“Secure Coding;
some’'simple steps help.

OWASP

The Open Web Application Security Project

=
OWASP

The Open Web Application Security Project

e Steven van der Baan
- Dutch

- 7Safe, part of PA Consulting Group
- Developer
- Pentester
- Consultant

- CISSP, OSCP

_ Consulting
part of B\Gmup h

/‘\ﬂ
OWASP

The Open Web Application Security Project

’—\ﬂ
OWASP

The Open Web Application Security Project

* “It's amazing how many drivers
think the brakes are for slowing
the car down”

* “Brakes allow you to travel
faster because you have the
power to stop.”

OWASP

The Open Web Application Security Project

,\1
OWASP

The Open Web Application Security Project

>

/-\ﬂ
OWASP

The Open Web Application Security Project

)

o
5|
‘=
2,

,\1
OWASP

The Open Web Application Security Project

/

OWASP

The Open Web Application Security Project

T10

Al —Injection

A2 — Broken
Authentication end
Session

| Management

A3 —Cross-Site
Scripting (XS5)

A4 - Insecure
Direct Object
References

A5 - Security
Misconfiguration

A6 — Sensitive Data

OWASP Top 10 Application
Security Risks — 2013

~Injection flaws, such as SO, 05, and LDAP injection occur when untrusted data is sent to an
interpreter as part of a command ar query. The attackar’s hostile data can trick the intarpreter
ing unintended accessing ed data.

appli i ication and sessi are ohen not
allowing B Key: or
explait other implementation flaws to assume other users” identities.

~x55 flaws occur whenever and sendsit to a
Without propes valkdation o eseaping, X55 alows arTackers o execute srpts in the ictie's
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

+4 direct objact reference occurs when a developer exposes a reference to an internal
implementation abject, such as a file, directory, or database key. Without 2n access cantrol check
o other protection, attackers toaccass

it APl e i, o s pliriwm.A!I these seftings
should be defined, i
T michades g I e s

+Many web appiications do not properly protect sensitive data, such as credit cards, tax ids, and
ksl uki s el or modify such weakly protacted data to conduct

Exposure identity thefs, cradit card fraud, or other crimes. sansitive data deserves extra protection such as
i transit, as
AT —Missing ot licati it i rights .
B visible in owever, access
Functionlevel, | o2 on i accessed. vertfied, attackers will be able to forge
Access Control requests in order to access unauthorized functionaliy.
7 v st VRSt o e B bt g 17 e i
any other
RequestFOrEery | o chic weh appiication. This aliows the mmmmemm‘smmgeme
(CSRF} requests the vulnerable appiication thinks are legitimate requests from the victim.
A9 - Using “Vuinerable suchas i frameworks, and other software modules almast
wi ammmmmnw\age su,ﬂq;lmm ﬂqﬂnmsﬂmdﬂlﬁk}swmﬂhﬂvﬂ'
Known
| Vulnerabilities | range of possibie :mdsandmm,
AL0—Unvalidated +weh applications frequentyy forward usars to ather ites, and use
1o determine inati validation, attackers can
Forwards redirect E , Of use ized pages.

This is a brief listing of the Top 25 itemns, using the general ranking.

NOTE: 16 other weaknesses were considered for inclusion in the Top 25, but their general scores were not high enough. They are listed in a separate "on
the Cusp” page

Rank

Score

w | Name

Ccwe-83 [improper Neutralization of Special Elernents used in an SQL Cammand ('SQL Injection’)

CwWE-78 [improper Heutralization of Spedial Elements used in an 0% Command {('0$ Command Injection’)

cwE-120 _[Buffer Copy without Checking Size of Input {'Classic Buffer Overflow')

Cwe-73 [impraper Meutralization of Input During Web Page Generation ('Crass-site Soripting')

CWE-306 [Missing Authentication for Critical Functien

[CwiE-862 [Missing Autharization

cwE-798 [Use of Hard-coded Credentials

[CWE-311 [Missing Encryption of Sensitive Data

CwE-434 [Unrestricted Upload of File with Dangeraus Type

cwE-807 [Reliance on Untrusted Inputs in a Security Decision

[CE-250 [Execution with Unnecessary Privileges

cwe-352 |Cross-Site Request Forgery (CSRF)

[CwE-22 [improper Limitation of a Pathname to a Restricted Directory ('Path Traversal)

[CwE-434 [Download of Cade Without Integrity Check

cwE-863 [incorrect authorization

CwE-829 [Inclusion of Functionality from Untrusted Cantrol Sphere

CwE-732 [Incorrect Permission Assignment far Critical Resource

cwE-676 [Use of Potentially Dangerous Function

lcwE-327 [Use of a Broken or Risky Cryptographic Algorithm

CWE 131 Incorrect Caleulation of Buffer Size
CWE 307 [Improper Restriction of Excessive Authentication Attempts

[CwE-601 [URL Redirection to Untrusted Site ("Open Redirect’)

[cwe-134 [uncontrolled Format String

CWE-190 [Integer Overflow or Wraparound

25

59.9

[CwE-759 [Use of a One-Way Hash without a Salt

CWE-89 - SQL injection - delivers the knackout punch of security weaknesses in 2011. For data-rich software applications, SQL injection is the means to
steal the keys to the kingdar. CWE-78, OS command injection, is where the application interacts with the operating system. The classic buffer overflow
(CWE-120) comes in third, still pernicious after all these decades. Crass-site scripting (CWE-79) is the bane of weh applications everywhere. Rounding
Ut the top 5 is Missing Authentication (CWE-306) for critical functionality.

Vulnerability Classes
i by parcaniape loakood)

e, 673 of Wels

S Eauas

Csti- St Beniprieg
ripvrnaboe Lodkege

Cononl Sporing

e itcmn! Authoriraton

SO0 el

Priviciabis Mmsiwrcs Lotals
Ira] AL
HTTF Fosponta Baiting
Ahwan of Functonsbfy
Coazn-Sat Minguse] Frgeny

f1a8104 353nbay a1s-$s019 FM
JuaWaZeLe)| UOISSAS pUe LIEIUaYINY Liayold £y
[Ly e

W10: Abuse of Functionality

= O 55 e

£ sSgoggsEt I

S Z108INISS Sge)-

> K»= CELIMD

= 2 unduag ays-ss01)

S SpIemI0J pue'$19311pag pajepifeAu :0y

< nduf Jo azig Sunpoay) noyum Adog Jayng

= uonezLioyjny SuSsiyy

'S uonouny [edud Joj uonedniiauny SuISSIN - @
_ SJeg e noyum ysey fep-aupejoaspy o, E 0
& LESS e £ 3232
= w.AEE Bo g £B8s
g Sfcs8 B 83
g 2258 3 Eis
2 == 3 8= S Sg5
=) Soa o= tINE S 528
S $a0uaJafay 103l 108 aINdASU| HYS B S=
adA] snosagueq LM 314 Jo peojdn pajowasaln € =

PUBLULIO] §(LB Ul pasn SJUialwa3 e10adg Jo uonezije:nay Jedoadw
$989]IALld £18SS3I3UL YIM UOINIBXT
u0i19a30.4 Jafe] podsties] JUBIIYNSU By
68-IMJuonaafu puewwo) §o
puBWWOY (S Ue Ul pasn sjuawa[] [e10ads jo uoneziennay Jadoidw
10939 uonoalu 10S B £ &
MO[JIaA) JaYng JISSE)S =
493Yy) Kuaqu] N0 BPO] JO peojuMoq
32In0S3Y [BINY J0J JUBWUFISSY UOISSIULIDG 193110IU|
uorjesauay mmmn_ gam suung Ha:_ §0 uonezieanay Jadoudwy

—
(&)
.e
=7 = V5. 5 5
et S 85 25 -3 Suonouny snossfueq Ajenualod Jo asn
[3=] T 0 9 u 9 nrh._
= 2 222= 85 wipLody aiydeifojdAi) Aysyy Jo uayoug e Jo as
g 2 Sucso o b= a0
5 S,B8E85§E2E &£ Dnr_lummeE ajnig M
(] =zs5o0“Y 5.2 =] So)- —
n 2582 535 20D 28N 5
= 58 =2 8= RCOHs o
5 STow S o= S = -S6-IMI=
=] Epess B Ew© 2 .S 8 oo
= SOOS o= wn o c = mnﬂﬂu%
] 2EgS5oo 5550 S § SN~
as] == = a2 O = Coouiu
o SBPEFDSL EES &5 ELE=
5 S8 L PRES T 25°°
= o e}
P 5 = 3.2 2 B <ajydg (040 paisniaup Wwoj AEuonaung Jo uoisnjou
O == o= — & . . '
= s nm £ £ "% 93e1015 aydeiFoydkig anoasu py
g g2 £ s s unduag ayg-ss01] :7y
) 2 88
m | =g =
& S S E
[=N
=]
S
E

Improper Restriction of Excessive Authentication Attempts

@ OWASP

Security
Principles

@ SECURITY NINJA

/-\ﬂ
OWASP

' The Open Web Application Security Project

Who.. ..with what role.. i
Al- 2 zgg\
==

..what rights.

in which process?

/—\
OWASP

The Open Web Application Security Project

Specific vulnerabilities for each principle

OWASP top 10 | WhiteHatSec top 10 | Sans top 25
Principles
Input Validation |[Cross Site Scripting, Cross Site Scripting, SQL Improper Input Validation, Failure to Preserve SQL Query
Injection Flaws, Malicious |Injection, Content Spoofing |Structure, Failure to Preserve Web Page Structure, Failure to
File Execution Preserve OS Command Structure, Failure to Constrain
Operations within the Bounds of a Memory Buffer, Failure to
Control Generation of Code, Client-Side Enforcement of Server-
Side Security
Output Encoding [Cross Site Scripting Cross Site Scripting Improper Encoding or Escaping of Output, Failure to Preserve

\Web Page Structure

Error Handling

Information Leakage and
Improper Error Handling

Information Leakage

Error Message Information Leak

Authentication [Broken Authentication [Insufficient Authorisation, Impropert Access Control, Hard-Coded Password, Insecure
and and Session Management |Insufficient Authentication, [Permission Assignment for Critical Resource, Execution with
.. Abuse of Functionality Unnecessary Privileges
Authorisation
i Broken Authentication |Cross Site Request Forger Cross Site Request Forgery, Use of Insufficient Random Values
Session q gery q gery
Management and Session management,
Cross Site Request forgery
Insecure Communications Use of a Broken or Risky Cryptographic Algorithm, Cleartext
ecure
Communications Transmission of Sensitive Information, Use of Insufficiently

Random Values

Secure Resource
Access

Insecure Direct Object
Reference, Failure to
Restrict URL Access

Predictable Resource
Location

External Control of File Name or Path, Untrusted Search Path

Secure Storage

Insecure Cryptographic
Storage

Use of a Broken or Risky Cryptographic Algorithm, Cleartext
Transmission of Sensitive Information, External Control of
Critical State Data

Security principles

& OWASP

% The Open Web Application Security Project

Input Validation

Output Encoding

Error Handling

Authentication and Authorisation
Session Management

Secure Communications

Secure Resource Access

Secure Storage

Input
validation

- —u Input Validation
OWASP

The Open Web Application Security Project

Gates

e —
-
- —

(Gt e T

“Input validation
G OWASP |

The Open Web Application Security Project

* |dentify and define the data your application
must accept

e Create regEx’s to validate EACH datatype (content
and size)
— For example, a creditcard data type: \d{12,16}S

* Use whitelisting where possible
* Blacklist approach harder and potential less

secure

— Blacklist example, replace single quotes:
e S.replaceAll(Pattern.quote(“”));
* Matcher.quoteReplacement(“””);

Output
Encoding

ﬁ Output Encoding
OWASP

The Open Web Application Security Project

ﬁ Output Encoding

The Open Web Application Security Project
* |dentify and define the data your application
must output

 Understand where (i.e. in an URL) your data
should end up

* Choose the correct output encoding for the data’s
destination

— Proper encoding means this attack:

* www.example.com/home.html?day=<script>alert(document.c
ookie)</script>

Becomes

* day=%3Cscript%3Ealert%28document.cookie%29%3C/script%
3E

Error
Handling

/‘\
OWASP

The Open Web Application Security Project

EVACUATION PLAN

5th Floor Room 503
IN CASE OF FIRE

1. Remove all people from danger
2 Close all doars and windows.
3 Activate fire alarm

4. Call the fire department, 8-1-1
5 Leave bwilding using the fire exit
& Do not uss slevators

LEGEND

o You are here
m— Primary exit
== Secondary exil
| FireAlanm
1

Foriable extinguishar

iel E
2s2 Evacmap.com

HOTEL

Error Handling

ﬂ Error handling
OWASP

The Open Web Application Security Project

* Even the best apps will crash at some point, be
prepared!

* Crashed/errors can help an attacker if you don’t
handle them

 Handle error conditions securely, sanitize the
message sent

* No error handling = information leakage

Microsoft OLE DB Provider for ODBC
Driver(0x80040E14)
[Microsoft][ODBC SQL Server Driver]
[SQL Server]Invalid column name

/example/login.asp, line 10

Authentication
&
Authorization

Authentication and
‘ Authorisation
OWASP

The Open Web Application Security Project

3. 02-02-40 ENGLAND

i da. 120502 4b. 0102410 4c. VLA |
= i . 5. TROTT362100T88F 68 |
\H-‘ = --"",.iﬂ t ovith ; 7. Mﬁ) .. I".\
. B/ & 13th FLOOR, NELSON MANDELAHOUSE, _
I ﬂ ff: PECKHAM SE15 Membership Card
9. B,BE,C1,C1E,D1,D1E,f, k, Ln,; p |

Authentication and
‘ Authorisation

The Open Web Application Security Project

* Even simple apps often have a need to authenticate
users

e Often at least two levels of authorisation

* Need to prevent horizontal and vertical privilege
escalation

* Implement strong passwords and management system

 Ensure A+A is secure, not a false sense of security
(CAPTCHA?)

 Don’t rely on fields that are easily spoofed (refer(r)er
field)

Session
Management

ﬂ Session Management
OWASP

The Open Web Application Security Project

- Session Management

& OWASP

% The Open Web Application Security Project

Used to manage authenticated users, no need to
re-auth

You need to make shure your sessionID’s have
sufficient entropy

SessionlD’s must not be predictable or reusable
Never build your own session management, it will
fail

Protect SessionID’s when in transit (i.e. SSL!)

Issue a new value for sensitive actions (i.e. funds
transfer)

@ The Open Web Application Security Project

Secure
Communications

ﬂ Secure Communications
OWASP

The Open Web Application Security Project

/_\ Secure Communications

& OWASP

% The Open Web Application Security Project

Protect data (i.e. CC no, passwords, sessionlD’s)
In transit

As with all crypto, don’t create your own

Don’t use broken protection mechanisms (i.e.
SSLv2)

Don’t just use SSL/TLS for logon pages, protect
the session!

Try to avoid mixing secure and insecure traffic on
a page

Secure
Resource
Access

/\ﬁ Seeure Resource Access
OWASP

The Open Web Application Security Project

ﬂ Seeure Resource Access
OWASP

The Open Web Application Security Project

e Obscurity !=security, don’t try to hide
sensitive resources

* Understand the users flow through an app,
cover weak points

— T-Mobile didn’t do the above, Paris Hiltons
account hacked

Secure
Storage

- Secure Storage
OWASP

The Open Web Application Security Project

/

ﬁ © Secure Storage
OWASP |

The Open Web Application Security Project

* Protect data (i.e. CC no, passwords,
sessionlD’s) when stored

* As with all crypto, DON’T create your own

 Don’t use broken protection mechanisms (i.e.
DES)

* Don’t store data in places where you can’t
confidently secure it

* Strong protection mechamisms, how strong
should it be?

/_\ﬂ
OWASP

The Open Web Application Security Project

