRESHOLD

5

45

PERIOD

1 day

1 day

RESPONSES

ASR-E

ASR-E, ASR-J, ASR-K

 SYSTEM TRENDS (INDIVIDUAL DETECTION POINTS)

 CODE

STE1

STE2

SERIES

1000

1000

THRESHOLD

+500%

+1000%

PERIOD

15 minutes

1 hour

RESPONSES

ASR-B

ASR-B

 USER TRENDS (INDIVIDUAL DETECTION POINTS)

 CODE

UT1

UT1

UT1

UT3

UT3

SERIES

1000

2010

2020

1000

2000

THRESHOLD

10

5

40

1

1

PERIOD

1 hour

15 minutes

1 day

-

-

RESPONSES

ASR-B

ASR-B, ASR-E

ASR-B, ASR-E, ASR-I

ASR-D

ASR-B, ASR-I

 USER EVENTS (INDIVIDUAL DETECTION POINTS)

 CODE

RE1

RE2

RE3

RE4

AE2

AE3

SERIES

1000

1000

1000

1000

1000

1000

THRESHOLD

2

2

5

5

 1

1

PERIOD

1 hour

1 day

1 day

1 day

NA

NA

RESPONSES

ASR-G

ASR-G

ASR-B, ASR-J

ASR-B, ASR-J

ASR-K

ASR-K

Part VI : Reference

160

SE1

SE2

SE5

SE5

ACE1

ACE2

ACE3

IE1

IE2

IE2

1000

1000

1010

1020

1000

1000

1000

1000

1000

1010

1

1

1

1

2

2

5

2

1

25

(session)

1 day

(session)

(session)

30 days

30 days

15 minutes

1 day

1 day

2 hours

ASR-J, ASR-B, ASR-E

ASR-A

ASR-A

ASR-B, ASR-K

ASR-B, ASR-K

ASR-B, ASR-K

ASR-A, ASR-F

ASR-A, ASR-E, ASR-G

ASR-G, ASR-B

ASR-B, ASR-J

Part VI : Reference

161

File Data Logging Format

AppSensor related event detection, attack identification and responses should be
incorporated into existing application logging mechanisms. See Part III : Making It Happen -
Chapter 18 : AppSensor and Application Event Logging. However, if this is not possible, separate
AppSensor event storage could be created.

Note on database logs

[CW]

File log syntax

[CW]

For example Common Weakness Enumeration (CWE)159, Common Configuration
Enumeration (CCE)160 and CAPEC68 identifiers, or event the nascent Common Misuse
Scoring System (CMSS)161.

Security Content Automation Protocol (SCAP)162 and Software Identification (SWID)
Tags163,164 to assist security automation.

Part VI : Reference

162

Signaling Data Exchange Formats

This AppSensor Guide defines a recommended syntax for event, attack and response
information records between systems. No taxonomy of values is provided. Identity
authentication, authorization, integrity, synchronization should be accomplished using the
transport protocol utilized. Additionally the particular transportation protocol is not
defined since this will be environment-specific.

See also Part III : Making It Happen - Chapter 15 : Verification, Deployment and Operation -
Operation - Logging, signaling, monitoring and reporting.

Note on detection point identifiers

Sometimes detection points are simply identified as the base inspiration types (e.g. RE4,
IE5). However an application may have multiple instances of a particular detection point
type (e.g. IE5-001, IE5-002), and it is recommended this is allowed for even in pilot
implementations.

Additional information could be appended to these detection IDs, such the application
name and version, and hostname, where the information is transmitted to some other
system. Alternatively these other identifiers can be transmitted in other fields.

Note on user identifiers

User identification is an important consideration, but not all users will necessarily be
identifiable even in authenticated parts of an application. Please see the considerations
discussed in Part 1 : AppSensor Overview - Chapter 4 : Conceptual Elements - User identification
(attribution).

Event syntax

Not all the data that is collected for security event logging is necessary for attack
identification (see for example File Data Logging Format above and Chapter 18 : AppSensor and
Application Event Logging - Application event logs).

The minimum data to be recorded/signaled when an event occurs is:

• Application/host identity (e.g. application abbreviated name and host code)
• User identity (e.g. username)
• Event identity (e.g. detection point ID)
• Event date/time.

Part VI : Reference

163

Internally within an application, this may simply be logged to a database or file system, but
with an external application or component, the preferred format to use is JSON. Other
formats are also discussed below.

AppSensor Event Format in JSON

The JSON Data Interchange Format165 is used by the demonstration implementation
AppSensor WS. Using the minimum information as defined above.

Figure 41 BASIC APPSENSOR EVENT FORMAT FOR JSON DATA

{

"user":{

 "username":"USER_USERNAME"

},

"detectionPoint":{

 "id":"DETECTIONPOINT_ID"

},

"timestamp": EVENT_TIMESTAMP

}

For a definition of the event data values in AppSensor Event Format (AEF) see Figure 44
AppSensor Event Format Data Value Definitions.

Using JSON, the application identity is specified in an HTTP header named “X-
AppSensor-Client-Application-Name”. A simple example event notification of detection
point “RE5-001” activated by the user with username “horacio7” is shown below.

Figure 42 IMPORTANT HTTP HEADERS AND EXAMPLE JSON EVENT DATA

Content-Type: text/x-json

X-AppSensor-Client-Application-Name: WebShop-WS05

{"user":{"username":"horacio7"},"detectionPoint":{"id":"RE5-001"},"timestamp":
1395760054 }

If additional fields are required from Table 19 in Chapter 18 : AppSensor and Application Event
Logging - Application event logs, it is recommended the JSON data could be extended as
follows. Note that some of these properties may be inherently defined in the detection

Part VI : Reference

164

point identity already, and thus may be redundant if the receiving event logging system or
analysis engine can decode the detection point identity.

Figure 43 EXTENDED APPSENSOR EVENT FORMAT FOR JSON DATA SHOWING OPTIONAL AND CUSTOM FIELDS

{

"user":{

 "username":"USER_USERNAME",

 "source":"USER_SOURCE",

 "useragent":"USER_AGENT",

 "fingerprint":"USER_FINGERPRINT"

},

"detectionPoint":{

 "id":"DETECTIONPOINT_ID",

 "process":"DETECTIONPOINT_PROCESS",

 "description":"DETECTIONPOINT_DESCRIPTION",

 "message":"DETECTIONPOINT_MESSAGE"

},

"location":{

 "host":"LOCATION_HOST_ID",

 "application":"LOCATION_APPLICATION_ID",

 "version":"LOCATION_APPLICATION_VERSION",

 "port": "LOCATION_PORT",

 "protocol4": "LOCATION_PROTOCOL_COMMUNICATION",

 "protocol7": "LOCATION_PROTOCOL_APPLICATION",

 "method": "LOCATION_METHOD",

 "entrypoint": "LOCATION_ENTRY_POINT"

 "interaction":"LOCATION_INTERACTION"

},

"classification":{

 "severity": "CLASSIFICATION_SEVERITY",

 "confidence”: "CLASSIFICATION_CONFIDENCE",

 "owner": "CLASSIFICATION_OWNER",

 "[CUSTOM_NAME_1]": "[CUSTOM_VALUE_1]",

 "[CUSTOM_NAME_2]": "[CUSTOM_CLASS_VALUE_2]",

 …

},

"timestamp": EVENT_TIMESTAMP,

"logtimestamp: LOG_TIMESTAMP,

“logid”: LOG_ID

}

The values for AppSensor Event Format (AEF) are defined in the table below. But see also
the references in Chapter 18 : AppSensor and Application Event Logging - Application event logs.

Part VI : Reference

165

Figure 44 APPSENSOR EVENT FORMAT DATA VALUE DEFINITIONS

[Application] User:

• USER_USERNAME (string)
An application-specific end user account username, or other user
identity such as email address or database key, or sometimes an IP
address or physical device identity; never a session identifier or
sensitive data; possibly “0” for unauthenticated users

• USER_SOURCE (string)
User’s address e.g. IPv4 or IPv6 address

• USER_AGENT (string)
User’s client software or device identification. e.g. HTTP User Agent
string

• USER_FINGERPRINT (string)
User’s client or device fingerprint e.g. SHA1 hash of certain HTTP
request headers

[Application] Detection Point:

• DETECTIONPOINT_ID (string)
The identity assigned to the activated detection point, and could
include further detection point details and even host, application,
path, code process, logic flow and instance identifiers

• DETECTIPNPOINT_PROCESS {string}
The code process where the event was detected such as the module,
function, subroutine, component or script name (not the URL path – see
”entrypoint”)

• DETECTIONPOINT_DESCRIPTION (string)
Human readable description of detection point

• DETECTPOINT_MESSAGE (string)

Human readable warning message displayed to user

[Detection Point] Location:

• LOCATION_HOST_ID (string)
Host system identifier e.g. host name, IP address, device identity

• LOCATION_APPLICATION_ID (string)
Application/service identifier e.g. application name abbreviation

• LOCATION_APPLICATION_VERSION (string)
Application/service release version

• LOCATION_PORT (integer)
Network TCP or UDP port number e.g. 443

• LOCATION_PROTOCOL_COMMUNICATION (string)
Network protocol e.g. TCP, UDP

• LOCATION_PROTOCOL_APPLICATION (string)
Application protocol or physical event descriptor e.g. FTP, key, HTTP,
screen, SIP

• LOCATION_METHOD (string)
Application protocol method e.g. POST, depress, mouse over, touch

• LOCATION_ENTRYPOINT (string)
Data submission identifier e.g. URL path, button identifier, form or
screen name

• LOCATION_INTERACTION (string)
A unique identifier used to group all events associated with a single
user interaction e.g. when multiple detection points are activated by a
single user request

Part VI : Reference

166

continued…

[Event] Classification:

• SEVERITY (integer)
This is the severity level from RFC 5424166 (The Syslog Protocol) i.e.
.. 0 (Emergency/Application unavailable for all users)
 1 (Alert/Function unavailable for all users)
 2 (Critical/Function or application unavailable to a single user)
 3 (Error/Other security events not included in codes 0, 1, 2 or 4)
 4 (Warning/A security event but user allowed to continue)
 5 (Notice: normal but significant condition)
 6 (Information/Normal user behavior)
 7 (Debug-level messages)
Note severity levels 6 and 7 are not normally valid for AppSensor

• CONFIDENCE (integer)
An integer between 0 and 100, where 100 means certain

• OWNER (string)
Event assignment e.g. Operations, Compliance

• CUSTOM_NAME and CUSTOM_VALUE
can be used for additional use but are not necessarily supported by
other systems

[Event] Chronology:

• EVENT_TIMESTAMP
Timestamp from RFC 3339167 (Date and Time on the Internet: Timestamps)
when the event was detected

• LOG_TIMESTAMP (signed integer)
A Unix time (POSIX time) in the GMT time zone designated when the event
was logged

• LOG_ID (string)

• Some identifier of the relevant application event log record (there
should be very many more application events than detection point
events)

This is extended JSON format in not supported by the demonstration web services
implementation - see Part IV : Demonstration Implementations - Chapter 20 : Web Services
(AppSensor WS).

AppSensor event data using Common Event Format

Common Event Format (CEF) may be more useful in enterprises with existing log
aggregation, monitoring and alerting systems. CEF comprises80 a prefix, message and
optional extension requiring a greater number of fields to be sent than for AEF in JSON.
Using the minimum AEF information as defined above, CEF may be used for AppSensor
event data as follows.

Part VI : Reference

167

Figure 45 BASIC APPSENSOR EVENT DATA USING CEF

"EVENT_TIMESTAMP" "LOCATION_HOST_ID" CEF:0
|"CEF_DEVICE_VENDOR"|"LOCATION_APPLICATION_ID"|"LOCATION_APPLICATION_VERSION"|"
DETECTIONPOINT_ID"|"DETECTIONPOINT_DESCRIPTION"|"SEVERITY"|suser="USER_USERNAME
"

IN CEF terminology, the instrumented application is the “device”, and the detection point
is the “signature”. The mappings from the terms for JSON in the previous table to CEF
keys are shown in the table below.

Table 50 MAPPING OF APPSENSOR EVENT FORMAT (AEF) TERMS TO COMMON EVENT FORMAT (CEF) KEYS

AEF Term CEF Key

EVENT_TIMESTAMP TIMESTAMP
LOCATION_HOST_ID HOST
LOCATION_APPLICATION_ID DEVICE PRODUCT
LOCATION_APPLICATION_VERSION DEVICE VERSION
DETECTIONPOINT_ID SIGNATURE ID
DETECTIONPOINT_DESCRIPTION NAME
SEVERITY (same)
USER_USERNAME SOURCEUSERNAME

The two additional CEF-specific field values are described below.

Figure 46 BASIC ADDITIONAL CEF FIELD VALUES IN THE CONTEXT OF APPSENSOR

CEF:

• CEF_DEVICE_VENDOR (string)
The vendor of the application e.g. supplier, organization itself

• CEF_SEVERITY (integer)
0 to 10, lowest to highest; note this is the reverse order to syslog

Other CEF extension predefined keys can be used as listed in the CEF standard80 such as
shown in the example below. Custom dictionary extensions could also be used.

Figure 47 EXAMPLE CEF APPSENSOR EVENT DATA USING CEF PREDEFINED KEYS

Part VI : Reference

168

18 04 2014 16:04:53 EST appserver02 CEF:0|widgetco|shoponline|3.7.03|AppSensor|
XSS attempt blocked|7|src=10.25.102.65 suser=W0005 proto=TCP dpt=80 dproc=httpd
request=/catalogue/showProduct/ requestMethod=GET deviceExternalID=AppSensor06
msg=Cross site scripting attempt in parameter prodid cat=detection act=block
cs1Label=requestClientApplication cs1=Mozilla/5.0 (Macintosh; U; Intel Mac OS X
10.8; en-GB; rv:1.9.2.17) Gecko/20110420 cs2Label=AppSensorDetectionPointID
cs2=R03 cs3Label=AppSensorDetectionType cs3=IE1 cs4Label=StatusCode cs4=403
cn1Label=RequestID cn1=000070825566 cn2Label=AppSensorLogID cn2=1650833
cn3Label=Confidence cn3=100

When CEF is being used it may be the receiving system has much less knowledge about the
application and its workings. In this situation it may be valuable to pass forward other data
the application already knows about the user, the detection points and the attack such as
CWE159, CCE160, CAPEC68 and SWID163 identifiers. However, passing forward any type of
sensitive data should be assessed and approved first (e.g. privacy impact assessment,
information security risk assessment, regulatory compliance check).

Attack syntax

[Perhaps add this in a future edition???]

Response syntax

Information on responses initiated may need to be transmitted by a discrete Event Analysis
Engine, or such data could be broadcast by the application itself to centralized logging and
monitoring systems.

[Perhaps add this in a future edition???]

Part VI : Reference

169

Awareness and Training Resources

Overview briefing

There is a high-level promotional video about AppSensor at:

http://www.youtube.com/watch?v=6gxg_t2ybcE

The project’s founder Michael Coates was interviewed about the AppSensor Project during
AppSec USA in New York during November 2013:

https://soundcloud.com/owasp-podcast/appsec-usa-2013-michael-coates

Furthermore, the four-page article “Creating Attack-Aware Software Applications with
Real-Time Defenses”10 in the journal CrossTalk provides a high-level summary of the
AppSensor concept, benefits and applicability.

http://www.crosstalkonline.org/storage/issue-
archives/2011/201109/201109-Watson.pdf

This article is very suitable for circulation to senior development and information security
management.

Detailed documentation

This AppSensor Guide can be downloaded free of charge as an Adobe PDF file, Word
document and Google Doc from links on the OWASP AppSensor Project website1:

https://www.owasp.org/index.php/OWASP_AppSensor_Project

It is also available at cost in print from Lulu168:

[TBC]

Other electronic formats and language translations may be available in due course. The
OWASP AppSensor Project website provides the most up-to-date sources of information,
presentation files and links to the latest version of the book.

Part VI : Reference

170

Video briefings and demonstrations

Overviews:

• Creating Self Defending Applications to Repel Attackers, Michael Coates, 2014
https://www.youtube.com/watch?v=YOtTPr8r0tI

• OWASP AppSensor - In Theory, In Practice and In Print, Colin Watson, 2013
https://www.youtube.com/watch?v=QhhG4ty5DdY

• Using the O2 Platform, ZAP and AppSensor, Dinis Cruz, 2013
http://www.youtube.com/watch?v=dzj3llZ9G6I

• Protección Web Con ESAPI y AppSensor, Manual Lopez Arredondo, 2013
http://www.youtube.com/watch?v=v2j0oVKCZLw

• Implementing AppSensor in ModSecurity, Ryan Barnett, 2011
http://www.youtube.com/watch?v=0LJKGNs_rT8

• Real Time Application Defenses: The Reality of AppSensor and ESAPI, 2010
Part 1 http://www.youtube.com/watch?v=ibQkfkATbVA
Part 2 http://www.youtube.com/watch?v=du60qMpIQU4
Part 3 http://www.youtube.com/watch?v=UUEs8CfVWq8

Attack detection and response using a demonstration application:

• OWASP AppSensor: Detecting XSS Probes, Michael Coates, 2009
http://www.youtube.com/watch?v=CekUMk_VRV8

• OWASP AppSensor: Detecting URL Tampering, Michael Coates, 2009
http://www.youtube.com/watch?v=LfD4y67qdWE

• OWASP AppSensor: Detecting Verb Tampering, Michael Coates, 2009
http://www.youtube.com/watch?v=1D6nTlmYjhY
OWASP AppSensor: Responding to an Attack, Michael Coates, 2009
http://www.youtube.com/watch?v=8ItfuwvLxRk

Demonstration information dashboards:

• OWASP AppSensor Dashboard Demo No 2 - Ecommerce Application Advanced
Configuration
http://www.youtube.com/watch?v=YZ5zGQ-XLkk

• OWASP AppSensor Dashboard Demo No 1 - Ecommerce Application Base
Configuration
http://www.youtube.com/watch?v=zCaYREAyiRg

Part VI : Reference

171

Previous guides and workbooks:

• OWASP AppSensor – Detect and Respond to Attacks from Within the
Application, v1.1, Michael Coates, 2008-2009
https://www.owasp.org/images/b/b0/OWASP_AppSensor_Beta_1.1.doc
https://www.owasp.org/images/2/2f/OWASP_AppSensor_Beta_1.1.pdf

• Attack Detection & Response with OWASP AppSensor - An Implementation
Planning Workbook, Colin Watson, 2010-2011
http://www.owasp.org/index.php/File:Appsensor-planning.zip

Part VI : Reference

172

Feedback and Testimonials

The volunteers supporting the OWASP AppSensor Project would like to hear about your
application-specific real-time attack detection and response:

• Questions
• Suggestions
• Corrections
• Experiences.

Actual production examples and testimonials, anonymous or otherwise, are especially
welcome to help the team learn and share knowledge to the wider application development
community. The AppSensor project supports OWASP’s core values169 which are:

• OPEN - Everything at OWASP is radically transparent from our finances to our
code.

• INNOVATION - OWASP encourages and supports innovation/experiments for
solutions to software security challenges.

• GLOBAL - Anyone around the world is encouraged to participate in the OWASP
community.

• INTEGRITY - OWASP is an honest and truthful, vendor neutral, global
community.

Please also let us know about errors in, improvements to and contributions for this guide.

For open contribution and discussion, please use the PROJECT mailing list:

https://lists.owasp.org/listinfo/owasp-appsensor-project

To discuss or ask about the reference implementations (AppSensor WS and AppSensor
Core), please use the DEVELOPMENT mailing list:

https://lists.owasp.org/mailman/listinfo/owasp-appsensor-dev

Thank you.

Part VI : Reference

173

Bibliography

1 OWASP AppSensor Project, OWASP
https://www.owasp.org/index.php/OWASP_AppSensor_Project
2 Coates M, AppSensor, v1.1, OWASP
https://www.owasp.org/images/2/2f/OWASP_AppSensor_Beta_1.1.pdf
3Chiappori PA, Levitt S and Groseclose TG, Testing Mixed-Strategy Equilibria When Players Are
Heterogeneous: The Case of Penalty Kicks in Soccer
http://pricetheory.uchicago.edu/levitt/Papers/ChiapporiGrosecloseLevitt2002.pdf
4 Tossing Coins Experiment
http://gwydir.demon.co.uk/jo/probability/coins.htm
5 OWASP Security Principles Project, OWASP
https://www.owasp.org/index.php/OWASP_Security_Principles_Project
6 Coates M, AppSensor: Real Time Defenses, OWASP DC 2009
https://www.owasp.org/images/0/06/Defend_Yourself-
Integrating_Real_Time_Defenses_into_Online_Applications-Michael_Coates.pdf
7 Coates M, Automated Application Defenses to Thwart Advanced Attackers
http://michael-coates.blogspot.com/2010/06/online-presentation-thursday-automated.html
8 http://michael-coates.blogspot.com/2010/08/mozilla-at-owasp-appsecusa.html
9 CrossTalk The Journal of Defense Software Engineering
http://www.crosstalkonline.org/
10 Watson C, Coates M, Melton J and Groves G, Creating Attack-Aware Software Applications with
Real-Time Defenses, CrossTalk The Journal of Defense Software Engineering, Vol. 24, No. 5,
Sep/Oct 2011
http://www.crosstalkonline.org/storage/issue-archives/2011/201109/201109-Watson.pdf
11 Resilient Software, Software Assurance, US Department Homeland Security
https://buildsecurityin.us-cert.gov/swa/resilient.html
12 http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf
BITS Software Assurance Framework, Financial Services Roundtable, 2012
13 Kitten T, New Wave of DDoS Attacks Launched, BankInfoSecurity.com, Information Security
Media Group, 6 March 2013
http://www.bankinfosecurity.com/new-wave-ddos-attacks-launched-a-5584/op-1
14 damontoo, Etsy Has Been One of the Best Companies I've Reported Holes To
http://www.reddit.com/r/netsec/comments/vbrzg/etsy_has_been_one_of_the_best_companies_i
ve/
15 Lackey Z, Security at Scale: Effective Approaches to Web Application Security, Etsy
http://www.slideshare.net/zanelackey and http://vimeo.com/54107692
16 Etsy, Node.js Instrumentation Library
https://github.com/etsy/statsd

Part VI : Reference

174

17 Malpas I, Measure Anything, Measure Everything, Code as Craft, Etsy
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
18 Ratnam G and King R, Pentagon Seeks $500 Million for Cyber Technologies, Bloomberg
http://www.bloomberg.com/news/2011-02-15/pentagon-seeks-500-million-for-cyber-research-
cloud-computing.html
19 Applegate SD, The Principle of Maneuver in Cyber Operations, Navy Center for Innovation
Weblog, Navy Warfare Development Command, 6 June 2012
https://www.nwdc.navy.mil/ncoi/blog/Document%20Library/The%20Principle%20of%20Maneu
ver%20in%20Cyber%20Operations%20-%20Guest%20Briefing.pdf
20 McRee R, MORPHINATOR & cyber Maneuver as a Defensive Tactic, HolisticInfoSec blog, 18
July 2012
http://holisticinfosec.blogspot.co.uk/2012/07/morphinator-cyber-maneuver-as-defensive.html
21 Naraine R, How Google Set a Trap for Pwn2Own Exploit Team, ZDNet, 9 March 2012
http://www.zdnet.com/blog/security/how-google-set-a-trap-for-pwn2own-exploit-team/10641
22 Google Hack Honeypot
http://ghh.sourceforge.net/
23 HP Fortify Runtime
https://ssl.www8.hp.com/us/en/software-solutions/software.html?compURI=1337235
24 Prevoty
https://www.prevoty.com/
25 Bace R, Intrusion Detection, Sams, 1999
ISBN-10: 1578701856, ISBN-13: 978-1578701858
26 Bace R and Mell P, NIST Special Publication on Intrusion Detection Systems, NIST
http://www.21cfrpart11.com/files/library/government/intrusion_detection_systems_0201_draft.p
df
27 Scarfone K and Mell P, SP 800-94 Guide to Intrusion Detection and Prevention Systems (IDPS),
NIST, 2007
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
28 Scarfone K and Mell P, SP 800-94 Revision 1 DRAFT Guide to Intrusion Detection and
Prevention Systems (IDPS), NIST, 2012
http://csrc.nist.gov/publications/drafts/800-94-rev1/draft_sp800-94-rev1.pdf
29 ISO/IET 7498-2:1989 Information Processing Systems - Open Systems Interconnection - Basic
Reference Model - Part 2: Security Architecture
http://www.iso.org/iso/catalogue_detail.htm?csnumber=14256
30 Recommendation X.800 : Security architecture for Open Systems Interconnection for CCITT
applications, ITU, 1991
http://www.itu.int/ITU-T/recommendations/rec.aspx?id=3102
31 Ferraiolo K, The Systems Security Engineering Capability Maturity Model (SSE-CMM), ISSEA
http://csrc.nist.gov/nissc/2000/proceedings/papers/916slide.pdf
32 Application Logging Cheat Sheet, OWASP
https://www.owasp.org/index.php/Logging_Cheat_Sheet

Part VI : Reference

175

33 Thomassen P, AppSensor: Attack-Aware Applications Compared Against a Web Application
Firewall and an Intrusion Detection System, Norwegian University of Science and Technology,
Faculty of Information Technology, Mathematics and Electrical Engineering, Department of
Computer and Information Science, 2012
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:566091
34 Snort, Sourcefire
http://www.snort.org/
35 ModSecurity Open Source Web Application Firewall, Trustwave SpiderLabs
http://www.modsecurity.org/
36 OWASP ModSecurity Core Rule Set Project, OWASP
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
37 OWASP Top Ten Most Critical Web Application Security Risks, 2013, OWASP
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
38 Transport Layer Security, Wikipedia
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
39 OSI Model, Wikipedia
http://en.wikipedia.org/wiki/OSI_model
40 Firesmith D, Common Concepts Underlying Safety, Security, and Survivability Engineering,
Software Engineering Institute, Carnegie Mellon University, Technical Note CMU/SEI-2003-TN-
033, 2003
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6553
41 Software Assurance Maturity Model Project (SAMM). OWASP
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
42 Software Security Assurance State of the Art Report, DACS/IATAC
http://iac.dtic.mil/iatac/download/security.pdf
43 Secure Software Engineering Initiatives, ENISA
http://www.enisa.europa.eu/act/application-security/secure-software-engineering/secure-software-
engineering-initiatives
44 Secure SDLC Cheat Sheet, OWASP
https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet
45 BITS Software Assurance Framework, Financial Services Roundtable
http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf
46 Team Software Process for Secure Systems Development (TSP Secure), Software Engineering
Institute, Carnegie Mellon University
http://www.cert.org/secure-coding/secure.html
47 Capability Maturity Model Integration (CMMI), Software Engineering Institute, Carnegie Mellon
University
http://www.sei.cmu.edu/cmmi/
48 CMMI for Acquisition, v1.3, Technical Report CMU/SEI-2010-TR-032, Software Engineering
Institute, Carnegie Mellon University
http://www.sei.cmu.edu/reports/10tr032.pdf

Part VI : Reference

176

49 Resiliency Management Model, v1.0, CERT
http://www.cert.org/resilience/rmm.html
50 ISO/IEC 27034 Application Security
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44378
51 SP 800-64 Rev2 Security Considerations in the Information System Development Life Cycle,
NIST
http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf
52 Software Assurance Forum for Excellence in Code (SAFECode)
http://www.safecode.org/
53 Software Assurance, Cyber Security Division, Department Homeland Security
https://buildsecurityin.us-cert.gov/swa/
54 Practical Measurement Framework for Software Assurance and Information Security, v1.0, 2008
http://www.psmsc.com/Downloads/TechnologyPapers/SwA%20Measurement%2010-08-08.pdf
55 Microsoft Security Development Lifecycle (SDL)
http://www.microsoft.com/security/sdl/
56 Oracle Software Security Assurance (OSSA)
http://www.oracle.com/us/support/assurance/
57 Building Security In Maturity Model (BSIMM)
http://bsimm.com/
58 BSIMM for Vendors (vBSIMM)
http://bsimm.com/related/
59 Appropriate Software Security Control Types for Third Party Service and Product Providers,
Third Party Software Security Working Group, Financial Services Information Sharing and Analysis
Center
http://docs.ismgcorp.com/files/external/WP_FSISAC_Third_Party_Software_Security_Working_
Group.pdf
60 Application Security Guide for CISOs, OWASP
https://www.owasp.org/index.php/OWASP_Application_Security_Guide_For_CISOs_Project
61 CISO Survey and Report, OWASP
https://www.owasp.org/index.php/OWASP_CISO_Survey_Project
62 DShield.org Web Application Honeypot
http://code.google.com/p/webhoneypot/
63 Distributed Web Honeypot (DWH) Project
http://projects.webappsec.org/w/page/29606603/Distributed%20Web%20Honeypots
64 Glastopf Web Application Honeypot
http://glastopf.org/
65 High Interaction Honeypot Analysis Toolkit (HIHAT)
http://hihat.sourceforge.net/

Part VI : Reference

177

66 Riden J, McGeehan R, Engert B and Mueter M, Know your Enemy: Web Application Threats -
Using Honeypots to Learn About HTTP-Based Attacks, The Honeynet Project, 2008
http://www.honeynet.org/papers/webapp
67 Pattern of Life and Temporal Signatures of Hacker Organizations, Analysis Intelligence blog, 9
May 2013
http://analysisintelligence.com/cyber-defense/temporal-signatures-of-hacker-organizations/
68 Common Attack Pattern Enumeration and Classification (CAPEC), The Mitre Corporation
http://capec.mitre.org/
69 ModSecurity SQL Injection Challenge: Lessons Learned, Anterior blog, Trustwave SpiderLabs, 26
July 2011
http://blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.html
70 SQL Injection Challenge, ModSecurity
http://modsecurity.org/demo/challenge.html
71 Header Field Definitions, Hypertext Transfer Protocol HTTP/1.1, W3C
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
72 Panopticlick research project, Electronic Frontier Foundation
https://panopticlick.eff.org/
73 JavaScript Browser Fingerprinting, Business Info Web Security Applications and Experiments
http://www.businessinfo.co.uk/labs/probe/probe.php
74 AppSensor Detection Points, AppSensor Project, OWASP
http://www.owasp.org/index.php/AppSensor_DetectionPoints
75 AppSensor Response Actions, AppSensor Project
https://www.owasp.org/index.php/AppSensor_ResponseActions
76 Strand J and Asadoorian P, Offensive Countermeasures: The Art of Active Defense, PaulDotCom
June 2013
77 Hacking Banking Websites: Myth or Reality? High-Tech Bridge, 12 Nov 2013
https://www.htbridge.com/news/hacking_banking_websites_myth_or_reality.html
78 Virtual Patching Best Practices, OWASP
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
79 Barnett R, Dynamic DAST/WAF Integration: Realtime Virtual Patching, 5 June 2012
http://blog.spiderlabs.com/2012/06/dynamic-dastwaf-integration-realtime-virtual-patching.html
80 Common Event Format (CEF), Revision 15, ArcSight, 17 July 2009
http://mita-tac.wikispaces.com/file/view/CEF+White+Paper+071709.pdf
81 The Incident Object Description Exchange Format, RFC 5070, IETF, December 2007
http://www.ietf.org/rfc/rfc5070.txt
82 Extended Abuse Reporting Format, x-arf.org
http://www.x-arf.org
83 Structured Threat Information eXpression, Mitre Corporation
http://stix.mitre.org/

Part VI : Reference

178

84 Cyber Observable eXpression, Mitre Corporation
http://cybox.mitre.org/
85 Protocol Specification For Interfacing to Data Communication Networks, American National
Standards Institute Inc, 2008
http://www.nema.org/Standards/ComplimentaryDocuments/ANSI-C1222-2008-Contents-and-Scope.pdf
86 Automated Copyright Notice System, Motion Picture Association, Inc.
http://www.acns.net/
87 Vocabulary for Event Recording and Incident Sharing (VERIS), Verizon Inc
http://www.veriscommunity.net/doku.php
88 AuditConsole, jwall.org
http://www.jwall.org/web/audit/console/index.jsp
89 WAF-FLE Log and Event Console for ModSecurity
http://www.waf-fle.org/
90 Watson C, Attack Detection and Response with OWASP AppSensor - An Implementation
Planning Workbook, v0.3, August 2011
http://www.owasp.org/index.php/File:Appsensor-planning.zip
91 Threat Classification, v2.0, Web Application Security Consortium
http://projects.webappsec.org/Threat-Classification
92 Cornucopia - Ecommerce Website Edition, OWASP
https://www.owasp.org/index.php/OWASP_Cornucopia
93 Elevation of Privilege (EoP) Card Game, Microsoft
http://www.microsoft.com/security/sdl/adopt/eop.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=20303
94 Shostack A, Threat Modeling: Designing for Security, ISBN 1118809998, Wiley, 2014
http://threatmodelingbook.com/
95 Gallagher B and Eliassi-Rad T, Classification of HTTP Attacks: A Study on the ECML/PKDD
2007 Discovery Challenge, Lawrence Livermore National Laboratory
http://eliassi.org/papers/gallagher-llnltr09.pdf
96 Hansen R, Detecting Malice
http://www.detectmalice.com/
97 OWASP Mobile Threat Model Project, OWASP
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=OWASP_Mobile_Thr
eat_Model_Project
98 AppSensor Response Actions, OWASP
https://www.owasp.org/index.php/AppSensor_ResponseActions
99 Logging Cheat Sheet, OWASP
https://www.owasp.org/index.php/Logging_Cheat_Sheet
100 Chuvakin A and Peterson G, How to Do Application Logging Right,
IEEE Security & Privacy Journal
http://arctecgroup.net/pdf/howtoapplogging.pdf

Part VI : Reference

179

101 OWASP ESAPI Logger (Java), OWASP
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Logger.html
102 SP 800-92 Guide to Computer Security Log Management, NIST
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
103 OWASP Logging Project, OWASP
https://www.owasp.org/index.php/Category:OWASP_Logging_Project#tab=Main
104 Watson C, Application Security Logging
https://www.clerkendweller.com/2010/8/17/Application-Security-Logging
105 Watson C, World Summit - AppSensor Results, AppSensor Project Mailing List, OWASP
https://lists.owasp.org/pipermail/owasp-appsensor-project/2011-March/000215.html
106 Common Log File Format, July 1995, W3C
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
107 Extended Log File Format, March 1996, W3C
http://www.w3.org/TR/WD-logfile.html
108 Documents Library, PCI SSC
https://www.pcisecuritystandards.org/security_standards/documents.php
109 Qualified Security Assessor Companies, PCI SSC
https://www.pcisecuritystandards.org/approved_companies_providers/qualified_security_assessors
.php
110 Google Summer of Code 2012, Google
http://www.google-melange.com/gsoc/homepage/google/gsoc2012
111 SOAP Web Services for AppSensor, Rauf Butt, Google
http://www.google-melange.com/gsoc/project/google/gsoc2012/edil/60002
112 Google Summer of Code (GSoC), OWASP
https://www.owasp.org/index.php/GSoC
113 BSD 3-Clause License, Open Source Initiative
http://opensource.org/licenses/BSD-3-Clause
114 AppSensor – Intrusion Detection, Mária Jurčovičová
http://meri-stuff.blogspot.co.uk/2011/05/appsensor-intrusion-detection.html
115 phpBB Bulletin Board Software, phpBB Limited
https://www.phpbb.com/
116 GNU General Public License, version 2 (GPL-2.0)
http://opensource.org/licenses/gpl-2.0.php
117 How to use the "netsh advfirewall firewall" context instead of the "netsh firewall" context to
control Windows Firewall behavior in Windows Server 2008 and in Windows Vista, Microsoft
http://support.microsoft.com/kb/947709
118 Barnett R, Detecting Malice with ModSecurity: Honey Traps, Spider Labs Blog, August 2011
http://blog.spiderlabs.com/2011/08/detecting-malice-with-modsecurity-honeytraps.html
119 Barnett R, Setting Honey Traps with ModSecurity: Adding Fake robots.txt Disallow Entries,
Spider Labs Blog, August 2013

Part VI : Reference

180

http://blog.spiderlabs.com/2013/08/setting-honeytraps-with-modsecurity-adding-fake-robotstxt-
disallow-entries.html
120 OWASP O2 Platform, OWASP
https://www.owasp.org/index.php/OWASP_O2_Platform
121 Cruz D, Invoking an OWASP AppSensor Java method from .NET C# REPL (using Jni4Net)
http://blog.diniscruz.com/2013/03/invoking-owasp-appsensor-java-method.html
122 Owasp-o2-platform Mailing List, OWASP O2 Platform Project
https://lists.owasp.org/listinfo/owasp-o2-platform
123 Common Event Format, Revision 15, 17 July 2009, ArcSight Inc
http://mita-tac.wikispaces.com/file/detail/CEF+White+Paper+071709.pdf
124 Shezaf O, ModSecurity Core Rule Set": An Open Source Rule Set for Generic Detection of
Attacks against Web Applications
https://www.owasp.org/images/0/07/OWASP6thAppSec_ModSecurityCoreRuleSet_OferShezaf.p
df
125 Owasp-modsecurity-core-rule-set Mailing List, ModSecurity Core Rule Set Project
https://lists.owasp.org/mailman/listinfo/owasp-modsecurity-core-rule-set
126 AuditViewer, Christian Bockermann
https://secure.jwall.org/web/audit/viewer.jsp
127 Barnett R, Web Application Defender's Cookbook: Battling Hackers and Protecting Users,
December 2012, John Wiley & Sons
ISBN: 978-1-118-36218-1
128 SecViz - Security Visualization
http://secviz.org/
129 AppSensor Application Logging, Signalling and Dashboards, Clerkendweller Web Security,
Usability and Design blog, 14 June 2011
https://www.clerkendweller.com/2011/6/14/AppSensor-Application-Logging-Signalling-and-Dashboards
130 ThreadFix, Denim Group
http://www.threadfix.org/
131 National Information Assurance Glossary, CNSS Instruction No. 4009, 26 April 2010,
Committee on National Security Systems, National Security Agency
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
132 CWE Glossary, v0.5, 21 February 2013, The MITRE Corporation
http://cwe.mitre.org/documents/glossary/index.html
133 Overview of AppSensor Detection Point Categorizations, OWASP
https://www.owasp.org/index.php/File:Detection-points-2-venn.png
134 AppSensor Detection Points Inter-Relationships, OWASP
https://www.owasp.org/index.php/File:Detection-points-interrelationships.png
135 HTTP/1.1 Method Definitions, W3C
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Part VI : Reference

181

136 Schechter S, Herley C and Mitzenmacher M, Popularity is Everything - A New Approach to
Protecting Passwords from Statistical-Guessing Attacks
http://www.eecs.harvard.edu/~michaelm/postscripts/hotsec2010.pdf
137 Account Lockout, Bill Cheswick, Episode 76, OWASP Podcast, September 22, 2010
http://www.owasp.org/index.php/OWASP_Podcast#tab=Latest_Shows
138 About Panopticlick, Electronic Frontier Foundation
http://panopticlick.eff.org/about.php
139 Panopticlick Test, Electronic Frontier Foundation
http://panopticlick.eff.org/
140 JavaScript Browser Fingerprinting, Labs, Businessinfo
http://www.businessinfo.co.uk/labs/probe/probe.php
141 Watson C, Benign Unexpected URLs - Part 1 - Missing (404 Not Found Error) Files, Web
security, Usability and Design Blog, 26 October 2010
https://www.clerkendweller.com/2010/10/26/Benign-Unexpected-URLs-Part-1-Missing-Files
142 Safe Browsing API, Google
http://code.google.com/apis/safebrowsing/
143 SP 800-92 Guide to Security Log Management, NIST
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
144 Snodgrass RT, Yao SS and Collberg CTamper Detection in Audit Logs, University of Arizona
http://www.cs.toronto.edu/vldb04/protected/eProceedings/contents/pdf/RS13P1.PDF
145 Forensic Tamper Detection in SQL Server
http://www.sqlsecurity.com/images/tamper/tamperdetection.htm
146 Ullrich J, My Top 6 Honey Tokens, App Sec Blog, SANS Institute
http://software-security.sans.org/blog/2009/06/04/my-top-6-honeytokens/
147 Tor nodes
https://torstat.xenobite.eu/
148 HTTP blacklist
http://www.projecthoneypot.org/httpbl.php
149 DShield
http://www.dshield.org
150 Spamhaus
http://www.spamhaus.org/
151 Shadow Server
http://www.shadowserver.org/wiki/
152 Content Security Policy 1.0, W3C
http://www.w3.org/TR/CSP/
153 Browser Detection Autopwn, etc…
http://ha.ckers.org/blog/20100904/browser-detection-autopwn-etc/
154 ModSecurity Advanced Topic of the Week: Detecting Banking Trojan Page Modifications
http://blog.spiderlabs.com/2013/07/modsecurity-advanced-topic-of-the-week-detecting-banking-
trojan-page-modifications.html

Part VI : Reference

182

155 Defence Condition Level (DEFCON)
http://www.fas.org/nuke/guide/usa/c3i/defcon.htm
156 Content Injection, ModSecurity Features, Trustwave SpiderLabs
http://www.modsecurity.org/projects/modsecurity/apache/feature_content_injection.html
157 Decloaking Engine
http://decloak.net/
158 Barnett R, Building a Web Attacker Dashboard with ModSecurity and BeEF
https://speakerdeck.com/rcbarnett/building-a-web-attacker-dashboard-with-modsecurity-and-beef
159 Common Weakness Enumeration, The Mitre Corporation
http://cwe.mitre.org/
160 Common Configuration Enumeration, NIST
http://nvd.nist.gov/cce/
161 The Common Misuse Scoring System (CMSS): Metrics for Software Feature Misuse
Vulnerabilities, Interagency Report 7864, NIST, July 2012
http://csrc.nist.gov/publications/nistir/ir7864/nistir-7864.pdf
162 The Security Content Automation Protocol (SCAP), NIST
http://scap.nist.gov/
163 ISO/IEC 19770-2:2009, Software Asset Management -- Part 2: Software Identification Tag
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53670
164 Software Identification (SWID) Tags, TagVault.org
http://tagvault.org/swid-tags/what-are-swid-tags/
165 The JSON Data Interchange Format, ECMA-404, ECMA International, October 2013
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
166 RFC 5424, The Syslog Protocol, Network Working Group, IETF
https://tools.ietf.org/html/rfc5424
167 RFC 3339, Date and Time on the Internet Timestamps, Network Working Group, IETF
http://tools.ietf.org/html/rfc3339
168 OWASP Store, Lulu
http://www.lulu.com/spotlight/owasp
169 About the Open Web Application Security Project, OWASP
https://www.owasp.org/index.php/About_OWASP

