OWASP Germany 2008 Conference

http://www.owasp.org/index.php/Germany

XSSDS und noXSS Server- und Browser-basierte XSS Erkennung

OWASP Frankfurt, 25.11.08 Martin Johns
University of Passau, ISL
martin.johns@uni-passau.de

Jeremias Reith
University of Hamburg, SVS
jr@noxss.org

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org

About us: The (no)XSS(DS) team

Martin Johns

PhD candidat at Uni Passau

Jeremias Reith

Master's student at Uni Hamburg

Björn Engelmann (bjoern@noxss.org)

Former master's student at Uni Hamburg

Joachim Possega

Professor at Uni Passau

Motivation

Cross-Site Scripting (XSS) is almost ubiquitous

Server-side:

- Noticing that your applications are vulnerable is hard
 - The server only sees character-streams
 - JavaScript is interpreted in the browser
 - Exploitation happens on the client-side

Client-side:

- As XSS is a client-side attack, the user should be able to protect himself
- Threats from JS exceed the scope of the attacked application
 - JavaScript malware

Our approaches: XSSDS (server) and noXSS (client)

Background: XSS

XSS == JavaScript injection

Two basic types:

Reflected XSS

Stored XSS

Observations

Web applications are (from the outside) rather straight forward

- Input: Parameters
- Output: HTML
- -> (semi-)functional relationship

Two basic observations

- There is a strong correlation between incoming parameters and and outgoing reflected XSS
- The set of legitimate JavaScripts of a given application is bounded

Based on these two observation we can design two detectors

Observation I

The set of legitimate JavaScripts of a given application is bounded

- The application's source code is finite
- Hence, there is a limited amount of source code responsible for creation of JavaScript code
- Such code can only produce a limited amount of scriptvariants
 - (modulo dynamic data-values)

Concluding detection method

- Watching the outgoing HTTP traffic to learn all legitimate scripts
- If we know all legal scripts, all unknown scripts have to be injected

Detector I

Training phase:

- Passively monitor HTTP traffic of regular application usage
 - E.g., during implementation, testing, and closed beta
- Parse resulting HTML, extract and store all JavaScripts
- Stop when no new scripts are encountered
 - Complete coverage is feasible, as we monitor complete application usage

Detection phase

- Continue to extract outgoing scripts
- Alert unknown scripts to the site's operator

Script types

Static scripts

Always remain the same independent from parameters

Dynamic scripts

Generated on the fly based on incoming (or server-side) data

Script types: Dynamic scripts

Data-dynamics (very common)

Script content is static but data-values differ

```
echo "alert('hello " + $name + "!');";
```

Solution: Replace data-values with generic placeholders

```
alert(STRING);
```

Code-repetition

 Script contains reoccurring code, very likely due to loops in the generating code

```
a[1] = "foo";
...
a[99] = "bar";
```

Solution: Aim to learn all variants

Selective code omission

Solution: Aim to learn all variants

Script types: External scripts

<script src="http://www.host.com/path/s.js">

In-domain

Treat same as inline scripts

Cross-domain

- The actual script content is not seen by the detector
- Hence, instead learn a set of known external URLs
- ...and hope the external script-providers produce their scripts securely

Potential pitfall

```
eval(some_var);
```

Dynamic client-side code generation

- eval() of dynamic string constants
- Solution:
 - During script tokenizing all string constants are examined if they contain JavaScript code
 - In such cases, these constants are treated as additional scriptinstances
 - Drawback: Potential source for false positives

Implementation

Crucial:

Reliable script extraction

Problem:

- Browser-specific lax and forgiving HTML parsing
- General purpose HTML parser libraries miss obfuscated injection methods

Solution

- Use the actual browser code
- Our prototype utilized the Firefox parser
- Production-level implementations should use more than one parsing engine

Evaluation

Data-set

- Vulnerable open-source application
- Real-life web apps

Test-vectors

- Existing issues
- Manually inserted scripts

Methodology

- True vulns
 - Is the issue reported?
- False positves
 - k-fold cross-validation

Results

Detection rate

- All issues were reported
- This results in a false negative rate of 0

False positives

- 80% of the tested applications exposed no false positives
- The remaining 20% caused a varying amount of false positives
 - The majority of these issues was due to non-trivial dynamic code-generation which is not jet handled by our detector
 - E.g., dynamic generation of variable-names
 - In most cased easily fixed by customization

Observation II

There is a strong correlation between incoming parameters and and outgoing reflected XSS

By matching incoming parameters against outgoing scripts, reflected XSS attacks should be detectable

Problem: (De|En)coding

Incoming data is transformed during processing

--> Dumb matching on a character level is infeasible

Solution

Applying recursive encoding removal on both parameters and scripts

Solution

Applying recursive encoding removal on both parameters and scripts

Remaining problem

 If we have to deal with removal filters, further obstacles occur

Detector II

Implementation of the outlined detection approach as server-side detector

For details and results see the paper

Instead, we will talk about applying this technique within the browser

The Idea

- Firefox extension for client side XSS detection
 - Usable with official Firefox (i.e. no Patching required)
 - Allows limitation to Firefox specific vectors
- Request/response matching from the XSSDS
 - Should have a lower false positive rate than classical approaches
 - More manageable than pattern based approaches

```
new RegExp(
  '(?:[\w$\\u0080-\\uFFFF\\]][\\s\\S]*[\\(\\[\\.][\\s\\S]*(?:\\([\\s\\S]*\\)|=)|(?:' +
  fuzzify('evallopen|alert|confirm|prompt|set(?:Timeout|Interval)|[fF]unction') +
  ')[\\s\\S]*\\(|(?:' + fuzzify('setter|location') + ')[\\s\\S]*=)');

s.match(\\b(?:open|eval|set(?:Timeout|Interval)|[fF]unction|with|\\[[^\]]*\w[^\]]*\]|
split|replace|toString|substr(?:ing)?|Image|fromCharCode|toLowerCase|unescape|
decodeURI(?:Component)?|atob|btoa|\${1,2})\s*(?:\/\*[\s\S]*?)?\([\s\S]*\)/);
```


Request/Response Matching

- On every request relevant request data is matched against extracted code
- A match of a given length is treated as a potential XSS attempt
- Matching is applied to code only

```
Matching on HTML could be done but is rather cumbersome
```


JavaScript Interception

- JavaScript code extraction is not easy
- We will miss any code not directly embedded within the web page
- Hook into the interpreter and intercept any invocation of JavaScript

Decoding and the Mirror

- Reflection's origin may be blurred
- Transform input in the same way the web application did?
 - Redo URL decoding and character set conversion
 - Handle other transformations

Subsequence Matching

- A web application might insert or remove arbitrary characters
- Matching is done with an ALCS (All substrings longest common subsequence) variant
- Algorithm is using suffix trees

Tokenization

- Some matches in JavaScript code may be legitimate
- Count the number the JavaScript tokens a match consists of
- Matches spanning more than 2 tokens are considered harmful

TOK_VAR TOK_NAME TOK_ASSIGN TOK_STRING
TOK_PLUS TOK_LP TOK_NEW TOK_NAME TOK_LP
TOK_RP TOK_RP TOK_DOT TOK_LP TOK_RP
TOK_SEMI

Script file injection

- There is one case we have to cover in the markup realm
- The URL of included scripts via <script src="...">
 might be manipulated
- We will check the prefix of the URL

```
Mozilla Firefox

Image: I
```


Cross Site Data Tainting

- Sometimes a payload is stored with session data on the server
- It might be inserted in a subsequent request
- We will taint any data passed across domains and check them in addition to current request data

Implementation - noXSS

- Normal Firefox extension
- With binary components
- Uses JSD to intercept JavaScript
- Embedded SpiderMonkey is used for tokenization
- Uses exact substring matching at the moment
- Available on noXSS.org

noXSS Performance

Evaluation

- Public evaluation via addons.mozilla.org
- ~65 average daily users over nearly two months
- Two classes of false positives
- Script file injection (host name also in URL)
- Multiple JavaScript keywords in URL
 - http://osvdb.org/search?request=document.write
 - https://developer.mozilla.org/en/DOM/ document.getElementById

Future Work

- Incorporate interceptor API into Firefox
- Add public parser API to SpiderMonkey
- Implement a fast inexact matching algorithm
- Analysis of matched tokens for false positive reduction
- Better handling of script file injections
- Handling of repeated dynamic code generation (e.g. via setInterval())

The End

