
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

http://www.owasp.org/index.php/Germany
OWASP Germany 2008 Conference

Frankfurt, 25.11.08

XSSDS und noXSS
Server- und Browser-basierte XSS Erkennung

Martin Johns
University of Passau, ISL
martin.johns@uni-passau.de

Jeremias Reith
University of Hamburg, SVS
jr@noxss.org

OWASP

About us: The (no)XSS(DS) team

Martin Johns
•PhD candidat at Uni Passau

Jeremias Reith
•Master’s student at Uni Hamburg

Björn Engelmann (bjoern@noxss.org)
•Former master’s student at Uni Hamburg

Joachim Possega
•Professor at Uni Passau

mailto:bjoern@noxss.org
mailto:bjoern@noxss.org

OWASP

Motivation

Cross-Site Scripting (XSS) is almost ubiquitous
Server-side:
•Noticing that your applications are vulnerable is hard
•The server only sees character-streams
• JavaScript is interpreted in the browser
•Exploitation happens on the client-side

Client-side:
•As XSS is a client-side attack, the user should be able to

protect himself
•Threats from JS exceed the scope of the attacked

application
• JavaScript malware

Our approaches: XSSDS (server) and noXSS (client)

OWASP

Background: XSS

XSS == JavaScript injection
Two basic types:
•Reflected XSS

•Stored XSS

Concept String Matcher

reflected XSS

Björn Engelmann (SVS, Uni Hamburg) XSS Detecion 2007.11.06 7 / 21

OWASP

Observations

Web applications are (from the outside) rather straight
forward
• Input: Parameters
•Output: HTML
• -> (semi-)functional relationship

Two basic observations
•There is a strong correlation between incoming parameters

and and outgoing reflected XSS
•The set of legitimate JavaScripts of a given application is

bounded

Based on these two observation we can design two
detectors

OWASP

Observation I

The set of legitimate JavaScripts of a given application
is bounded
•The application’s source code is finite
•Hence, there is a limited amount of source code responsible

for creation of JavaScript code
•Such code can only produce a limited amount of script-

variants
• (modulo dynamic data-values)

Concluding detection method
•Watching the outgoing HTTP traffic to learn all legitimate

scripts
• If we know all legal scripts, all unknown scripts have to be

injected

OWASP

Detector I

Training phase:
•Passively monitor HTTP traffic of regular application usage
•E.g., during implementation, testing, and closed beta
•Parse resulting HTML, extract and store all JavaScripts
•Stop when no new scripts are encountered
•Complete coverage is feasible, as we monitor complete

application usage

Detection phase
•Continue to extract outgoing scripts
•Alert unknown scripts to the site’s operator

OWASP

Script types

Static scripts
•Always remain the same independent from parameters

Dynamic scripts
•Generated on the fly based on incoming (or server-side) data

OWASP

Script types: Dynamic scripts

Data-dynamics (very common)
•Script content is static but data-values differ

•Solution: Replace data-values with generic placeholders

Code-repetition
•Script contains reoccurring code, very likely due to loops in

the generating code

•Solution: Aim to learn all variants

Selective code omission
•Solution: Aim to learn all variants

echo "alert('hello " + $name + "!');";

alert(STRING);

a[1] = "foo";
...
a[99] = "bar";

OWASP

Script types: External scripts

In-domain
•Treat same as inline scripts

Cross-domain
•The actual script content is not seen by the detector
•Hence, instead learn a set of known external URLs
• ...and hope the external script-providers produce their

scripts securely

<script src=”http://www.host.com/path/s.js">

OWASP

Potential pitfall

Dynamic client-side code generation
•eval() of dynamic string constants
•Solution:
•During script tokenizing all string constants are examined if

they contain JavaScript code
• In such cases, these constants are treated as additional script-

instances
•Drawback: Potential source for false positives

eval(some_var);

OWASP

Implementation

Crucial:
•Reliable script extraction

Problem:
•Browser-specific lax and forgiving HTML parsing
•General purpose HTML parser libraries miss obfuscated

injection methods

Solution
•Use the actual browser code
•Our prototype utilized the Firefox parser
•Production-level implementations should use more than one

parsing engine

OWASP

Evaluation

Data-set
•Vulnerable open-source application
•Real-life web apps

Test-vectors
•Existing issues
•Manually inserted

scripts

Methodology
•True vulns
• Is the issue reported?
•False positves
• k-fold cross-validation

Basics Data Collection

Data Collection

Björn Engelmann (SVS, Uni Hamburg) XSS Detecion 2007.11.06 4 / 21

OWASP

Results

Detection rate
•All issues were reported
•This results in a

false negative rate of 0

False positives
•80% of the tested applications exposed no false positives
•The remaining 20% caused a varying amount of false

positives
•The majority of these issues was due to non-trivial dynamic

code-generation which is not jet handled by our detector
•E.g., dynamic generation of variable-names
• In most cased easily fixed by customization

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

%
 o

f w
eb

ap
ps

false-positives/page

detector performance - distribution

generic XSS detector

OWASP

Observation II

There is a strong correlation between incoming
parameters and and outgoing reflected XSS

By matching incoming parameters against outgoing
scripts, reflected XSS attacks should be detectable

Concept String Matcher

reflected XSS

Björn Engelmann (SVS, Uni Hamburg) XSS Detecion 2007.11.06 7 / 21

Concept String Matcher

reflected XSS

Björn Engelmann (SVS, Uni Hamburg) XSS Detecion 2007.11.06 7 / 21

OWASP

Problem: (De|En)coding

Incoming data is transformed during processing

--> Dumb matching on a character level is infeasible

Concept String Matcher

Encodings Example

Björn Engelmann (SVS, Uni Hamburg) XSS Detecion 2007.11.06 8 / 21

Applying recursive encoding removal on both
parameters and scripts

Concept String Matcher

recursive encoding removal

Björn Engelmann (SVS, Uni Hamburg) XSS Detecion 2007.11.06 9 / 21

OWASP

Solution

OWASP

Solution

Applying recursive encoding removal on both
parameters and scripts

Remaining problem
• If we have to deal with removal filters, further obstacles

occur

Concept String Matcher

recursive encoding removal

Björn Engelmann (SVS, Uni Hamburg) XSS Detecion 2007.11.06 10 / 21

OWASP

Detector II

Implementation of the outlined detection approach as
server-side detector
•For details and results see the paper

Instead, we will talk about applying this technique
within the browser

OWASP

The Idea

• Firefox extension for client side XSS detection
• Usable with official Firefox (i.e. no Patching required)
• Allows limitation to Firefox specific vectors

• Request/response matching from the XSSDS
• Should have a lower false positive rate than classical
approaches
• More manageable than pattern based approaches

new RegExp(
 '(?:[\\w$\\u0080-\\uFFFF\\]][\\s\\S]*[\\(\\[\\.][\\s\\S]*(?:\\([\\s\\S]*\\)|=)|(?:' +
 fuzzify('eval|open|alert|confirm|prompt|set(?:Timeout|Interval)|[fF]unction') +
 ')[\\s\\S]*\\(|(?:' + fuzzify('setter|location') + ')[\\s\\S]*=)');

s.match(/\b(?:open|eval|set(?:Timeout|Interval)|[fF]unction|with|\[[^\]]*\w[^\]]*\]|
split|replace|toString|substr(?:ing)?|Image|fromCharCode|toLowerCase|unescape|
decodeURI(?:Component)?|atob|btoa|\${1,2})\s*(?:\/*[\s\S]*?)?\([\s\S]*\)/);

• On every request relevant request data is matched
against extracted code

• A match of a given length is treated as a potential
XSS attempt

• Matching is applied to code only

OWASP

Request/Response Matching

...arch.php?key=<script>alert(“XSS”)</script>

<h1>Search results</h1>
<p>You search for '<script>alert("XSS")</script>' did not match any
documents.</p>
<p> Search again:</p>
<form method="GET" action="search.php">
<input type="text" name="key" value="<script>alert("XSS")</script>">
<input type="submit" value="Search">
</form>

Matching on
HTML could be
done but is rather
cumbersome

OWASP

JavaScript Interception

• JavaScript code extraction is not easy

• We will miss any code not directly embedded within
the web page

• Hook into the interpreter and intercept any
invocation of JavaScript

...arch.php?key=<embed src=”
A6Ly93d3cudzMub3JnLzIwMDAvc3ZnIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv
MjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hs
aW5rIiB2ZXJzaW9uPSIxLjAiIHg9IjAiIHk9IjAiIHdpZHRoPSIxOTQiIGhlaWdodD0iMj
Aw IiBpZD0ieHNzIj48c2NyaXB0IHR5cGU9InRleHQvZWNtYXNjcmlwdCI+YWxlcnQoIlh
TUyIpOzwvc2NyaXB0Pjwvc3ZnPg==" type="image/svg+xml"
AllowScriptAccess="always"></embed>

Browser Component

JavaScript Engine

Interceptor

• Reflection’s origin may be blurred

• Transform input in the same way the web application
did?

• Redo URL decoding and character set conversion

• Handle other transformations

OWASP

Decoding and the Mirror

...arch.php?key=%3Cscript%3Ealert%28%22XSS

<h1>Search results</h1>
<p>You search for '<script>alert("XSS")</script>' did not match any
documents.</p>
<p> Search again:</p>
<form method="GET" action="search.php">
<input type="text" name="key" value="<script>alert("XSS")</script>">
<input type="submit" value="Search">
</form>

alert("XSS")

alert%28%22XSS%22%29

al\nert("X\0SS")al<script>ert("XSS")

• A web application might insert or remove arbitrary
characters

• Matching is done with an ALCS (All substrings
longest common subsequence) variant

• Algorithm is using suffix trees

OWASP

Subsequence Matching

al\0ert(“XS\nS”)

alert("XSS")

• Some matches in JavaScript code may be legitimate

• Count the number the JavaScript tokens a match
consists of

• Matches spanning more than 2 tokens are
considered harmful

OWASP

Tokenization

<script>
var ONE_PX = "https://mail.google.com/mail/images/c.gif?t=" +
 (new Date()).getTime();
</script>

.com/Login?cont=http://mail.google.com/

TOK_VAR TOK_NAME TOK_ASSIGN TOK_STRING
TOK_PLUS TOK_LP TOK_NEW TOK_NAME TOK_LP
TOK_RP TOK_RP TOK_DOT TOK_LP TOK_RP
TOK_SEMI

http://mail.google.com
http://mail.google.com

OWASP

Script file injection

• There is one case we have to cover in the markup
realm

• The URL of included scripts via <script src=”...”>
might be manipulated

• We will check the prefix of the URL

...arch.php?key=<script src=”//attacker.com/

<h1>Search results</h1>
<p>You search for '<script src=”//attacker.com/xss.js”>' did not match
any documents.</p>
<p> Search again:</p>
<form method="GET" action="search.php">
<input type="text" name="key" value="<script>alert("XSS")</script>">
<input type="submit" value="Search">
</form>

OWASP

Cross Site Data Tainting

• Sometimes a payload is stored with session data on
the server

• It might be inserted in a subsequent request

• We will taint any data passed across domains and
check them in addition to current request data

OWASP

Implementation - noXSS

• Normal Firefox extension

• With binary components

• Uses JSD to intercept JavaScript

• Embedded SpiderMonkey is used for tokenization
• Uses exact substring matching at the moment

• Available on noXSS.org

OWASP

noXSS Performance

0

3,000

6,000

9,000

12,000

Firefox 3.0.3 running SunSpider 0.9*

Firefox JSD noXSS

m
s

*Dual Xeon 5150 (4x 2.66 GHz)

OWASP

Evaluation

• Public evaluation via addons.mozilla.org

• ~65 average daily users over nearly two months

• Two classes of false positives

• Script file injection (host name also in URL)
• Multiple JavaScript keywords in URL

• http://osvdb.org/search?request=document.write

• https://developer.mozilla.org/en/DOM/
document.getElementById

http://osvdb.org/search?request=document.write
http://osvdb.org/search?request=document.write
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById

OWASP

Future Work

• Incorporate interceptor API into Firefox

• Add public parser API to SpiderMonkey

• Implement a fast inexact matching algorithm

• Analysis of matched tokens for false positive
reduction
• Better handling of script file injections

• Handling of repeated dynamic code generation (e.g.
via setInterval())

Any Questions?

OWASP

The End

