A SECURITY REFERENCE
ARCHITECTURE FOR CLOUD
SYSTEMS

Eduardo B. Fernandez

Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL, USA

ed@cse.fau.edu

About me

Professor of Computer Science at Florida Atlantic
University, Boca Raton, FL., USA

At IBM for 8 years (L.A. Scientific Center).

Wrote the first book on database security
(Addison-Wesley, 1981).

Author of many research papers

Consultant to IBM, Siemens, Lucent,...

Ing Elect. UTFSM, MS EE Purdue U, PhD CS
UCLA

Now a visiting professor in Chile (UTFSM)

=\ 2
(\j/ Secure Systems Research Group - FAU

Markus Schumacher
Eduardo Fernandez-Buglioni

Duane Hybertson

Frank Buschmann

Peter Sommerlad

SECURITY
PATTERNS

Integrating Security
and Systems Engineering

r}
\ .‘

SOFTWARE DESIGN PATTERNS

Secure Systems

Eduardo Fernandez-Buglioni

SECURITY PATTERNS
IN PRACTICE

Designing Secure Architectures
Using Software Patterns

SOFTWARE DESIGN PATTERNMNS

 Get a panorama of security patterns and
their use

« Consider a systematic approach to build
secure systems based on patterns and
UML

* Building Security Reference Architectures
for Clouds using patterns

(&9\3\/(/%)2) Secure Systems Research Group - FAU
B | ——

The value of information

* Individuals and enterprises rely on
information for credit, health, professional
work, business, education,...

 lllegal access (reading or modification) to
information can produce serious problems

 Because of its value, information is a
growing target of attacks

Security objectives

Confidentiality--no leakage of sensitive or
private information

Integrity-- no unauthorized modification or
destruction of information

Availability (No denial of service) --
annoying , costly

Accountability (Non-repudiation)-- legally
significant

Countermeasures

 Identification and Authentication— we must know
who are you

« Access control/ authorization --provide
confidentiality and integrity

« Information hiding (cryptography,
steganography)— making information
unintelligible

« Auditing-- basis for prosecution or improvements
to the system

* Intrusion detection—attack alerting

Secure Systems Research Group - FAU

Current situation

 The Internet is an insecure place and
attacks keep occurring

* One of the main reasons is the poor
quality of the software used in systems
and application software

« Software engineering neglected security

for a long time, emphasis on development
speed, no features that can be sold,...

Remedies

* Help designers build secure code using a
systematic approach, even if they do not
know much about security

* Provide units of security (packed
solutions to specific problems) with
catalogs and tools

* Build security together with the functional
part of the application

Use a model-based approach

Approaches to security

Model checking

T et and ‘ Verification
Analysis of 3
Security composability

of system
UML/OCL

Model_dri models
odel-driven
Security :>

"> Certification

ulnerability

Security
patterns

c analysis
ode-based ::> Code
Security examination

Best practices

Certification

Secure Systems Research Group - FAU

Need for a conceptual approach |

Security should be applied where the
application semantics is understood

Security is an all-levels problem

We should start from high-level policies
that can be mapped to the lower levels

We need precise models to guide system
development

Consider a layered architecture

Need for conceptual structure Il

A unified system is easier to understand:
better design, better administration

« Easier to analyze effect of new hardware
or software

« Start from policies and models
« Apply security throughout the lifecycle

8/9/13

Secure Systems Research Group - FAU

Patterns

A pattern is a solution to a recurrent
problem in a specific context

Idea comes from architecture of buildings
(C. Alexander)

Applied initially to software and then
extended to other domains

Appeared in 1994 and are slowly being
accepted by industry

Value

Reusable solutions, but maybe not
directly, usually require tailoring

Encapsulate experience and knowledge of
designers (best practices)

Free of errors after a while

Need to be catalogued to be useful

Used as guidelines for design

Good to evaluate systems and standards
Useful for teaching

Value of security patterns

« Can describe security principles (Single
Point of Access) or security mechanisms
(Firewalls)

« Can guide the design and implementation
of the security mechanism itself

« Can guide the use of security mechanisms
in an application (stop specific threats)

« Can help understanding and use of
complex standards (XACML, WiMax)

« Good for teaching security principles and
mechanisms

@7 QD) Secure Systems Research Group - FAU
|
C;> —

POSA template

* Intent (thumbnail)
« Example

« Context
 Problem and forces

« Solution: in words, UML models (static and
dynamic)

 Implementation

« Example resolved

« Known uses

« Consequences

« See also (related patterns)

Secure Systems Research Group - FAU

Structure of the solution

ExternalHost

1 requestService s srequestService] LocalHost

PFFirewall
address address

1
RuleBase

addRule
deleteRule
modifyRule
reorderRules

* {ordered}
Rule

in/out

1

ExplicitRule DefaultRule

Secure Systems Research Group - FAU

Filtering a client’ s request

«actor :Firewall :RuleBase :Rule :LocalHost
:ExtHost
requestService()
requestService
| ()> checkRule >

accept

&
accept ~

requestService()

Vv

Secure Systems Research Group - FAU

Using the patterns

« Catalogs of patterns are not enough,
designers must be given guidance in their

use

 There are many patterns (growing in
number) and the task of selecting them

gets harder

« A first approach is to classify the patterns
according to some criteria

We can use patterns at all levels

« Patterns for models define the highest
level

At each lower level we refine the patterns
at the previous level to consider the
specific aspects of each level

- We’ll analyze some patterns from each
layer

Applic. Layer: Access control models

* Authorization. How do we describe who is
authorized to access specific resources in a
system? A list of authorization rules describes
who has access to what and how.

 Role-Based Access Control (RBAC). How do
we assign rights to people based on their
functions or tasks? Assign people to roles
and give rights to these roles so they can
perform their tasks.

* Multilevel Security. How to decide access in an
environment with security classifications.

Role-Based Access Control

 Users are assigned roles according to
their functions and given the needed
rights (access types for specific objects)

 When users are assigned by
administrators, this is a mandatory model

« Can implement least privilege and
separation of duty policies

Basic RBAC pattern

Secure Systems Research Group - FAU

Right

access_type
predicate

copy_flag

checkRights

User | * MemberOf * | Role * Authorization_rule * | ProtectionObject
id id ‘ id
name name name

Basic condition
Authorization

. —Role E Content-based J

CopyFlag

Authorization

s Or - =attribute values
Delegatable Basic
Authorization RBAC authorizer

sec

session

Explicitly
session Granted
Authorization

\'4

[Session-based || session Access Session‘seSSion i Session-based)
RBAC) . ABAC)

Secure Systems Research Group - FAU

Web services security

Application Firewall [Del04]. The application firewall filters
calls and responses to/from enterprise applications, based
on an institution access control policies.

XML Firewall [Del04]. Filter XML messages to/from
enterprise applications, based on business access control
policies and the content of the message.

XACML Authorization [Del05]. Enable an organization to
represent authorization rules in a standard manner.

XACML Access Control Evaluation [Del05]. This pattern
decides if a request is authorized to access a resource
according to policies defined by the XACML Authorization
pattern. .

WSPL [Del0S5]. Enable an organization to represent access
control policies for its web services in a standard manner. It
also enables a web services consumer to express its
requirements in a standard manner.

Secure Systems Research Group - FAU

Standards for web services security

Business
| ‘WS-Federation | | BPEL4WS | Workflow
| | |WS-SecureConversaﬁon | |WS-Authorization | |WSCI |
\ [wspL | [ws-Trust | [wspolicy | —| wspL |
M . Catalog and
4 Web Services | WS-Privacy | | UD DI securityl_l UDDI | Description
| e | | WEE || Registry | |ebXML sec |_| ebXML |
\\
Communications A
[samL | [xmr |
| HEADER || PAYLOAD t """ - e T T
.
™, .

XML ‘1 XKMS | Document

s
il

Transports | . < DBMS
HTTP

N,

L DD 0 W os

TCP/IP

processes memory file system

I:l Web services layers I:l Standards

I:l Supporting structures I:l Security Standards/ Specifications

Secure Systems Research Group - FAU

XML firewall

« Controls input/output of XML
applications

* Well-formed documents (schema as
reference)

« Harmful data (wrong type or length)
* Encryption/decryption
« Signed documents

Client Application -» Service

id serviceld
credentials

executeService()

* XML 1
communicatesThrough Firewall protects

requestService()

!

1 1. % 1
PolicyAuthorization | FolicyEnforcement | = 1

Contentinspector

Point check Point check
: Access Data .’
authenticate()
checkAccess()
log()
definePolicy() HarmfulData |1
defineSubject() Detector [|
removeSubject()
? SchemaBase
1 1] XMLSchema |1 |
addSchemaf) '| Validator
IdentityBase PolicyBase removeSchemal)
updateSchemal)
checkDuplicate()
S XMLEncryptor/ | 1
T Decryptor
& L
Identity Policy
id serviceld XMLSigner/ ||
credential predicale Verifier

Secure Systems Research Group - FAU

XACML

« Special technical committee of
OASIS

» Specification of policies for
information access over the Internet
and their enforcement

« Combines work of IBM Tokyo and
University of Milano, Italy.

 Implemented by Sun in early 2003

XACML Authorization

PolicyComponent
-obligation K>
| Action
PolicySet Policy
+policyCombiningAlgorithm() | [+ruleCombiningAlgorithm() é>
| |
* . Resource
1 1 —1-attributes
Rule Target Subject
-effect={Permit,Deny} e
 condifion K>— K>1—-attributes
1 A
. Environment
—-attributes

Secure Systems Research Group - FAU

Access control evaluation

Resource *) ¥ Subject ¥ ¥ PolicyEnforcementPoint

- isAuthorizedFor - requestsAccess

-attributeValues -attributeValues
SN B XACMLAccessRequest ? 1

Fdson={Permi D clc:: es'mtnsNe tApplicabie} (e ContextHandl
-decision={Permit,Deny,Indeterminate,NotApplicable _resourceAttributes xtHandler

-obligations _action comespondsTo

-environmentAttributes

PolicylnformationPoint

correspondsTo correspondsTo +getAttrbuteValue()
1 1
ApplicablePolicySet ellefeaeda iy
evaluates|-policyCombiningAlgorithm
+retrieveApplicablePdlicy()
+evaluateApplicablePolicy ()

i

PolicyComponent

IS

PolicyAd ministrationPoint

<<creates>>

Secure Systems Research Group - FAU

XML Encryption

« The XML Encryption standard describes
the syntax to represent XML encrypted
data and the process of encryption and
decryption. XML Encryption provides
confidentiality by hiding selected sensitive
information in a message using

cryptography.

Principal
-id
. Key .
access Hength < access
-value
Sender Receiver
requestEncryption requestDecryption
l — < receive l
send XML Messag
| 1 1 1 1
* *
g .
! XMLDecrypt
XM ryptor
XMLEncryptor 0.1 Ed
sgnd ceiv
- Encrypted XMLM. gLl tdecrypt()
[rencrypt() HdecryptElement()
rencryptElement() * » +replace()
ﬂrpluc:() Hereate XML Message()
+ XMLMsp() 1 create « o < decrypt | [ruetEncElement()
1
p I—. Composite
XMLElement
1" -id
SingleElement
1
replaced by
0.1
‘: EncryptedData
Only for encrypted
elements
1
0.1
0.1 1 0.1
EncryptionMethod Keylnfo CipherData EncryptionProperties
-algorithm FeipherValue -time
LeipherReference
1
correspond
0.1
EncryptedKey
l-referencelist

Secure Systems Research Group - FAU

Encrypting elements

Sender :Encryptor

encrypt (XMLMessage, XMLElement [d*, Key, cncr'ypti(m_\-lcthod)
V

creatcEnc XML Msg { XMLMessage)

[for each XMUElement Id to be ehcrypted]

createEncryptedDatal encryptionMethod. encryptedValue, Keyinfo)
:EncryptedData

replace (XMLElement Id, EncryptedData)

D0 .
M > encryptElement (XMLElement, encryptionMethod, Key,

T

|

I

encryptedXMLMessage :
& __________ |
I

|

|

|

Secure Systems Research Group - FAU

How to apply the patterns?

A good catalog and classifications of

patterns help a designer select among
alternatives.

 However, there is still the problem of when

to apply a pattern during system
development

 We need some systematic approach to
decide when we need to use a pattern, a
secure systems methodology

Security along the life cycle

Security verification and testing

. Requirements Analysis ' Design Ilrnpl ementatiorI

Secure UCs Authorization rules in Rule enforcement Language enforcement
conceptual model through architecture

Security test cases

Secure Systems Research Group - FAU

A methodology for secure
systems design |

 Domain analysis stage: A business model is defined.
Legacy systems are identified and their security
implications analyzed. Domain and regulatory
constraints are identified. Policies must be defined up
front, in this phase.

 Requirements stage: Use cases define the required
interactions with the system. Applying the principle
that security must start from the highest levels, it
makes sense to relate attacks to use cases. We study
each action within a use case and see which threats
are possible. We then determine which policies would
stop these attacks. From the use cases we can also
determine the needed rights for each actor and thus
apply a need-to-know policy.

@7 QD) Secure Systems Research Group - FAU
|
C;> =

Requirements stage

e Use cases are determined

Activity diagrams for use cases or
sequences of use cases

Define level of security needed
 Identify attacks

« Select attacks based on risk analysis

Secure Systems Research Group - FAU

Identifying attacks

We need to know what kind of attacks to
expect.

We relate attacks to attacker goals

We study systematically all the possible
attacks to each activity in a use case

Use cases define all functional
interactions

Attacker goals

Attacker is not interested in changing a
few bits or destroying a message

Attacker wants to accomplish some
objective, e.g., steal money, steal identity
This is applying the principle of defining
security at the semantic levels

We also need to comply with standards

A financial institution

Open Account

1

Manager

% / uc2
Customer \

Close Account

Receive
Trade Order

\ %
/ Broker
Perform trade

Auditor \

Check Trade Info

Secure Systems Research Group - FAU

Customer Manager

Personal
Info

I
v \
Y
:Customer /:l__\

Check Credit
~—_ ./

4
PR
Create

Accountl: |g —] — A ;
ccoun

Initial
deposit

Create
Authorization

Create

Authorization

Secure Systems Research Group - |

External Customer Manager
Attacker .
, ---Impogter >----Imposter
1
1 .
P
1 False rovide
| info Personal
1 Info
1 —(
1
1 A W
1 [ST
I :Customer e - 1 Disseminate
: V S===3 Info
- Check L llegally
1 Credit g ommmmm
| ﬁl— ! Create
: ~ ~ > Spurious
1 Create i_ Account
| Accountl: [€"]"" Account YT
1 S SN
| [V Nt : i
' F ' Account2: !
1 i b ___1
1
1 ..
I Initial
| Deposit
U . A
i Transfer |
| Money i Y _
v ——
Create
Account3: Authorization
~ - af Issue
Issue i Spurious
Cardl: [LIL LI Card l‘,___g?'_rsi___,

Secure Systems Research Group - FAU

\~_—_-—-‘

Threats

T1.The customer is an impostor and opens an account in the
name of another person

T2.The customer provides false information and opens an
spurious account

T3.The manager is an impostor and collects data illegally
T4.The manager collects customer information to use illegally

T5.The manager creates a spurious account with the customer’s
information

T6.The manager creates a spurious authorization card to access
the account

T7.An attacker tries to prevent the customers to access their
accounts

T8.An attacker tries to move money from an account to her own
account

Secure Systems Research Group - FAU

Analysis stage

« Analysis patterns can be used to build the
conceptual model. Security patterns describe
security models or mechanisms. We can build
a conceptual model where repeated

applications of a security model pattern realize
the rights determined from use cases.

Use case analysis leads to policies

« T1. T3. Mutual authentication. Every interaction across system
nodes is authenticated.

« T2. Verify source of information.

« T4. Logging. Since the manager is using his legitimate rights we
can only log his actions for auditing at a later time.

« Tb5. T6. Separation of administration from use of data. For
example, a manager can create accounts but should have no
rights to withdraw or deposit in the account.

« T7. Protection against denial of service. We need some
redundancy in the system to increase its availability.

« T8. Authorization. If the user is not explicitly authorized he should
not be able to move money from any account.

Policies can be realized with patterns

SN _
@Q\\@ Secure Systems Research Group - FAU

~..J|\.-_,\

Rights for financial application

Right Customer
accessType 01~~~ deposit, id
Account | withdraw,
: trade
balance M\
open « :
close : AcctUserRole OwnerRole
|
trade creditInfo

Transaction

deposit
withdraw Right

trade
accessType O ~=="77"7 7"~
open,
close

Secure Systems Research Group - FAU

Methodology summary

Use case activities define attacks
Attacks lead to policies to stop them
Use cases define needed actor rights

Access matrix or RBAC models formalize
these rights

Security methodology llI

 Implementation stage: This stage requires
reflecting in the code the security rules defined in
the design stage. Because these rules are
expressed as classes, associations, and
constraints, they can be implemented as classes
in object-oriented languages. In this stage we can
also select specific security packages or COTS,
e.g., a firewall product, a cryptographic package.
Some of the patterns identified earlier in the cycle
can be replaced by COTS (these can be tested to
see if they include a similar pattern).

CE) Secure Systems Research Group - FAU
_%\V.\-::

Misuse/Attack patterns

It is not clear to an inexperienced designer what
security pattern should be applied to stop a
specific attack

Security patterns are not useful either for
forensics because they do not emphasize the
modus operandi of attacks.

Attack patterns describe, from the point of view
of the attacker, how a type of attack is performed
(what system units it uses and how), proposes
ways of stopping the attack by enumerating
possible security patterns that can be applied for
this purpose, and helps analyzing the attack once
it has happened by indicating where can we find
forensic data as well as what type of data.

Secure Systems Research Group - FAU

Current work

« Cloud Computing definition

— According to NIST, Cloud Computing is “a
model for enabling convenient, on-demand
network access to a shared of pool
configurable computing resources (e.g.
networks, servers, storage, applications,
and services) that can be rapidly
provisioned and released with minimal
management effort or service provider
interaction”.

Latest results

Performed a systematic survey of security issues for cloud
environments where we enumerated the main cloud threats,
vulnerabilities , and possible defenses found in the
literature

Developed a reference architecture to have a precise view
of cloud systems to be used as a framework for security

Described three specific cloud threats in the form of misuse
patterns:

— Resource Usage Monitoring Inference
— Malicious Virtual Machine Creation
— Malicious Virtual Machine Migration.

Showed how to secure a reference architecture by applying
security patterns to add security defenses and misuse
patterns to evaluate its security level.

— Developed a pattern for a secure virtual machine repository
system

Secure Systems Research Group - FAU

Analysis of Security Issues

* A categorization of security issues for
Cloud Computing focused in its service
models SaaS, PaaS and laaS.

« We identify the main vulnerabilities and
the most important threats.

 We also present some countermeasures
related to these threats.

Vulnerabilities in Cloud

Combiitina

Vulnerabilities

Description

Layer

Vo1

Insecure
interfaces and
APIs

Cloud providers offer services that can be accessed through
APIs (SOAP, REST, or HTTP with XML/JSON) [65]. The
security of the cloud depends upon the securnty of these
mnterfaces [40]. Some problems are:

a) Weak credential

b) Insufficient authonzation checks

c) Insufficient mput-data validation

Also, cloud APIs are still immature which means that are
frequently updated. A fixed bug can introduce another
secunty hole in the application [76].

SPI

Vo2

Unlimited
allocation of
resources

Inaccurate modeling of resource usage canlead to
overbooking or over-provisioning [41].

SPI

Vo3

Data-related
vulnerabilities

a) Data canbe colocated with the data of unknown
owners (competitors, or intruders) with a weak
separation [39]

b) Data may be located in different jurisdictions which
have different laws [43][76][77]

c¢) Incomplete data deletion — data cannot be completely
removed [43][44][49][78]

d) Data backup done by untrusted third-party providers
[78][79]

e) Information about the location of the data usually is
unavailable or not disclosed to users [49]

f) Datais often stored, processed, and transferred in clear
plain text

SPI

Secure Systems Research Group - FAU

Vulnerabilities in Cloud Computing

ID | Vulnerabilities | Description Layer
a) Possible covert channels in the colocation of VMs I
[70][80](81]
b) Unrestricted allocation and deallocation of resources
with VMs [79]
¢) Uncontrolled Migration - VMs can be migrated from
one server to another server due to fault tolerance, load
balance, or hardware maintenance [65][67]
V04 Vulnerabilitiesin | d) Uncontrolled snapshots — VMs can be copied in order to
Virtual Machines provide flexibility [33], which may lead to data leakage
e) Uncontrolled rollback could lead to reset vulnerabilities -
VMs can be backed up to a previous state for
restoration [67], but patches applied after the previous
state disappear
f) VMs have IP addresses that are visible to anyone within
the cloud - attackers can map where the target VM is
located within the cloud (Cloud cartography [80])
Vulnerabilities in a) Unco?:trc.)]]ec[lf;l]acement of VM images in public I
- . repositories
V03 | Virtual Machine b) VM images are not able to be patched since they are
Images . N
dommant artifacts [67]
Vulnerabilities in a) Corr?plex hyperw'sc‘ar code [82] ‘ I
Vo6 . b) Flexible configuration of VMs or hypervisors to meet
Hypervisors o .
organization needs can be exploited
Vo7 Vulnerabilitiesin | Sharing of virtual bridges by several virtual machines [73] I
Virtual Networks

Secure Systems Research Group - FAU

Threats in Cloud Computing

ID | Threats Description Layer
An account theft can be performed by different ways such SPI
A . as social engineering and weak credentials. If an attacker
ccount or service . . .
T01 hijacki gains access to a user's credential, he can perform
jacking .. s ..
malicious activities such as access sensitive data,
manipulate data, and redirect any transaction [40].
Since data cannot be completely removed from unless the SPI
T02 | Data scavengng device is destroyed, attackers may be able to recover this
data [41][49][39].
Data leakage happens when the data gets into the wrong | SPI
T03 | Dataleakage hands while it is being transfemred, stored, audited or
processed [40][41][44][80].
It is possible that a malicious user will take all the possible SPI
T04 | Denial of Service resources. Thus, the system cannot satisfy any request from
other legitimate users due to resources being unavailable.
Users attack web applications by manipulating data sent S
Customer-data from their application component to the server's
T05 : h application [44][55]. For example, SQL injection,
manipulation LT . -
command injection, insecure direct object references, and
cross-site scripting.
o It is designed to exploit the hypervisor in order to take I
Bl VM escape control of the underlying infrastructure [48][83].
oy . It happens when a VM is able to gain access to another VM I
107 | VM hopping (i.e by exploting some hypervisor vulnerability) [41][66]
. An attacker who creates a valid account can create a VM I
Malicious VM . L .. -
T08 " image containing malicious code such as a Trojan horse
creation o . .
and store it in the provider repository [44].
Live migration of virtual machines exposes the contents of I
the VM state files to the network. An attacker can do the
o following actions:
T09 f:‘;ez‘t’i’:gm a) Access data illegally during migration [63]
& b) Transfer a VM to an untrusted host [67]
c) Create and migrate several VM causing disruptions or
DoS
Sniffine/Spoofin A malicious VM can listen to the virtual network or even I
T10 | _. g p‘ _ | use ARP spoofing to redirect packets from'to other VMs
virtual networks [68][73

Secure Systems Research Group - FAU

Relationships between Threats, Vulnerabilities, and Countermeasures

Threat | Vulnerabilities | Incidents Countermeasures
Vo1 An attacker can use the victim’s Identity and Access
To1 account to get access to the target’s Management Guidance
resources. [86]
Dynamic credential [87]
V03a, V03¢ Data from hard drives that are shared | Specify destruction
To2 by several customers cannot be | strategies on Service-
completely removed. level Agreements
(SLAs)
V03a, V03¢, Authors in [80] illustrated the steps | FRS techniques [89]
V03d, VO3f, necessary to gain confidential [Digital Signatures [90]
V04a-f, V03a, information from other VMs co-| Encryption [88]
T03 Vo7 located in the same server as the | Homomorphic
attacker. encryption [91]
Side channel [88]
Vo1,Vv02 An attacker can request more | Cloud providers can
To4 computational resources, so other legal | force policies to offer
users are not able to get additional | imited computational
capacity. resources
Vo1 Some examples are described in [33] Web application
T05 such as SQL. command injection, and | scanners [92]
cross-site scripting
V06a, VO6b A zero-day exploit in the HyperVM HyperSafe [82]
virtualization application that TCCP (Trusted Cloud
T06 destroyed about 100,000 websites [93] | Computing Platform)
[34]
TVDc (Trusted Virtual
Datacenter) [94][93]
V04b, VO6b [96] presents a study that demonstrates
T07 security flaws in most virtual machines
monitors
V05a, VO5b An attacker can create a VM image | Mirage [71]
T08 containing malware and publishitin a
public repository.
Vo4d [97] has empirically showed attacks PAIM [83]
T09 against the migration functionality of TCCP [84]
the latest version of the Xen and VNSS [74]
VMware virtualization products.
Vo7 Sniffing and spoofing virtual networks | Virtual network
73] framework based on
T10 Xen network modes:
“bridged™ and “routed™
73]

Reference Architecture

 Our proposed reference architecture
includes:

— Use case models
« Common use cases
 Use cases for laaS

e Use cases for PaaS
 Use cases for SaaS

— Patterns for laaS, PaaS, and SaaS

v/ 3) Secure Systems Research Group - FAU

Cloud Architecture Overview

access Saas
SaaS Appliation
hosted in
Development
E Paa$ &
access w
Virtual Depl ot Q
Environment R m =
$ S | &
a 1 Testing z 7))
< o
=3) =l
<T = ®)
& . ks | 5 | B
o Virtual Machine S (&)
o Image o -
access Virtual Network G] oy
Virtual Machine < o
| h <Z(Cz)
Virtual Machine
Monitor Virtual Storage s =z
access
Hardware Server
Hardware < Storage

Network

Cloud Architecture Overview

Secure Systems Research Group - FAU

Use Cases

Cloud

<<include>>7, Meter Usage

<<include>>

Open Account
Close Account

Request Service
<<include>>

Request Service
Removal

Bill Service

Cloud Consumer

Common Use Cases
for Cloud Computing

Secure Systems Research Group - FAU

\

Cloud Administrator

Metering
System

Payment
Service

Cloud Auditor

UCs: Create VMI and Publish VMI

External Attacker

®

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
L

7 \
[listen network = —
\ 7

TV

Legend

VO

P

\
\1/ \JI \1/

object

activity
control flow
data flow
misuse activity

misuse flow

Secure Systems Research Group - FAU

Cloud Consumer

impostor

-
-
£z
7 Insent \)
\malicious code ,
e e
B
SRS
Iy
MM image |

VM Image

K~

laaS Administrator

—_—

\

impostor D
__I receive VM| |- ———4
|
| \
\/ T _ =g
7 Tréad T create ;
confidential | \Tali:inus mMI
~_info __7/ O [
=
|
|
|
store VMI :
|
v
VM Image 2

. wisuse Aciy

. Sec. Att. Source Ass
Actio CO/IN/AV/ Aln/Uln/Out
et
n # e Description
IN Out VM
Creat Insert malicious
eVMI T1 code in the image
co St VMI may be read M
while being !
T2 transmitted
Cloud
Send IN Out VMI may be VM
Consum
VMI modified while in
er
T3 transit
AC Out Disavows sending a VM
1 M !
co At Collects sensitive M
information from !
[EER] Recei T5 VMI
Administ Y AV Aln Disavows receiving i
rator VMI T6 a VMI I
IN Uln/Aln Insert malicious s
T7 code in the image !

Secure Systems Research Group - FAU

The cloud customer is an impostor and Authenticator -
publishes a VMI Authorization

The cloud consumer inserts malicious Filter module

code within a VMI

An external attacker listens to the network Secure network

to obtain information about the VMI

The laaS administrator is an impostorand Authenticator -
collects information within the VMI Authorization

The laaS administrator creates a malicious Filter module

VMI

I O N O N G N

Secure Systems Research Group - FAU

DHCP DNS

0 -

access Portal connect |Cloud Controller store/retrieve

1 » 1 +checkAccount() 1

Cloud Consumer/Administrator
1

<check 1

Party
1 Lda Cluster Controller
me

+getResources()

]

Institution
User Node Controller

Account
L—-accNumber +getResources() Server

1 * 1

1

VMM

M assigned to Hardware Network

+oreateVM() > <}
[+stopVM() 1 e ° 1
+copyContent()

executes in Storage

<« assigned to

created|using

1 1

Class Diagram for Infrastructure-
as-a-Service architecture o

1 VM Image Repository

Secure Systems Research Group - FAU

Infrastructure-as-a-Service Pattern

<<aclor>> : = : 2 ? %]
‘Consumer :Cloud Controller 3 er Controller :Node Controller VMM
|
A

| requestVM(acc, resources, VMI, location) |
1 1

| | | |
| | | |
requestVM(acc, resources, VMI, location) | | | |
| | | |
| checkAccount(acc) | |
1 1 1 1

createVM(VMI, resources) | | |

. | |

| |

A |

> chooseNC() I

|

|

|

createVM(VMI, resources) |

|

createVM(VMI, resources) |

1

createVM(VMI, resources)
WM
VM created
VM created S !
VM created S
& _____________
assignVM(acc)
VM created
& ________________
VM created
e L L L L i L

Sequence Diagram for Use Case Create a Virtual Machine

Secure Systems Research Group - FAU

access

connect
Portal Cloud
Cloud Consumer/Administrator 1
® . *
Cloud Service Cluster Support Service
AN
1
*
SaasS Paas laaS Node Business Operational Non-Functional
1 1 1 .
1
offer offer
offer * 1 * Legend
. .
* * 1
* access
Saas Virtual g |:| Support Services
Application Environment > ™ o 1 ¥ Hardware
AN 1 . ') [] saasservices
1
* v * I:] Paas services
: [] 12as services
Der!Iopment Der:tlovment Ttestlng Foe Network Storage
Environment Environment Environment D Hardware
1
hosted in

Class Diagram for a Cloud Computing Environment

Secure Systems Research Group - FAU

Malicious VM Creation

 Intent

— An attacker may create a VM image that
contains malicious code.

— The attacker may read also confidential
data from images.

« Context

— Some laaS providers offer a VM image
repository where users can retrieve images
In order to initialize their VM.

Secure Reference Architecture

Vulnerabilities

Security Analysis
| > Threats
Countermeasures
stopped by
/ \ Misuse patterns
Reference Architecture Security patterns
threats
1 —
(e
laaS)i‘ — ‘; defenses
—
PaaS
defenses —
— — |
SaaS

o /

Securing a cloud reference architecture

Security best practices

Secure Systems Research Group - FAU

Conclusions |

We considered the use of security patterns and
looked in detail at some of them.

We classified security patterns using
architectural levels and surveyed some
patterns previously developed by us and
others

We considered a methodology to apply
security patterns to build secure systems

Patterns are also valuable for evaluating
existing systems and for teaching security
concepts

Conclusions li

Patterns cannot prevent attacks that
happen through code flaws but can make
their effect much less harmful

Fixing design errors after coding is very
expensive

Patterns can be made more formal: OCL

Security patterns are now accepted by
many companies, Microsoft, Sun, and IBM
have books, papers, and web pages on
this subject. A general page for security
patterns: www.securitypatterns.org

Future Work

 Some security defenses can be
represented as a form of security patterns
including:
— Secure migration process
— Secure hypervisor
— Secure virtual networks
— Virtualized trusted platform module
— Cloud data protection
— Secure VMI repository

(@(@) Secure Systems Research Group - FAU
/

Future Work

« Possible uses of a reference architecture:

— It can be used as a reference for security
certification of services.

— It can be used to support standards.

— It can be used to provide general
information before migrating any existing
process or system to a cloud.

— To define SLAs

(@(@) Secure Systems Research Group - FAU
/

Future Work

« Completing the catalog of misuse patterns
— Covert channels in clouds
— Virtual machine escape
— Virtual machine hopping
— Sniffing virtual networks
— Spoofing virtual networks

ecure Systems Research Groy,

Publicaciones

« Anton Uzunov, E.B.Fernandez, and Katrina Falkner,
"Securing Distributed Systems using Patterns: A Survey”,
Computers & Security, 2012

 Fernandez, E.B.; Ajaj, O.; Buckley, I.; Delessy-Gassant, N.;
Hashizume, K.; Larrondo-Petrie, M.M. A Survey of Patterns
for Web Services Security and Reliability Standards. Future
Internet 2012, 4, 430-450. http://www.mdpi.com/
1999-5903/4/2/430/

« M. VanHilst, E.B.Fernandez, and F. Braz, "A
multidimensional classification for users of security

patterns”, Journal of Research and Practice in Information
Technology, vol. 41, No 2, May 2009, 87-97

Secure Systems Research Group - FAU

Publications

K. Hashizume, D. G. Rosado, E. Fernandez-Medina, and E. B. Fernandez, “An
Analysis of Security issues for Cloud Computing,” accepted for the Journal of
Internet Computing.

K. Hashizume, E. B. Fernandez, and M. M. Larrondo-Petrie, “Cloud Service Model
Patterns,” in 19th Conference on Pattern Languages of Programs, 2012.

K. Hashizume, E. B. Fernandez, and M. M. Larrondo-Petrie, “A pattern for Software-
as-a-Service in Clouds,” in Workshop on Redefining and Integrating Security
Engineering (RISE’12), Washington, DC, USA, 2012.

K. Hashizume, E. B. Fernandez, and M. M. Larrondo-Petrie, “Cloud Infrastructure
Pattern,” in First International Symposium on Software Architecture and Patterns, in
conjunction with the 10th Latin American and Caribbean Conference for Engineering
and Technology, Panama, 2012.

K. Hashizume, N. Yoshioka, and E. B. Fernandez, “Three Misuse Patterns for Cloud
Computing,” in Security Engineering for Cloud Computing: Approaches and Tools, D.
G. Rosado, D. Mellado, E. Fernandez-Medina, and M. Piattini, Eds. IGI Global, 2013,
pp- 36—53.

K. Hashizume, N. Yoshioka, and E.B.Fernandez, "Misuse Patterns for Cloud
Computing", Procs. of Asian PLoP 2011.

Keiko Hashizume, Eduardo B. Fernandez, and Nobukazu Yoshioka, "Misuse patterns

for cloud computing: Malicious virtual machine creation"", Procs. of the Twenty-Third
International Conference on Software Engineering and Knowledge Engineering
(SEKE 2011), Miami Beach, USA, July 7-9, 2011, (Acceptance rate: 31%)

N\ . -
Q) @ Secure Systems Research Group - FAU

I/_‘__I

>~

