OWASP Germany 2008 Conference
http://www.owasp.org/index.php/Germany

XSSDS und noXSS

Server- und Browser-basierte XSS Erkennung

Martin Johns
University of Passau, ISL
martin.johns@uni-passau.de

OWASP Jeremias Reith

Frankfurt, 25.11.08 pnlver5|ty of Hamburg, SVS
jr@noxss.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org



About us: The (no)XSS(DS) team

Martin Johns
e PhD candidat at Uni Passau

Jeremias Reith
e Master’s student at Uni Hamburg

Bjorn Engelmann (bjoern@noxss.org)

e Former master’s student at Uni Hamburg

Joachim Possega
e Professor at Uni Passau


mailto:bjoern@noxss.org
mailto:bjoern@noxss.org

Motivation

Cross-Site Scripting (XSS) is almost ubiquitous

Server-side:
e Noticing that your applications are vulnerable is hard
* The server only sees character-streams
e JavaScript is interpreted in the browser
e Exploitation happens on the client-side

Client-side:
e As XSS is a client-side attack, the user should be able to
protect himself
e Threats from JS exceed the scope of the attacked
application
e JavaScript malware

Our approaches: XSSDS (server) and noXSS (client)



Background: XSS

XSS == JavaScript injection

Two basic types:
e Reflected XSS

e Stored XSS

Institute of
IT-Security and
Security Law

SL

@(in Parameter)

Database WebApp
— —y
@(in Content) User
}@(in Link)
8Adversary
@ @
Database, =,  WebApp =<
@"" @)4-‘E >
User

3

Adversary




Observations

Web applications are (from the outside) rather straight
forward

e Input: Parameters

e Qutput: HTML

¢ -> (semi-)functional relationship

Two basic observations

e There is a strong correlation between incoming parameters
and and outgoing reflected XSS

e The set of legitimate JavaScripts of a given application is
bounded

Based on these two observation we can design two
detectors



Observation |

The set of legitimate JavaScripts of a given application
Is bounded
e The application’s source code is finite

e Hence, there is a limited amount of source code responsible
for creation of JavaScript code

e Such code can only produce a limited amount of script-
variants

* (modulo dynamic data-values)

Concluding detection method

e Watching the outgoing HTTP traffic to all legitimate
scripts

e If we know all legal scripts, all unknown scripts have to be
injected



Detector |

\\
\ é N

Web server XSSDS l

Training phase:

e Passively monitor HTTP traffic of regular application usage
e E.g., during implementation, testing, and closed beta
e Parse resulting HTML, extract and store all JavaScripts

e Stop when no new scripts are encountered

e Complete coverage is feasible, as we monitor complete
application usage

Detection phase
e Continue to extract outgoing scripts
e Alert unknown scripts to the site’s operator

Security Law



Script types

Static scripts
e Always remain the same independent from parameters

Dynamic scripts
e Generated on the fly based on incoming (or server-side) data



Script types: Dynamic scripts

Data-dynamics (very common)
e Script content is static but data-values differ

echo "alert('hello " + Sname + "!');";

e Solution: Replace data-values with generic placeholders

alert (STRING) ;

Code-repetition

* Script contains reoccurring code, very likely due to loops in
the generating code

af[l] = "foo";

a[99] = "bar";

e Solution: Aim to learn all variants

Selective code omission
e Solution: Aim to learn all variants

Security Law



Script types: External scripts

<script src="http://www.host.com/path/s.js">

In-domain
e Treat same as inline scripts

Cross-domain
e The actual script content is not seen by the detector
e Hence, instead learn a set of known external URLSs

e ...and hope the external script-providers produce their
scripts securely



Potential pitfall

eval (some var) ;

Dynamic client-side code generation
e eval() of dynamic string constants

e Solution:

* During script tokenizing all string constants are examined if
they contain JavaScript code

* In such cases, these constants are treated as additional script-
instances

* Drawback: Potential source for false positives

Institute of
IT-Security and
Security Law

SL




Implementation

Crucial:
e Reliable script extraction

Problem:
e Browser-specific lax and forgiving HTML parsing

e General purpose HTML parser libraries miss obfuscated
injection methods

Solution
e Use the actual browser code
e Our prototype utilized the Firefox parser

e Production-level implementations should use more than one
parsing engine



Evaluation

Data-set
e Vulnerable open-source application
e Real-life web apps Abesut.com: amazoncom A thw
Test-vectors - nFOTomm YAHoo-NEWSYnu
e Existing issues flickr '{"‘ S pEmhome Kisvo News
* Manually inserted W{:;,i;)m eh" (h)
scrl pts ”wm”m;;j nsis BEFUDT%%HEE
5 golem.qe REZEIT RECHT
Methodology o) B tmaseshoct. | mober A s
* True vulns e WA Coogle SheSowllok Bumes
*Is the issue reported? &= Em.ut.:ltaShOP NBTE@ZEIT ;URCEFOR?J’ETU t@
e False positves XT;;MT :v?;\_ WAL-MART
» k-fold cross-validation

IT-Security and
Security Law

SL




Results

D ete Cti O n rate detector performance - distribution

100

e All issues were reported %

* This results in a ot
false negative rate of 0

glenerilc XSIS det:actorI — _

60 -
50 -
40 -
30
20
10

% of webapps

| | | | | |
0O 01 02 03 04 05 06 0.7 0.8
false-positives/page

False positives
¢ 80% of the tested applications exposed no false positives

e The remaining 20% caused a varying amount of false
positives

* The majority of these issues was due to non-trivial dynamic
code-generation which is not jet handled by our detector
* E.g., dynamic generation of variable-names

* In most cased easily fixed by customization

Institute of
IT-Security and
Security Law

SL




Observation i

There is a strong correlation between incoming
parameters and and outgoing reflected XSS

-
Database

—

A(in Content)}

—

‘s

@(in Parameter)
—

User
@(in Link)

Adversary

By matching incoming parameters against outgoing

scripts, reflected XSS attacks should be detectable

-

match ===sseeemmmmana-

Request

Scripts

Response

¢

Parameters

~

5

/ User

Institute of
IT-Security and
Security Law

ISL




Problem: (De|En)coding

ISL

Incoming data is transformed during processing

%5C%22%3B+do.something.evil%28%27%26nbsp%3B%27%29%3B+%2F%2F

Decode move URL encoding)
"""""""""" \"; do.something.evil('&nbsp;'); //

Filter ne)

Encode rtial |S String escaping)
------------------- \\"; do.something.evil('&nbsp;"); //

Insert

— <script=a = "\\"; do.something.evil('&nbsp;"); //";</script>

--> Dumb matching on a character level is infeasible

Institute of
IT-Security and OWASP G

Security Law




Solution

Applying recursive encoding removal on both
parameters and scripts

remove URL Encoding |(%3C— <)

Y

remove JS String Encoding | (\<—= <)

(&lt; — <)
remove HTML Encoding [(&#60; — <)
* (&#x3C; = <)

changed? ‘

6no

yesl
I

Institute of
IT-Security and
Security Law

SL




Solution

Applying recursive encoding removal on both
parameters and scripts

%5C%22%3B+do.something.evil%28%27%26nbsp%3B8%27%29%3B+%2F%2F

Y

A (recursive encoding removal)
‘* " do.something.evil(' '); //
Filter :
* substrin:g match
Encode
* <script=a =""; dD.SDH"lEt.hiﬂg.EV”(' N/ </script>
Insert (recursive en'coding removal)

» <script>a = "\\"; do.something.evil('&nbsp;’); //";</script>

Remaining problem
e [f we have to deal with removal filters, further obstacles
occur

Institute of
IT-Security and
Security Law

SL




Detector Il

Implementation of the outlined detection approach as
server-side detector
e For details and results see the paper

Instead, we will talk about applying this technique
within the browser



The Idea

* Firefox extension for client side XSS detection
e Usable with official Firefox (i.e. no Patching required)
* Allows limitation to Firefox specific vectors

* Request/response matching from the XSSDS

 Should have a lower false positive rate than classical
approaches

e More manageable than pattern based approaches

new RegExp(
"C7I\N\WEN\\UOO8O-\N\NUFFFFN\NT T INNSN\NS T INNONNINN G TINNSN\NST*C2ANCINNSN\NN\S " \\D =) 1 (7" +
fuzzify('eval lopenlalert!|confirm|promptl|set(?:Timeout|Interval)|[fF]Junction') +
DIONNS\\S]A\NCI(?7: " + fuzzify('setterllocation') + ")[\\s\\S]*=)");

s.match(/\b(7:openleval |set(?:Timeout|Interval) | [fF]JunctionlwithI\[[A\]]1*\w[A\]]*\]|
splitlreplaceltoStringlsubstr(?:1ng)?|ImagelfromCharCodeltolLowerCaselunescapel

decodeURI(?:Component)?latoblbtoal\${1,2})\s*(7 :\/\*[\s\ST*?2)?\C([\s\S]*\)/);

(@) Institute of
'5' IT-Security and

Security Law




Request/Response Matching

* On every request relevant request data is matched
against extracted code

A match of a given length is treated as a potential
XSS attempt

 Matching is applied to code only

Matching on
HTML could be ®00 Mozilla Firefox -
downe but is rather (<] , pt>alert("XSS") </script> b v )

documents.</p>

<p> Search again:</p>
4 <form method="GET" action="search.php">
<input type="text" name="key" value="<scrip4€%lert("XSS") /script>">
<input type="submit" value="Search">
</form>

OUWlbel’SOWIQ <hl>Search results</hl>
<p>You search for '<scrip{>alert("XSS")#%/script>' did not match any

Institute of M
IT-Security and WASP G

Security Law

ISL




JavaScript Interception

e JavaScript code extraction is not easy

* We will miss any code not directly embedded within
the web page

* Hook into the interpreter and intercept any
invocation of JavaScript

®o0o Mozilla Firefox (@)
Browser Component (4 > B (\,) (H ...arch.php?key=<embed src="

A6Ly93d3cudzMub3JdnLzIwMDAvc3ZnIiB4bWxucz0iaHR0cDovL3d3dy53My5vemev
Interce ptO r MjAWMC9zdme i THhtbG5z0nhsaW5rPSJodHRwO18vd3d3LnczLmdyZy8x0Tk5L 3hs

aW5rIiB27XJzaW9uPSIxLjAiTHGITjAITHKITjAi IHdpZHROPSIXOTQi IGhlaWdodDOiM]

Aw IiBpZDO0ieHNzIj48c2NyaXBOTHR5CGUIINR1eHQVZWNEYXNScmlwdCI+YWxlenQoIlh

TUyIpOzwvc2NyaXB0Pjwvc3znPg==" type="image/svg+xml"
. . AllowScriptAccess="always"></embed>
JavaScript Engine

Institute of
IT-Security and
Security Law

ISL




Decoding and the Mirror

* Reflection’s origin may be blurred

* Transform input in the same way the web application
did?

* Redo URL decoding and character set conversion

* Handle other transformations

®00 Mozilla Firefox )
.

Y ~ N
([ - j" I l ...arch.php?key=%3Cscript%3Ealert%28%22XSS p» v |
/‘ S~ e
alert%28%22XS5%22%29 ~ =
<hl>Search results</h1l>
<p>You search for '<script>alert("XSS")</script>' did not match any

" " documents.</p>
alert( XS8" ) <p> Search again:</p>

<form method="GET" action="search.php">
<input type="text" name="key" value="<script>alert("XSS")</script>">

al<script>ert( "XSS" ) al\nert( "X\0SS" ) <J}.2PUt type="submit" value="Search">
</form>

Institute of
IT-Security and
Security Law

SL




Subsequence Matching

* A web application might insert or remove arbitrary
characters

 Matching is done with an ALCS (All substrings
longest common subsequence) variant

e Algorithm is using suffix trees

al\Oert (“Xs\ns")

W/

aﬂert("XﬁS")




Tokenization

e Some matches in JavaScript code may be legitimate

e Count the number the JavaScript tokens a match
consists of

* Matches spanning more than 2 tokens are
considered harmful

®O00 Mozilla Firefox (@

TOK VAR TOK NAME TOK_ASSIGI(TOK_STRING )ﬁ S
SCri
TOK PLUS TOK LP TOK NEW TOK NAME TOK LP var ONE PX = i1/imac ,if?t=)+
v v . E _ 5: //mail.google.com/
TOK RP TOK RP TOK DOT TOK LP TOK RP (new Date() )=
= — - — </script>
TOK SEMI

Institute of
IT-Security and
Security Law

ISL



http://mail.google.com
http://mail.google.com

Script file injection

* There is one case we have to cover in the markup
realm

* The URL of included scripts via <script src="..."">
might be manipulated

* We will check the prefix of the URL

®00 Mozilla Firefox

(4 FB (\,) (H ...arch.php?key= < yeripesm
<hl>Search results</hl> I

<p>You search for '<script src=(//attacker.con)tss.js”>' did not match
any documents.</p>
<p> Search again:</p>
<form method="GET" action="search.php">

<input type="text" name="key" value="<script>alert("XSS")</script>">
<input type="submit" value="Search">

</form>

Institute of
IT-Security and
Security Law

ISL




Cross Site Data Tainting

e Sometimes a payload is stored with session data on
the server

* It might be inserted in a subsequent request

 We will taint any data passed across domains and
check them in addition to current request data



Implementation - noXSS

* Normal Firefox extension

* With binary components

 Uses JSD to intercept JavaScript

* Embedded SpiderMonkey is used for tokenization
* Uses exact substring matching at the moment

e Available on noXSS.org



no XSS Performance

Firefox B JSD I noXSS

12,000

9,000

» 6,000
S

3,000

Firefox 3.0.3 running SunSpider 0.9*

*Dual Xeon 5150 (4x 2.66 GHz)
@) Institute of
ISL IT-Security and OWASP

Security Law




Evaluation

* Public evaluation via addons.mozilla.org

e ~65 average daily users over nearly two months
* Two classes of false positives

e Script file injection (host name also in URL)

* Multiple JavaScript keywords in URL

* http://losvdb.ordg/search?request=document.write

 https://developer.mozilla.org/en/DOM/
document.getElementByid


http://osvdb.org/search?request=document.write
http://osvdb.org/search?request=document.write
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById

Future Work

* Incorporate interceptor API into Firefox
 Add public parser API to SpiderMonkey
 Implement a fast inexact matching algorithm

* Analysis of matched tokens for false positive
reduction

* Better handling of script file injections

 Handling of repeated dynamic code generation (e.g.
via setinterval())



The End

(H i http://example.com/search.htmi?q=%3C%62%6F%64%7 9%2 0%6 F¥6 E¥6CH6F%61%64%3[ P V\.'
——

A

The page at http://example.com says:

Thanks for your attention!

Institute of
IT-Security and
Security Law

ISL




