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Interactions with REST APIs are stateless
each request contains all ... information necessary ... to understand the request

Motivation:

1. scalability
2. processing need not understand interaction semantics (service orchestration)
3. services may be dynamically rearranged
4. cacheable

Fielding, PhD dissertation, p. 93

5. security
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Stateless interaction means: 
no sessions!
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How do you do e-commerce without state?

Client /products /products/123 /custs/456/orders

/custs/456/orders/789

GET
read (list)

GET

POST

read

create
789

POST 123
create
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E-commerce is stateful
State is in

● the resources
● the client

but interaction is stateless.

No sessions!
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What about access control?
Sensitive resources require a valid access token

Access token informs authZ decision

5. call with access token
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What is a valid access token?
Issued by an authorization server

5. call with access token

trust
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How does the client obtain an access token? 

1. redirect URL

2. authN and consent dialog

5. call with access token

trust

3. 302 #access & 
identity token

4. #access & 
identity token

Browser
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What if...
token is stolen?

client goes rogue?

user loses trust in the client?

...
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Revoke the access token!
So-called reference tokens
Downside: additional round trip
Revocation requires detection, 
so tokens should only be valid for a short period
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5. call with access token

Token introspection 
endpoint

6. validate token
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Short-lived tokens
Shorter access token lifetime → smaller window of opportunity for attacker

but requiring the user to authenticate frequently is anathema

Could we use OAuth 2 refresh tokens?

Yes, but...
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A novel idea:

sessions
between user agent and authorization server
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This is great because...
users only have to log in once per session

only session implementation in the authZ server
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But important problems remain
1. users should not even be aware of a new access token request
2. how do users log out?
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Silent authentication
hidden iframe 

● makes token request with prompt parameter set to none
● receives access token
● sends it to parent with HTML5 postMessage()

brittle?
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Log out
OAuth revocation endpoint? Perhaps partially

Some authZ servers provide a proprietary /logout endpoint

3 OIDC drafts:

● back-channel logout
● session management
● front-channel logout

Struggling with Single Log Out
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Conclusions and recommendations
● keep your APIs RESTful and stateless - thus no sessions
● sessions between client and authZ server avoid need to re-authenticate

○ caveat: silent authentication is clunky
○ perhaps refresh tokens are not so bad

● Single Log Out may be a good deal more complex than Single Sign On
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● Consultancy
● Bespoke development
● Lecturer at EhB

https://www.johanpeeters.com
● @YoPeeters

yo@johanpeeters.com 18

https://www.johanpeeters.com
https://twitter.com/YoPeeters
mailto:yo@johanpeeters.com

