
OWASP TOP 10

2017 Release

Andy Willingham June 12, 2018
OWASP Cincinnati

Agenda

• A	quick	history	lesson
• The	Top	10(s)
• Web
• Mobile
• Privacy
• Protective	Controls

Why	have	a	Top	10?

• Software	runs	the	world	(infrastructure,	cars,	
voting,	toaster)

• Developers	are	not	perfect
• Developers	are	not	security	experts
• Software	is	complex	and	has	to	interact	with	
other	systems,	apps,	and	business	processes

• Open	Source	Software	is	not	a	panacea
• Software	wants	to	be	free	(reuse)
• Software	is	a	way	in	to	other	systems

Why	Software	Security Matters
•Cost

•The cost to fix a found, unexploited security vulnerability far outweighs the
cost to prevent it.

•The cost of a successful exploit of the vulnerability increases by orders of
magnitude

•The cost of lost time that could be spent writing new code over rewriting old
code

•Brand and Reputational cost can decrease marketshare.

•Increases Time to Market when done right
• Not for initial roll out but for new versions

•Quicker testing
•Testing smaller chunks of code more often and more throughly

•Quicker fixes
•Mitigates vulnerabilities faster (think of how long it used to take from

discovery to release fix)
•Quicker fixes improves brand image (responsiveness, takes security seriously,

cares about ME)

Time	and	Cost	to	Fix
www.securityinnovationeurope.com/the-business-case-for-security-in-the-software-development-lifecycle-sdlc

By	The	Numbers

Getting	it	fixed	before	it	breaks
▪ Vulnerabilities are introduced in code for a myriad of reasons

▪ Rush to market (which can/do lead to below being more common)

▪ Code Reuse (typically OSS)

▪ One study found that 77% of scanned IOT apps contained OSS and had an ave of
677 vulns per app

▪ Many vulns are years old and are high risk

▪ Those responsible for remediation are taking longer to fix, if at all

▪ Lack of developer secure coding training

▪ Lack of QA (testing, peer review)

▪ You MUST start early

▪ Requirements/Design/Architecture

▪ You MUST verify often

▪ QA/Security Testing/Peer Review

▪ You MUST invest in your teams by providing access to training

OWASP	Top	10(s)

• OWASP Top 10 Web Risks
• OWASP Top 10 Privacy Risks
• OWASP Top 10 Mobile Risks
• OWASP Top 10 Proactive Controls

Top	10	Web	Risks	2004
• A1: Unvalidated Input
• A2: Broken Access Control
• A3: Broken Authentication and Session Management
• A4: Cross-Site Scripting (XSS) Flaws
• A5: Buffer Overflows
• A6: Injection Flaws
• A7: Improper Error Handling
• A8: Insecure Storage
• A9: Denial of Service
• A10: Insecure Configuration Management

Top	10	Web	Risks	2017
• A1: Injection
• A2: Broken Authentication
• A3: Sensitive Data Exposure
• A4: XML External Entities
• A5: Broken Access Control
• A6: Security Misconfiguration
• A7: Cross-Site Scripting (XSS)
• A8: Insecure Deserialization
• A9: Using Components with Known Vulnerabilities
• A10: Insufficient Logging and Monitoring

What’s	Old	is	New

A2:	Broken	Access	Control

A3:	Broken	Authentication	&	
Session	Management

A4:	Cross-Site	Scripting	(XSS)

A10:	Insecure	Configuration	
Management

A6:	Injection	Flaws

A1:	Unvalidated	Input

A2:	Broken	Authentication

A1:	Injection

A5:	Broken	Access	Controls

A6:	Security	Misconfiguration

A7:	Cross-Site	Scripting	(XSS)

A8:	Insecure	Deserialization

Changes	to	2017

2013	vs	2017

Top	10:	A1	– A5

A1: Injection
Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter into executing
unintended commands or accessing data without proper authorization.

A2: Broken
Authentication

Application functions related to authentication and session management are often implemented incorrectly,
allowing attackers to compromise passwords, keys, or session tokens, or to exploit other implementation flaws
to assume other users’ identities temporarily or permanently.

A3: Sensitive
Data Exposure

Many web applications and APIs do not properly protect sensitive data, such as financial, healthcare, and PII. Attackers
may steal or modify such weakly protected data to conduct credit card fraud, identity theft, or other crimes. Sensitive data
may be compromised without extra protection, such as encryption at rest or in transit, and requires special precautions
when exchanged with the browser.

Many older or poorly configured XML processors evaluate external entity references within XML documents.
External entities can be used to disclose internal files using the file URI handler, internal file shares, internal
port scanning, remote code execution, and denial of service attacks.

A5: Broken
Access Control

A4: XML
External Entities

(XEE)

Restrictions on what authenticated users are allowed to do are often not properly enforced. Attackers can
exploit these flaws to access unauthorized functionality and/or data, such as access other users' accounts,
view sensitive files, modify other users’ data, change access rights, etc.

Top	10:	A6	– A10
A6: Security

Misconfiguration

A7: Cross-Site
Scripting

A8: Insecure
Deserialization

A9: Using
Components

Known Vulns

A10: Insufficient
Logging and
Monitoring

Insufficient logging and monitoring, coupled with missing or ineffective integration with incident response, allows
attackers to further attack systems, maintain persistence, pivot to more systems, and tamper, extract, or destroy data.
Most breach studies show time to detect a breach is over 200 days, typically detected by external parties rather than
internal processes or monitoring.

Components, such as libraries, frameworks, and other software modules, run with the same privileges as
the application. If a vulnerable component is exploited, such an attack can facilitate serious data loss or
server takeover. Applications and APIs using components with known vulnerabilities may undermine
application defenses and enable various attacks and impacts.

Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not result in
remote code execution, they can be used to perform attacks, including replay attacks, injection attacks,
and privilege escalation attacks.

XSS flaws occur whenever an application includes untrusted data in a new web page without proper validation or
escaping, or updates an existing web page with user-supplied data using a browser API that can create HTML or
JavaScript. XSS allows attackers to execute scripts in the victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure default
configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured HTTP headers, and verbose
error messages containing sensitive information. Not only must all operating systems, frameworks, libraries, and
applications be securely configured, but they must be patched and upgraded in a timely fashion.

Top	10	Proactive	Controls	(2018)
1. Define Security Requirements (1?, New)
2. Leverage Security Frameworks and Libraries (9)
3. Secure Database Access (6?, New)
4. Encode and Escape Data (3, partially)
5. Validate All Inputs (4)
6. Implement Digital Identity (5, sort of)
7. Enforce Access Controls (6?)
8. Protect Data Everywhere (7, expanded)
9. Implement Security Logging and Monitoring (8)
10.Handle All Errors and Exceptions (10)

Top	10	Proactive	Controls	(2016)
1. Verify for Security Early and Often
2. Parameterize Queries
3. Encode Data
4. Validate All Inputs
5. Implement Identity and Authentication Controls
6. Implement Appropriate Access Controls
7. Protect Data
8. Implement Logging and Intrusion Detection
9. Leverage Security Frameworks and Libraries
10.Error and Exception Handling

Top	10	Mobile	Risks	(2016)
• Improper Platform Usage
• Insecure Data Storage
• Insecure Communication
• Insecure Authentication
• Insufficient Cryptography
• Insecure Authorization
• Client Code Quality
• Code Tampering
• Reverse Engineering
• Extraneous Functionality

Top	10	Privacy	Risks	(2014)
• Web App Vulnerabilities
• Operator sided Data Leakage
• Insufficient Data Breach Response
• Insufficient Deletion of Personal Data
• Non-Transparent Policy, Terms & Conditions
• Collection of data not required for the primary

purpose
• Sharing of data with third party
• Outdated personal data
• Missing or Insufficient Session Expiration
• Insecure Data Transfer

Questions

Apendix
• https://www.owasp.org/images/7/72/OWASP_Top_10-

2017_%28en%29.pdf.pdf
• https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
• https://www.owasp.org/index.php/OWASP_Top_10_Privacy_Risks_

Project#tab=Top_10_Privacy_Risks_2
• https://www.owasp.org/index.php/OWASP_Proactive_Controls
• https://www.slideshare.net/mobile/hacker0x01/owasp-top-10-

2017-84029876?from_action=save
• www.securityinnovationeurope.com/the-business-case-for-security-

in-the-software-development-lifecycle-sdlc
• https://www.synopsys.com/content/dam/synopsys/sig-

assets/reports/2018-ossra.pdf

