
OWASP German Chapter
Stammtisch Initiative/Ruhrpott

Android App Pentest Workshop 101

About

• What we will try to cover in the first session:
– Setup of a Mobile Application Pentest Environment

– Basics of Mobile Application Pentests

– Common issues in Mobile Applications‘

• What we try to cover in the second session:
– Advanced Mobile Application Pentesting

• Removing smali code

• Adding smali code

Setup

• You will need the following:
– A laptop or any hardware that can run a VM

– VM: Ubuntu 16.10 Yakkety(64bit).vdi

– Android VM: Android-x86.5.1 rc1.vdi

– Virtualbox (recommended)

– Slides:
https://docs.google.com/presentation/d/1owwDCtehvEZ4trdKoE7zPF
eX52tNhhKOhSypr6Zcow8/edit?usp=sharing (goo.gl/e2rlzy)

– Internet connection to google up things

https://docs.google.com/presentation/d/1owwDCtehvEZ4trdKoE7zPFeX52tNhhKOhSypr6Zcow8/edit?usp=sharing
https://docs.google.com/presentation/d/1owwDCtehvEZ4trdKoE7zPFeX52tNhhKOhSypr6Zcow8/edit?usp=sharing

VM Configuration - Network

VM Configuration - Network

Virtualbox - Internal Network

•You might need to run the following on your host machine:

VBoxManage dhcpserver add --netname intnet --ip

10.13.13.100 --netmask 255.255.255.0 --lowerip

10.13.13.101 --upperip 10.13.13.254 --enable

Android Internals

• Various versions by vendors

• 3rd party markets, self-install apps

• Sandboxing

• ASLR, DEP, Stack Canaries

• On demand permission model

• Security services

– Keystore, Fingerprint, Smartlock

– Device and storage encryption

SANBOXING

App
Data

User
Data

Security Services

Binary / VM

Cloud / Content

App 1

App
Data

User
Data

Security Services

Binary / VM

Cloud / Content

App 2

System Files

Hardware

Mobile OS

X

X

Access to
App data
Restricted filesystem
Temp
Security Services

No access to
Other users’ data
Other apps’ data
System files
Hardware

Inter-APP Communication

• Intents

– ACTIVITY

– SERVICE

– BROADCAST

• Content providers

App
Data

User
Data

Security Services

Binary / VM

Cloud / Content

App 1

App
Data

User
Data

Security Services

Binary / VM

Cloud / Content

App 2

System Files

Hardware

Mobile OS

Virtual Machines
• Android Runtime (ART)

– Replaced Dalvik VM
– Apps have codes for both

• Xamarin Studio

– Mono based VM for C#
– Runs on iOS,Android & Win

• Apache Cordova

– Framework for HTML & JS
– Runs on iOS,Android & Win

OWASP Top 10 Mobile Risks

OWASP – Threat Model for Mobile

Common tools for android
• Latest Android SDK

– Compilers and debugging tools

– Viewers and analysers

– Android virtual devices

• Androguard Assessment Tool

– Anthony Desnos

– https://github.com/androguard

• Drozer by MWR Labs

– https://labs.mwrinfosecurity.com/tools/drozer

• Androbugs by Yu-Cheng

– http://www.androbugs.com

Further OWASP recommended Tools

The Workshop VM

• Your VM comes with several pre-installed tools such as:
– Android Studio

– apktool

– dex2-jar

– JD-GUI

– Jarsigner

– drozer

– and others

The Mobile Application

• GIT: https://github.com/OWASP-Ruhrpott/owasp-workshop-android-
pentest

• Android

– applicationId "ruhrpott.owasp.com.vuln_app_1"

– compileSdkVersion 23

– minSdkVersion 22

• 10 challenges/vulnerabilities (so far)

https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest

About Android Applications

• Android apps are compiled into .dex (Dalvik Executable) files
which are then packed (archive)

• It might be possible to „reverse“ dex into Java code

=> However, you cannot recompile it back to an app (normally)

• AndroidManifest.xml: Contains information about the
application such as needed permissions, needed android version
and others

• /res: Resources (e.g. Images) and certain XML configurations can
be placed in this directory

Task 1 – „Get used to the tools“

• Power On your VMs

• Open „OWASP Ruhrpott Workshop App“ in your Android VM and open
the „Get used to the tools page“

1. Download the application from the device [adb]

2. Get the smali code [apktool]

3. Try to decompile the source code [dex2jar, JD-GUI]

Side note: run “adb connect <android IP>” first

[10 min]

Task 1 - Commands

Command Comment

adb shell Android Debug Bridge (adb) is a command line tool that lets
you communicate with an emulator or connected Android
device.
‘shell’ is used to spawn a shell for further actions

pm list packages list installed packages

adb pull /data/app/ruhrpott.owasp.com.vuln_app_1/base.apk . download APK file to current folder

d2j-dex2jar.sh base.apk retrieve dex files from apk

java –jar jd-gui-1.4.0.jar base-dex2jar.jar graphical interface to browse source code

java –jar apktool_2.2.0.jar d base.apk retrieve dex files and decode resources

How to proceed

• You will notice that the code is obfuscated –
unfortunately this is very common and a default
configuration in Android Studio

• Task: Try to identify the MainActivity Class and
how „fragments“ are loaded

How to proceed

• You will notice that the code is obfuscated –
unfortunately this is very common and a default
configuration in Android Studio

• Task: Try to identify the MainActivity Class and how
„fragments“ are loaded

• You will notice that the MainActivity Class uses
fragments and that each page of the application is
labelled with a number (0-X). Now you know which
class belongs to which page

Side Note: Feel free to have a look at the source code
(https://github.com/OWASP-Ruhrpott/owasp-workshop-
android-pentest)

https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest

Task 2 – „Hidden Things“

• Strings are not always referenced in a class

• Your task is to identify the difference between dex2-jar and apktool

[5 min]

Task 2 – Commands

Command Comment

java –jar apktool_2.2.0.jar d base.apk retrieve dex files and decode resources

Open values.xml in AppFolder/res/values/strings.xml

Look for „superhiddenstring“

• Apps used this technique as part of obfuscation and/or to hide encryption
keys

Task 4 – „Logcat Output“

“Logcat is a command-line tool that dumps a log of system messages,
including stack traces when the device throws an error and messages that you
have written from your app with the Log class. This page is about the
command-line logcat tool, but you can also view log messages from
the Logcat window in Android Studio.”

• Developer often use this feature to retrieve debug output
– Side Note: Sometimes you can activate the „debug“ privilege within the

AndroidManifest.xml to retrieve logcat messages, as this is just deactivated in
production releases

• Your task: Get familiar with logcat and use its filter feature to find the
„specific“ logcat message

[5 min]

Task 4 – Commands

Command Comment

adb logcat –s „owasp-key“ filters for logcat messages with the tagname „owasp-key“

Task 3 – „Basic HTTP Request“

• Please change the network settings of the Android VM to 1 active adapter
(NAT)

[5 min]

Task 3 – Commands

Command Comment

Set Android proxy to burp

Sniff traffic via burp

Task 5 – „Basic HTTPS Request“

•Please change the network settings of the Android VM to 1 active
adapter (NAT)

[5 min]

Task 5 – Commands

Command Comment

Set Android proxy to burp

Install burp root CA

Sniff traffic via burp

Undo Network configuration

Android - Intents

“An intent is an abstract description of an operation to be performed. It can be used
with startActivity to launch an Activity, broadcastIntent to send it to any interested
BroadcastReceiver components, and startService(Intent) or bindService(Intent,
ServiceConnection, int) to communicate with a background Service.

An Intent provides a facility for performing late runtime binding between the code in
different applications. Its most significant use is in the launching of activities,
where it can be thought of as the glue between activities. It is basically a passive
data structure holding an abstract description of an action to be performed.”

https://developer.android.com/reference/android/content/Context.htmlstartActivity%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.htmlstartActivity%28android.content.Intent%29
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Context.htmlsendBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.htmlsendBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/Context.htmlstartService%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.htmlstartService%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.htmlbindService%28android.content.Intent,%20android.content.ServiceConnection,%20int%29
https://developer.android.com/reference/android/content/Context.htmlbindService%28android.content.Intent,%20android.content.ServiceConnection,%20int%29
https://developer.android.com/reference/android/content/Context.htmlbindService%28android.content.Intent,%20android.content.ServiceConnection,%20int%29
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/Service.html

Drozer

drozer allows you to search for security vulnerabilities in apps and devices by
assuming the role of an app and interacting with the Dalvik VM, other apps'
IPC endpoints and the underlying OS.

drozer provides tools to help you use, share and understand public Android
exploits. It helps you to deploy a drozer Agent to a device through exploitation
or social engineering. Using weasel (MWR's advanced exploitation payload)
drozer is able to maximise the permissions available to it by installing a full
agent, injecting a limited agent into a running process, or connecting a
reverse shell to act as a Remote Access Tool (RAT).

• https://github.com/mwrlabs/drozer

https://github.com/mwrlabs/drozer
https://github.com/mwrlabs/drozer

Task 6 – „Authorised Area“

• You will be asked for a password on this page

• Task: Circumvent the password check in order to view the „authorised“
Area of the application

• Side Note: There are several ways to solve this – In this case you should
try to use drozer

[10 mins]

Task 6 – Commands

Command Comment

Execute drozer.apk Starts drozer Agent

adb forward tcp:31415 tcp:31415 Forwards tcp traffic between emulator/device and your system

drozer console connect Connect to drozer interface

run app.package.list List all installed packages

run app.package.info –a ruhrpott.owasp.com.vuln_app_1 General Information about the app

run app.package.manifest ruhrpott.owasp.com.vuln_app_1 Leaks manifest and available intents

adb shell

am start –a „ruhrpott.owasp.com.vuln_app_1.loggeddin“ – t
„text/plain“

Task 7 – „Auth Brute“

• You have probably noticed in the last task that another intent is exposed
by the application

• Task: Brutefoce the login via the intent

[15 min]

Task 7 – Commands

Command Comment

adb shell start shell

am start –a „ruhrpott.owasp.com.vuln_app_1.auth“ –e „x“
„91337“ – t „text/plain“

Launch intent with extras (parameter)

END OF SESSION 1

