
Secure infrastructure as code
 How I built w3af.org

Andrés Riancho – April / March 2013
 OWASP LATAM Tour

●

●

●

 /me

w3af project leader (open source web
application security scanner)

Software developer (Python)

Web application security expert

@w3af

●

●

I'm no infrastructure as source expert

Use my advise with caution

Glossary: clear terms before diving in

Source code

“a sequence of instructions written to perform a
specific task with a computer”

Test Driven Development

“Test-driven development (TDD) is a software

development process that relies on the repetition of a
very short development cycle: first the developer
writes an (initially failing) automated test case that
defines a desired improvement or new function, then
produces the minimum amount of code to pass that
test, and finally refactors the new code to acceptable
standards.”

TDD: Tests first

test_is_odd.py

TDD: Test fails

TDD: Write the code

mymodule.py

TDD: Tests PASS

Cloud

“Servers* you can rent by the hour”

* Not only servers as in an Ubuntu 12.04 ec2
instance, also services like managed databases,
ready to use email servers, Queues, etc.

●

●

 Cloud

In most cases, the user manages his own

resources by creating and shutting down
servers as required by network load.

Since you “pay for what you use”, there is no

need to buy expensive hardware up-front.

●

 Infrastructure

Can be described as “daemons and services running

on an operating system which are all configured to
provide one or more services to users”

Classic infrastructure

The good

●

●

●

Classic infrastructure: The good

 We've been doing this for 20+ years

 Every good sysadmin knows how to
 configure a server. It's on his job
 description.

 Works “well” in most scenarios

Classic infrastructure

The bad

●

●

●

 Classic infrastructure: The bad

Poor change control: “Who changed X,
which broke feature Y?”

Hard to create dev/QA/staging servers
which are identical to production ones.
Leads to “Works in my environment”

Doesn't scale if our application gets
popular, how do we handle 1M users?
What about 10M? One sysadmin can't
configure 1k servers over the weekend.

Infrastructure as Code

●

●

●

 Code + HW = Running
 infrastructure

All your infrastructure is defined by
custom made software and stored in a
repository

Run this software any number of times and
you'll get a clone of your infrastructure,
all in an automated way

Building and maintaining a modern server
begins to look a lot like managing a
software project

●

●

●

●

 Problems solved!

Scalability: deploy N servers, all equal.

Change control: “git log” to view the latest
changes to a server

No regressions: Apply TDD your
infrastructure development process and
you'll know when a new change adds a
regression

Easily move to a previous version:

 “git checkout <revision>; fab deploy”

●

 New challenges

The sysadmin needs to learn developer
skills such as:







SDLC applied to the infrastructure

Concepts like classes, refactoring, coding
 standards, etc.

Test Driven Development (optional)

●

●

 New features

It's code, share it. If one team finds a bug
in the SSH, he can share the new
configuration with other teams.

It's code, re-use it. All teams can

contribute on basic OS configuration,
specific teams on DB, Web, etc.

 Example scenario: w3af.org

The requirements were simple:

●

●

●

●

●

●

●

Secure

Fast load speeds

Easy to add new pages and blog posts

Well documented

Easy to develop new features and test them locally

Fail gracefully (if hacked, DoS'ed, etc.)

Learn something in the process

●

●

●

The tools: Fabric for python fans

 Puppet, Chef, Fabric, etc. since Fabric is
 Python, I decided to use that for my
 deployments.

 “import unittest” for writing the tests

 Boto for interacting with the ec2 API

●

●

●

●

 The code

19 unittests

850 lines of Python code

15 configuration files for Apache, Varnish, etc.

Interesting code snippets:







fabfile.py

utils.ec2 , create new ec2 instance

utils.apache , configure apache

●

●

 Finally: Focus on security

TDD helps developers define clear
requirements and make sure the code
they write covers them

With infrastructure as code we can create

security requirements to make sure the
OS and application are secure

TDD, nmap, infrastructure as code

● Requirement: “Web servers should only be
accessible via port 80 and 22”

test_port80.py

Test wordpress improved security

●

●

Requirement: “Digest authentication needs to
secure /wp-admin/”

Requirement: “/wp-includes/ shouldn't be accessible

using a browser”

test_wordpress_htaccess.py

●

 PHP Eggs are disabled

Requirement: “PHP is configured to hide PHP eggs

(expose_php = Off)”

test_php_config.py

●

 Nikto output is harmless

Requirement: “Nikto only identifies false positives
and very low risk information”

test_nikto.py

●

 HTTP headers, the secure way

Requirement: “The web application sends the HTTP
headers required to avoid ClickJacking, information
gathering and XSS attacks”

test_security_headers.py

●

●

●

●

●

●

●

●

 Handling (security) bugs

Bug is reported

(if not yet available) deploy a development server

in a VM and manually reproduce the bug

Write unittest to reproduce it

Change configuration / application code to fix it

Run test to verify fix

Run all tests to verify there are no regressions

Commit/Push changes to Git

Apply changes to production environment using

Fabric

●

 Handling (security) bugs

Relax: knowing that everything works AND it

won't be broken in the future if you follow the
procedure

Monitoring using unittests

Since unittests verify that the server behaves the
way we want, and is secure according to our tests,
it's a good idea to run them periodically (once every
X hours)

Remember: unittests need to be idempotent.

 Enforcing policies with unittests

Usually a security policy is a Word document

(that nobody reads) and states: “All passwords need
to be X chars long”

With infrastructure as code we can make sure this is

actually enforced:

●

●

●

Write a unittest that verifies the configured
password length

Make it mandatory to run on all servers

Our unittest could also run john the ripper to

verify that passwords are strong enough

●

●

●

●

 Conclusions

If properly implemented, infrastructure as
code can reduce the number of
infrastructure vulnerabilities, bugs, and
increase uptime.

Using TDD in your infrastructure code
reduces regressions

Requires skilled sysadmins

Migration to infrastructure as code is time-

consuming

Questions?

Thanks!

@w3af

andres.riancho@gmail.com

