
Access control, REST and 
sessions
Johan Peeters
independent

software architect



Interactions with REST APIs are stateless
each request contains all ... information necessary ... to understand the request

Motivation:

1. scalability
2. processing need not understand interaction semantics (service orchestration)
3. services may be dynamically rearranged
4. cacheable

Fielding, PhD dissertation, p. 93

5. security

2



Stateless interaction means: 
no sessions!

3



How do you do e-commerce without state?

Client /products /products/123 /custs/456/orders

/custs/456/orders/789

GET
read (list)

GET

POST

read

create
789

POST 123
create

4

xyz



E-commerce is stateful
State is in

● the resources
● the client

but interaction is stateless.

No sessions!

5



What about access control?
Sensitive resources require a valid access token

Access token informs authZ decision

5. call with access token

/custs/456/orders/789 6



What is a valid access token?
Issued by an authorization server

5. call with access token

trust

7/custs/456/orders/789



How does the client obtain an access token? 

1. redirect URL

2. authN and consent dialog

5. call with access token

trust

3. 302 #access & 
identity token

4. #access & 
identity token

Browser

8/custs/456/orders/789



What if...
token is stolen?

client goes rogue?

user loses trust in the client?

...

 

9



Revoke the access token!
So-called reference tokens
Downside: additional round trip
Revocation requires detection, 
so tokens should only be valid for a short period

10

5. call with access token

Token introspection 
endpoint

6. validate token

10/custs/456/orders/789



Short-lived tokens
Shorter access token lifetime → smaller window of opportunity for attacker

but requiring the user to authenticate frequently is anathema

Could we use OAuth 2 refresh tokens?

Yes, but...

11



A novel idea:

sessions
between user agent and authorization server

12



This is great because...
users only have to log in once per session

only session implementation in the authZ server

13



But important problems remain
1. users should not even be aware of a new access token request
2. how do users log out?

14



Silent authentication
hidden iframe 

● makes token request with prompt parameter set to none
● receives access token
● sends it to parent with HTML5 postMessage()

brittle?

15



Log out
OAuth revocation endpoint? Perhaps partially

Some authZ servers provide a proprietary /logout endpoint

3 OIDC drafts:

● back-channel logout
● session management
● front-channel logout

Struggling with Single Log Out

16



Conclusions and recommendations
● keep your APIs RESTful and stateless - thus no sessions
● sessions between client and authZ server avoid need to re-authenticate

○ caveat: silent authentication is clunky
○ perhaps refresh tokens are not so bad

● Single Log Out may be a good deal more complex than Single Sign On

17



About me

● Security architect
● Founder of secappdev.org
● Consultancy
● Bespoke development
● Lecturer at EhB

https://www.johanpeeters.com
● @YoPeeters

yo@johanpeeters.com 18

https://www.johanpeeters.com
https://twitter.com/YoPeeters
mailto:yo@johanpeeters.com

