
Creating	an	AppSec Pipeline	with	containers	in	a	week
How	we	failed	and	succeeded

Jeroen	Willemsen	– OWASP	benelux days



About	me

Jeroen	Willemsen
@commjoenie
jwillemsen@xebia.com

“Security	architect”
“Full-stack	developer”
“Mobile	security”



Agenda

• The	challenge

• The	solution

• Bumps on	the road

• Recap



THE	CHALLENGE

What	could	possibly	go	wrong?



The	Challenge



The	Challenge:	The	Landscape



The	Challenge:	Existing	workflow

Ready	for	
Validation

E2E	Test

Deploy	to	
Dev

Unit	Test

Store	
Artifact

BuildPull	&	
Merge



The	Challenge:	New	entries

• OWASP	Dependency-Check	
• License	checkers
•

•

• Etc…

&	 & SAST



THE	SOLUTION

We	got	there…kind	off



The	Solution:	Extend the build step

Add dependency &	license checkers	on	top	of	quality tooling.

Get	feedback	FAST!



The	Solution:	Feeding ZAP	&	BURP

E2E	Test
with	proxy

Scheduled	
long	scans

Deploy	to	
Dev

Unit	Test

Store	
Artefact

BuildPull	&	
Merge

Quick	scan



The	Solution:	DAST	&	reporting



The	Solution:	Clair

• Run	Clair	on	the	created	containers.

• Todo:	run	Clair	regularly	on	the	registry,	add	whitelists	&	
integrate	with	Threadfix.
– By	now	this	could	be	done	differently	using	the	clair-scanner	from	
ArminC.



The	Solution:	Containerize!

• Our	tools	embedded	in	containers:
+ Less	additional	platform	complexities
+Can	run	anywhere	(locally	/	deployed)
+ Easy	to	scale
- Still	need	to	manage	the	data!
- More	assets	that	might	contain	vulnerabilities
- Not	perfect:	still	have	to	harden	our	assets



The	Solution:	A	starting	point

./clair-scanner	app/threadfix example-whitelist.yaml
http://10.200.98.63:6060	10.200.98.63	
2017-05-12	10:50:19.712897	I	|	Analyzing	
014fdc7e45e4e7c5967856fc65d7bb5ff0b324fe4ef1ac8ce448843ab310416a	
And	9	other	layers...	
Giving:
2017-05-12	10:50:19.854789	I	|	Image	contains	unapproved	vulnerabilities:	
[CVE-2017-6508]	

Example	scan	with	a	later	version	of	the	
clair-scanner	by	Armin	Coralic:



The	Solution:	A	starting	point

• 2017-05-12	10:50:19.854789	I	|	Image	contains	unapproved	
vulnerabilities:	[CVE-2017-6508]	
– A	vulnerability	when	creating	the	container
– Not	used	during	runtime
– Clair	cannot	pick	up	the	layers	in	which	you	create	your	own	custom	
tooling	(your	own	jar’s,	executables,	etc.)



The	Solution:	Did it work?

YES!
Not all components are	in,	

but	feedback	is	already of	great value



BUMPS	ON	THE	ROAD

And their countermeasures



Bump	1:	False	positives



Bump	1:	False	positives

• Use settings/plugins in	app	à no	scaling.

• Use a	DB	with a	framework:

• Have	an API																					&



Bump	2:	Legacy	APIs

X



Bump	2:	Legacy	APIs

Test	legacy	APIs	separately	L

Stub	it,	with	the	help	of	the	teams	



Bump	3:	Not	frustrate	developers	

• Give feedback	fast!
• Automate all the things!
• Be	part	of	the team
• Filter	&	suppress false positives ASAP
• Use known tooling



Bump	4:	Integrating	Burpproxy

• Integration	with	Burp	is	not	completed
– Custom	builds	for	containers
– At	time	of	testing:	Additional	extensions	necessary	to	have	a	proper	
REST	API



Bump	5:	False	negatives….

Security	automation	does	not	mean:	no	manual	pentesting.

Even	when	you	add	more	tools	(which	we	have	to…).



Bump	6:	Platform	team	availability



Lesson	learned	later	on….

• The	need	for	multiple	pipelines…

Appsec-pipeline:



Lesson	learned	later	on….

• The	need	for	multiple	pipelines…

Appsec-pipeline:

Security	pipeline:

Nmap

….



Lesson	learned	later	on

• Use	the	SWAGGER	Api if	possible
• Soooooooo many	tools	to	use:
– Docker?	Think	of	Docker	Bench,	OpenSCAP,	Anchore,	etc…
– Infrastructure?	Start	with OpenVAS,	OpenSCAP,	Inspec
– Inspect	certificates:	SSLlabs,	testSSL.sh
– Every	language	has	its	quality	&	security	tooling



RECAP

To sum up



Recap

• Automate	all	the	things:	get	feedback	FAST.
• Containerize
• Filter	false	positives
• Stub	legacy	APIs
• HELP	developers,	DO	NOT	frustrate!
• Still	a	need	for	manual	pentesting &	reviewing.
• Get	platform-team	support!
• Every	part	of	the	pipeline	is	a	blessing!



QUESTIONS?



THANK	YOU!


