
Software assurance with
OpenSAMM

Jacco van Tuijl

jacco@owasp.org

Speaker BIO

• Hack in the Box - Core Crew NL

• Red team tester / Pen tester / security
consultant for 7 year

• Software engineering background

• Software security architect @ RES Software

Why a software assurance program?

• Preventing security issues from occurring

• Finding security issues in early stage of
development is much cheaper than after
release

• Less vulnerabilities in software releases

• Better prepared for when security issues occur

• Keeps your product out of the “Hall of shame”

• Customer demand

Traditional security testing

• A team of developers can make more
vulnerabilities in a day then a tester can find in a
day

• A tester can find more vulnerabilities in a day
then that a team of developers can fix in a month

• Results in a ever expanding list of known
vulnerabilities

OpenSAMM

• OpenSAMM v1.0 released 2009

• OpenSAMM v1.1 (2016 = current)

Work in progress:

• OpenSAMM v1.2 & v2

– More tools and materials

– Implementation guidance dev ops & agile

– Privacy ?

Other methodologies

• OWASP CLASP - obsolete
• BSIMM- Proprietary Cigital fork of OpenSAMM

alfa
• MS SDL
• SAMATE - Software Assurance Metrics And Tool

Evaluation (NIST)
• SSE-CMM
• Grip op SSD – CIP (Dutch government

requirement)

Microsoft SDL

• Secure defaults

MS SDL OpenSAMM

1. Core Security Training Education & guidance

2. Establish Security Requirements Security requirements

3. Create Quality Gates/Bug Bars Code review and security test baseline

4. Perform Security and Privacy Risk Assessments Threat Assessment

5. Establish Design Requirements Security Requirements

6. Perform Attack Surface Analysis/ Reduction Threat assessment (ML1) & Design review (One of
the security practices)

7. Use Threat modeling Threat assessment (ML1)

8. Use Approved Tools Secure architecture (ML1)

9. Deprecate Unsafe Functions Code review

10. Perform Static Analysis Code review

11. Perform Dynamic Analysis Security testing

12. Perform Fuzz Testing Security testing

13. Conduct Attack Surface Review Design review & security testing

14. Create an Incident Response Plan Vulnerability management

15. Conduct Final Security Review Verification

16. Certify Release and Archive Code signing

17. Execute Incident Response Plan Incident response plan & team and vulnerability
management

SAMM Business functions

12 focus areas

3 maturity levels for each focus area

Where to start ?

• Baseline Assessment to see what is already
being done

Ready made roadmaps

Roadmap templates for:

• Independent software vendor

• Online service provider

• Financial services organization

• Government organization

Roadmap

• Baseline assessment
• SSDLC Roadmap
• Application risk profile
• Register security spend

Application Risk profile
• Classify each Application based on financial

impact of worst-case scenario
– Critical: the end of the organization

– High: big losses

– Medium: medium losses

– Low: almost no impact

Quality Gates based on risk: education, compliance,
design review, implementation review and security test

• Identify external compliance
drivers

• Monitor changes
• Checklist and audit
• Release gates

Identify compliancy, regulations and
standards
• Law & Regulation

– US (SOx, HIPAA, Technology
Management Reform Act,
Security Act)

– EU (ECHR)
– International
– Canada (PIPEDA)

• Contracts & licenses
– Customer contracts / EULA /

bewerkers overeenkomst
– Partner contracts
– 3th party components
– Suppliers contracts

• Company goals and values

• Industry standards
– PCI-DSS
– FIPS
– ISO 27001, ISO 27035
– OpenSAMM, MS SDL, BSIMM
– CIP – Grip op SSD
– Common Criteria for

Information Technology
Security Evaluation

– OWASP Application Security
Verification Standard

– CMMI
– OWASP top 10
– SANS top 20

• High-over security training
• Role-based training
• Role-based examination &

certification

Maturity level 1 : High-over training

SSDLC & Security Awareness

• Microsoft Security Development Lifecycle Core
Training classes
– Introduction to Security Development Lifecycle

– Basics of Secure Design, Development & Test

– Introduction to Threat Modeling

– Privacy in Software Development

• OWASP TOP 10

Maturity level 2: Role specific training

Role Training and/or workshop

Architect Security principles & threat modelling

Developer Secure programming

Tester Security testing

Requirements Engineer Abuse-cases & Security requirements

How & where do we get security
requirements ?
• Customer agreements

• Compliance / industry standards

• Access control matrix

• Misuse-cases / abuser stories

• Threat model

• Security testing

• Security practices

Access control matrix

Threat modeling
• Microsoft Threat Modeling Tool 2016

–Spoofing

–Tampering

–Repudiation

– Information disclosure

–Denial of service

–Elevation of privilege

Threat modeling

Threat modeling
• Classify control priority : High, medium or low

Quality gate example:
• All high risk controls in high or critical risk

applications should be code reviewed.
• Existence of all controls in high or critical risk

applications should be validated.
• The working of all medium and high risk controls

should be tested.

Misuse and Abuse-cases

• Negative testing / un-happy flow / abuser
story

• Review architecture for security
principles

• List of recommended technologies
• Validate usage of recommended

technologies

Security principles
• Attack surface reduction
• Defense in depth
• Least privilege
• Secure defaults
• Securing the weakest link
• Simplicity in design
• Fail securely
• Avoid security by obscurity
• Detect intrusions and log attacks
• Don’t trust infrastructure/services/people
• Input Validation & output encoding
• Avoid single points of failure
• Data in transit & rest protection
• Data loss prevention
• Audit trail
• Promote Privacy
• Never assume that your secrets are safe
• Complete Mediation
• Psychological acceptability (security VS usability)

Defense in depth

Defense in depth examples
• WAF + Urlscan + Input validation + Parameterized

queries + data at rest encryption + output encoding

• Network firewall + IDS + Host based firewall

• Email antivirus and spam filter + strip possible harmful
file formats + Host based anti-virus

• HTTPS over IPSEC over a private network

Least privilege Windows processes

1. Local Service (best)

2. Network Service

3. Unique user account

4. Local System

5. Local administrator account

6. Domain administrator account (worst)

• Identify software attack surface
• Analyze design against security

requirements
• Release gates

Attack surface analysis
• Look at all of your entry points: Channels,

Methods and data
– Network i/o
– File i/o
– Process i/o

• Rank them
– Authenticated vs Anonymous
– Administrator only vs regular user
– Network vs local
– UDP vs TCP

Also look at sub-features
• File formats

– Image : JPG, FLA, BMP, PNG or GIF
– Data : csv, excel or SQL

• HTTP verbs
– GET, POST, PUT and DELETE

• SMTP
– Helo, EHLO, MAIL,RCPT, VRFY and EXPN

• HTTPS
– SSLv1, SSLv2, SSLv3 , TLS1.0, TLS1.1 and TLS1.2

Attack surface analysis & reduction

• MS Attack surface analyzer

Attack surface reduction examples

• Windows
– Authenticated RPC
– Firewall on by default

• SQL Server
– Xp_cmdshell off by default
– CLR and COM off by default

• IIS
– Off by default
– Static files by default

• Visual Studio
– Web service listen on localhost only
– SQL Server Express listen on localhost only

It is not just about turning stuff off

Higher Attack Surface Lower Attack Surface

Execute by default Off by default

Open Socket Closed socket

UDP TCP

Anonymous access Authenticated access

Admin access User access

Internet access Local subnet access

System Not system

Uniform defaults User-chosen settings

Large code Small code

Weak/flexible ACLs Strong/strict ACLs

• Checklist
• Review of high-risk code
• Automated code analysis
• Release gates for code review
• Derive test cases from security

requirements
• Conduct penetration testing
• Automated security testing
• Release gates for security testing

OWASP - Application Security
verification Standard

• Provides 3 levels of application verification

• Document procedures for typical
application security alerts

• Change management
• Operational security guide
• Code signing
• Secure Operational environment

specifications
• Install security updates
• Patch management process
• Monitor baseline security

configuration
• Audit envirement configuration

• Create security response team
• Incident response process
• Responsible disclosure
• Root cause analysis for incidents

Responsible disclosure

• Responsible disclosure policy
• Facilitate security researchers that want to report

security issues (without service contract or legal
consequences)

• Prioritize issues
• Security bulletin - mailing list

– application specific
– no advertisements

• 60 day max fix time
Responsible disclosure ≠ Full disclosure

Prioritize issues

• CVSS v3

Responsible disclosure policy

• Clear rules

– What is allowed and what not

– What can be expected from the organization

• Bug Bounty program

– Big reward will get you a lot reports: most false

– Lot of work to analyze reports

Prioritize issues

• CVSS v3

Issues reported externally or published on the
internet should get a higher priority

The higher the application risk rating the higher the
priority

60 day fix time is common practice

Privacy

• Privacy impact assessment
– NIST Privacy Impact Assessments

– MS Application Privacy Assessment

• Avoid handling PII where possible

• Define where PII will be used for in privacy
statement

• Don’t keep PII longer than required

• Data processing agreement

TIPS

• Tools available on the OpenSAMM Wiki

• Use tools & materials from MS SDL

• Join OpenSAMM Mailing list and Monthly call

• Add me on LinkedIn : Jacco van Tuijl

