) OLUASP

Open Web Application
Security Project

Let me introduce you the
OWASP Mobile App Security
Testing

How to test your mobile applications
against security vulnerabilities

OWASP ltaly Day
Cagliari, 19t October 2018

WHOAMI

Giuseppe Porcu

Software Security Consultant
@MindedSecurity

- Site: https://www.mindedsecurity.com

- Blog: https://blog.mindedsecurity.com

- Email: giuseppe.porcu@mindedsecurity.com
- Telegram: @GTechGuy

IEEE

Open Web Application
Security Project

AGENDA

* [Introduction to OWASP Mobile App Security Testing
 Key Areas of Mobile App Security Testing
Data Storage

Sensitive Data Exposure
Cryptographic Functions

Endpoint Identity Verification

App Permissions

App Signature & Tampering
Anti-Reversing Defense

Anti-Debug Defense

* Conclusions

s RO =S ORI NN

D OLUASP

Open Web Application
Security Project

| SEE CYBER RISKS

EVERYWHERE

OWASP

Open Web Application
Security Project

FOCUS ON THE PROBLEM

Portable devices

- stolen
- lost

Lot of apps installed on it
- app security is often only presumed

Rooted devices

Testing phase
- often tested against usability and functionality, not security

) OLUASP

Open Web Application
Security Project

OWASP MOBILE SECURITY TESTING GUIDE

e Describes processes and techniques for verifying the
requirements listed in the Mobile Application Security
Verification Standard

e Can be used as a baseline for complete and consistent

security tests

e Divided in 3 main sections:
— General Guide
— Android Guide
— i0S Guide

) OLUJASP

Open Web Application
Security Project

KEY AREAS OF MOBILE TESTING

Similarities with:
- Web App Testing
Network Testing

Additionally, there are specific key areas related to the mobile
environment

IEEE

Open Web Application
Security Project

KEY AREAS OF MOBILE TESTING

* Local Data Storage

e Communication with Trusted Endpoints
* Authentication & Authorization

* Interaction with the Mobile Platform
 Code Quality & Exploit Mitigation

* Anti-Tampering & Anti-Reversing

) OLUJASP

Open Web Application
Security Project

OWASP TOP 10 MOBILE RISKS

M1 - Improper Platform Usage
M2 - Insecure Data Storage
M3 - Insecure Communication
M4 - Insecure Authentication
M5 - Insufficient Cryptography
M6 - Insecure Authorization
M7 - Client Code Quality

M8 - Code Tampering

M9 - Reverse Engineering
M10 - Extraneous Functionality

D OLUASP

Open Web Application

Security Project

REFERENCES

OWASP Mobile Security Project
https://www.owasp.org/index.php/OWASP_Mobile_Security Project

OWASP Mobile Security Testing Guide
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

Android Developer Security Tips

https://developer.android.com/training/articles/security-tips

OLJASP

Open Web Application
Security Project

TESTING FOR SECURITY 101

Black-Box vs White-Box vs Gray-Box Testing

Static Analysis vs Dynamic Analysis
False Positive Problem
Penetration Test

Reporting

IEEE

Open Web Application
Security Project

ANDROID TESTING

| [JUJFIJD

ANDROID ATTACK SURFACE

* |Insecure/compromised storage

* Unsafe input:
— by means of IPC communication or URL-schemes
— by the user to input fields

— to a Webview by a user or by having insecure code loaded into the
webview

* |nsecure/compromised responses from a server:
— MITM attack

e Compromised runtime or repackaged app:
— method hooking and other attacks

OWASP

Open Web Application
Security Project

1. DATA STORAGE

Public data should be available to everyone, sensitive/private
data must be protected, or kept out of device storage

In real scenarios, some type of user data must be stored:

— authentication tokens
— personally identifiable information

|ldentify:
— Information processed by the app

— Input by the user
— Information that may be valuable to attackers

OWASP

Open Web Application
Security Project

1. DATA STORAGE IN ANDROID

Shared Preferences

— collections key/value
— written to a plain-text XML file

SQLite/Realm Databases

— databases unencrypted
— hard-coded password

Internal/External Storage
— “world-readable” files
— rooted devices

IEEE

Open Web Application
Security Project

1. DATA STORAGE: TESTING

Check AndroidManifest.xml for read/write storage permission
— uses-permission android:name="android.permission.WRITE_EXTERNAL STORAGE”

Check source code for keyword and API calls

— MODE_WORLD_WRITEABLE | MODE_WORLD_READABLE
— SharedPreference, FileOutPutStream class

— getReadableDatabase, getWritableDatabase functions

— getExternal* functions

Check source code for:

— Sensitive information encrypted via simple bit operations (XOR, bit flipping)
— Keys used/created without Android onboard feature
— Key hard-coded

OLJASP

Open Web Application
Security Project

1. DATA STORAGE: TESTING

Check for common locations of secrets:

— res/values/strings.xml
— build configs: local.properties, gradle.properties

The good way:
— encrypt sensitive data using keys provided by AndroidKeyStore
— do not use Shared Preferences (insecure/unencrypted by default)

— do not use External Storage for sensitive information (data are not
removed by default when uninstalling the app)

OWASP

Open Web Application
Security Project

1. DATA STORAGE: EXAMPLE

Shared Preferences example:

SharedPreferences sharedPref = getSharedPreferences("key", MODE_WORLD_READABLE);
SharedPreferences.Editor editor = sharedPref.edit();

editor.putString("username", "administrator");

editor.putString("password", "supersecret");

editor.commit();

SQLite Database example:

SQLiteDatabase db = openOrCreateDatabase("privateNotSoSecure",MODE_PRIVATE,null);
db.execSQL("CREATE TABLE IF NOT EXISTS Accounts(Username VARCHAR, Password
VARCHAR);");

db.execSQL("INSERT INTO Accounts VALUES('‘admin','AdminPass');");

db.close();

OLJASP

Open Web Application
Security Project

1. DATA STORAGE: EXAMPLE

Resources file example:

<resources>
<string name="app_name">SuperApp</string>
<string name="hello_world">Hello world!</string>
<string name="action_settings">Settings</string>
<string name="secret_key">My_Secret_Key</string>
</resources>

Build file example:

buildTypes {
debug {
minifyEnabled true
buildConfigField "String", "hiddenPassword", "\"S${hiddenPassword}\""

}
}

OWASP

Open Web Application
Security Project

2. SENSITIVE DATA IN LOGS

Often developers use logs for debug purpose

However, logging sensitive data may expose the data to
attackers or malicious apps

Example:

Log.e("Private key [byte format]: " + key);

IEEE

Open Web Application
Security Project

2. SENSITIVE DATA IN LOGS: TESTING

Check source code for:
— Log, Logger classes
— Log.d, Log.e, Log.i ... functions
— System.out.print, System.err.print functions
— printStackTrace

Tools like ProGuard (included in Android Studio) can be used to
delete logging-related code in production release

IEEE

Open Web Application
Security Project

2. SENSITIVE DATA AND 3RP PARTIES

Sometimes developers use third-party service for various
reasons:

— tracker services

— sell banner ads

— improve user experience

Downside: you can’t know exactly what the libraries execute!

Usually included as Jars, API calls or full SDKs

IEEE

Open Web Application
Security Project

2. SENSITIVE DATA AND 3RP PARTIES:
TESTING

Check for necessary permissions in AndroidManifest.xml:

— READ_SMS
— READ_CONTACTS
— ACCESS_FINE_LOCATION

Check source code for:

— APl calls
— Third-party library functions
— SDKs

Check if third-party libraries are necessary and whether they are
out of date or contain known vulnerabilities

) OLUJASP

Open Web Application
Security Project

2. SENSITIVE DATA AND |PC

As part of the IPC mechanisms, content providers allow app’s
stored data to be accessed and modified by other apps

They have to be properly configured or they may leak sensitive
data

They are defined inside the AndroidManifest.xml file

) OLUJASP

Open Web Application
Security Project

2. SENSITIVE DATA AND IPC: TESTING

Check AndroidManifest.xml for providers:

identified by <provider> tag

android:exported should be explicitly set to “false” if the content is
meant to be accessible only by the app itself, otherwise define proper
read/write permissions

android:permission tags must be used to limit exposure to others
android:protectionLevel should be set to “signature” (content
accessible only by apps signed with the same key)

Check source code for:

android.content.ContentProvider, android.database.Cursor,
android.database.sqglite, .query, .update, .delete

OWASP

Open Web Application
Security Project

2. SENSITIVE DATA AND IPC: EXAMPLE

Example (AndroidManifest.xml):

<provider android:authorities="com.mwr.example.sieve.DBContentProvider" android:exported="true"
android:multiprocess="true" android:name=".DBContentProvider">

<path-permission android:path="/Keys" android:readPermission="com.mwr.example.sieve.READ_KEYS"
android:writePermission="com.mwr.example.sieve. WRITE_KEYS"/>

</provider>
<provider android:authorities="com.mwr.example.sieve.FileBackupProvider" android:exported="true"
android:multiprocess="true" android:name=".FileBackupProvider"/>

Some automatic tools can be used to inspect the app and
identify content provider URIs, for example Drozer with
scanner.provider.finduris module

OLJASP

Open Web Application
Security Project

2. SENSITIVE DATA AND IPC: EXAMPLE

dz> run scanner.provider.finduris -a com.mwr.example.sieve
Scanning com.mwr.example.sieve...
Unable to Query content://com.mwr.example.sieve.DBContentProvider/

Unable to Query content://com.mwr.example.sieve.DBContentProvider/Keys
Accessible content URIs:
content://com.mwr.example.sieve.DBContentProvider/Keys/
content://com.mwr.example.sieve.DBContentProvider/Passwords
content://com.mwr.example.sieve.DBContentProvider/Passwords/

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProvider/Passwords/ --vertical
_id: 1

service: Email

username: incognitoguy50

password: PSFjgXIMVa5NJFudgDuulVglYFD+8w== (Base64 - encoded)

email: incognitoguy50@gmail.com

OWASP

Open Web Application
Security Project

2. SENSITIVE DATA IN SCREENSHOTS

Android offers a screenshot feature that it’s used:

— by user, taking explicitly a screenshot
— by system for the recent apps view

The screenshot feature is useful but it can leak sensitive data, for
example in a banking app it can reveal user’s account, info etc...

The feature can be explicitly disabled in the Activities that shown
sensitive data

) OLUJASP

Open Web Application
Security Project

2. SENSITIVE DATA IN SCREENSHOTS:
TESTING

Identify in the App the Activities that shown sensitive data

Check source code for:
— FLAG_SECURE must be present in the sensitive Activities

Example:

getWindow().setFlags(WindowManager.LayoutParams.FLAG_SECURE,
WindowManager.LayoutParams.FLAG_SECURE);

setContentView(R.layout.activity _main);

IEEE

Open Web Application
Security Project

2. SENSITIVE DATA IN SCREENSHOTS:
EXAMPLE

O © v 4% 86% W 09:39

Google Drive App not protected against
screenshot leakage

Q Impostazioni

Impostazioni

1Password App is a Password Manager
and it is protected against screenshot
leakage

User cannot take screenshot inside the
app or see the preview in the recent

apps

OLWASP

Open Web Application

Security Project

ONE DOES NOJT

wnm THEIR OWN

% CIPHER

) OLUASP

Open Web Application
Security Project

3. CRYPTOGRAPHIC API

Android cryptography APIs are base on JCA (Java Cryptography
Architecture)

JCA separates interfaces and implementations, so it’s possible to
define different security providers

Most of JCA interfaces and classes are defined in:

— java.security.*, javax.crypto.* packages
— android.security.*, android.security.keystore.* packages (Android
specific packages)

OWASP

Open Web Application
Security Project

3. CRYPTOGRAPHIC API: TESTING

The set of existing providers can be listed as follows:

StringBuilder builder = new StringBuilder();
for (Provider provider : Security.getProviders()) {
builder.append("provider: ")

.append(provider.getName())
.append(" ")
.append(provider.getVersion())
.append("(")
.append(provider.getinfo())

.append(")\n");

}
String providers = builder.toString();

//now display the string on the screen or in the logs for debugging.

OWASP

Open Web Application
Security Project

3. CRYPTOGRAPHIC API: TESTING

Check source code for:

— Cipher

— Mac

— MessageDigest

— Signature

— Key, PrivateKey, PublicKey, SecretKey
— java.security.*, javax.crypto.*

Verify that the configuration of cryptographic algorithms used
are aligned with best practices from NIST and BSI

) OLUJASP

Open Web Application
Security Project

3. CRYPTOGRAPHIC API: EXAMPLE

Example of cryptographic functions usage:
String keyAlias = "MySecretKey";

KeyGenParameterSpec keyGenParameterSpec = new KeyGenParameterSpec.Builder(keyAlias,
KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes(KeyProperties.BLOCK_MODE_CBC)
.setEncryptionPaddings(KeyProperties. ENCRYPTION PADDING_PKCS7)
.setRandomizedEncryptionRequired(true)
build();

KeyGenerator keyGenerator = KeyGenerator.getinstance(KeyProperties.KEY_ALGORITHM_AES,
"AndroidKeyStore");
keyGenerator.init(keyGenParameterSpec);

SecretKey secretKey = keyGenerator.generateKey();

OLJASP

Open Web Application
Security Project

3. RANDOM NUMBER GENERATION:
TESTING

Cryptography requires secure pseudo random number
generation (PRNG).

Standard Java classes do not provide sufficient randomness:
— possible for an attacker to guess the next value that will be generated

|ldentify all the instances of random number generators and look
for either custom or known insecure java.util.Random class

Ildentify all instances of SecureRandom that are not created
using the default constructor

OWASP

Open Web Application
Security Project

3. RANDOM NUMBER GENERATION:
EXAMPLE

Example of insecure random generation:

import java.util.Random;

/] ...

Random number = new Random(123L);

...

for (inti=0;i<20;i++) {
// Generate another random integer in the range [0, 20]
int n = number.nextint(21);

...
}

) OWUASP

Open Web Application
Security Project

4. ENDPOINT IDENTITY VERIFICATION

Using TLS to transport sensitive data over the network is
essential for security

Encrypting communication between app and backend APl is not
trivial

Developers often decide simpler, less secure solutions (e.g.
accept any certificate) to facilitate development process

App is exposed to Man-in-the-middle attacks or MITM

D OLUASP

Open Web Application
Security Project

4. ENDPOINT IDENTITY VERIFICATION:
TESTING

The App should check:

— certificate signed by a “trusted CA”
— certificate expiration
— self-signed certificate

Note that some frameworks will ignore TLS errors under
particular conditions (e.g. Apache Cordova)

|ldentity Verification could be tested dynamically with a tool like
Burp, intercepting the app traffic and changing the option for
the certificate

) OLUJASP

Open Web Application
Security Project

4. CERTIFICATE PINNING: TESTING

Certificate pinning is the process of associating the backend
server with a particular X509 certificate or public key

The certificate can be pinned and hardcoded into the app or
retrieved the first time the app connects to the host

To customize the network security settings in a safe, declarative
configuration file it can be used the Network Security
Configuration (version > 7.0)

D OLUASP

Open Web Application
Security Project

4. CERTIFICATE PINNING: TESTING

Official Android developer guide describe how to configure
correctly the NSC

OWASP Mobile App Security Testing describe how to configure
certificate pinning with NSC and others libraries

Reference:
— https://developer.android.com/training/articles/security-config

) OLUJASP

Open Web Application
Security Project

4. CERTIFICATE PINNING: EXAMPLE

Intercept | HTTP history TWebSockets history T Options]
‘ Filter: Hiding out of scope items; hiding CS5, image and general binary content I nte rce ptl n g traffl C Of

Host Method | URL Params | Edited Status .
108 http: /i POST 8]] 200 an app WIthOUt
110 | http:// I posT I -cinl. htm @ O 200
117 http:// I rosT R -gir: htm & a 302 f 2 c
ne b —— o EEEEESssss——m - o 0 Certificate pinning
122 hitp:// rosT N ¢ 0 302
124 htp:// GET | 302
125 htts:f_ GET I = |comepage. htm E E 200 ena bled
-
L

[Request | Response

[Raw T Params T Headers T Hex]

PoST N ooin1.htn HTTP/1.1 On rooted deV|Ce

User-Agent: Dalvik/1l.6.0 (Linux; U; Android 4.4.2; SM-T311 Build/KOT4SH)
-APPID:

-DEVICE: SM-T311 Android 19 1362 2
-OTHLID: ?g?mg_d SR USGFS Can InSta”

-OTHL-Dev: 48
COTHML-PLATFORM: android

o i ot malicious certificate

-OTHL-MANIFEST: 53C40102047B25310BAESDBECSDOSACE
Accept-Language: 1t-IT

Accept: */# |n Order tO InterCept

¥-0TML-DEVICETYPE: tablet
Content-Length: 919

Content -Type: application/x-www-form-urlencoded a nd decrypt the htt ps
traffic

A

OWASP

Open Web Application
Security Project

5. ANDROID APP PERMISSIONS

Each Android app operates in a process sandbox, so apps must
explicitly request access to resources and data outside their
sandbox.

Request is made by declaring the permission they need to use
system data and feature

Depending on how sensitive or critical the data of the feature is,
the Android system will grant automatically or ask the user to
approve the request

OLWASP

Open Web Application
Security Project

5. ANDROID APP PERMISSIONS:
CATEGORIES

* Normal
— Access to isolated application-level feature; minimal risk; granted

automatically (or approved, depending on SDK level) at install time;
android.permission.INTERNET

* Dangerous
— Control over user data/device in a way that impacts the user; asked to user;
android.permission.RECORD_AUDIO

* Signature
— Granted only if the requested app was signed with the same certificate used

to sign the app that declared the permission; granted automatically at install
time; android.permission.ACCESS_MOCK_LOCATION

OWASP

Open Web Application
Security Project

5. ANDROID APP PERMISSIONS:
CATEGORIES

* SystemOrSignature
— Granted only to applications embedded in the system image or signed

with the same certificate used to sign the app that declared the
permission; android.permission.ACCESS_ DOWNLOAD MANAGER

A list of all permissions is available in the Android developer
documentation

Reference:
— https://developer.android.com/guide/topics/permissions/overview

IEEE

Open Web Application
Security Project

5. ANDROID APP PERMISSIONS: TESTING

Check permissions to make sure that the app really needs them
and remove unnecessary permissions

Check the AndroidManifest.xml for permissions

It can also be used the Android Asset Packaging tool

S aapt d permissions com.owasp.mstg.myapp
uses-permission:
uses-permission:
uses-permission:
uses-permission:

android.permission.WRITE_CONTACTS
android.permission.CHANGE_CONFIGURATION
android.permission.SYSTEM_ALERT_WINDOW
android.permission.INTERNAL_SYSTEM_WINDOW

OLJASP

Open Web Application
Security Project

6. APP SIGNATURE

Android requires all APKs to be digitally signed with a certificate
before they are installed or run

This process can prevent an app from being tampered with or
modified to include malicious code

Two APK signing schemes are available:

— JAR signing
— APK Signature Scheme v2 (only by Android 7.0 and above)

OWASP

Open Web Application
Security Project

6. APP SIGNATURE: TESTING

The v2 signature offers improved security and performance
Release builds should always be signed with both schemes

APK signatures can be verified with the apksigner tool (located in
[SDK-Path]/build-tools/[version]):

S apksigner verify --verbose Desktop/example.apk
Verifies

Verified using vl scheme (JAR signing): true

Verified using v2 scheme (APK Signature Scheme v2): true
Number of signers: 1

OWASP

Open Web Application
Security Project

6. DEBUGGABLE PROPERTY: TESTING

The android:debuggable attribute determines whether the app
can be debugged or not

With debugger attached apps can leak sensitive informations
such as Logs etc..

Verify in AndroidManifest.xml that android:debuggable is set to
false for release builds!

<application android:allowBackup="true" android:debuggable="true"
android:icon="@drawable/ic_launcher" android:label="@string/app_name"
android:theme="@style/AppTheme">

OWASP

Open Web Application
Security Project

/. ANTI-REVERSING DEFENSE

The goal is to make running the app on rooted devices a bit
more difficult

Implementing multiple root checks can improve the
effectiveness of the overall anti-tampering scheme

Root detection can be implemented by APIs, libraries orin a
programmatic way

) OLUJASP

Open Web Application
Security Project

/. ANTI-REVERSING DEFENSE: TESTING

SafetyNet

— provides a set of services; creates profiles according to device info
— profile is compared to a list of whitelisted device models
— recommended by Google

Example of attestation:

{
"nonce": "R2Rra24fVmb5xa2Mg",
"timestampMs": 9860437986543,
"apkPackageName": "com.package.name.of.requesting.app"”,
"apkCertificateDigestSha256": ["base64 encoded, SHA-256 hash of the

certificate used to sign requesting app"],

"apkDigestSha256": "base64 encoded, SHA-256 hash of the app's APK",
"ctsProfileMatch": true,

"basiclntegrity": true,

OWASP

Open Web Application
Security Project

/. ANTI-REVERSING DEFENSE: TESTING

Other ways to check for rooted devices include searching for
particular packages, apps and binaries usually associated with
rooted devices or searching for ‘su’ in the PATH

Example code:

public static boolean checkRoot(){
for(String pathDir : System.getenv("PATH").split(":")){
if(new File(pathDir, "su").exists()) {
return true;

}
}

return false;

) OLUJASP

Open Web Application
Security Project

3. ANTI-DEBUG DEFENSE

Debugging is a highly effective way to analyze run-time app
behavior.

It allows the reverse engineer to step through the code, stop app
execution at arbitrary points, inspect the state of variables, read
and modify memory, and a lot more

To check if an app is running inside a debug environment we can
check for android:debuggable property or use static functions

D OLUASP

Open Web Application
Security Project

3. ANTI-DEBUG DEFENSE: EXAMPLE

Example code:

public static boolean isDebuggable(Context context){

return ((context.getApplicationContext().getApplicationInfo().flags &
Applicationinfo.FLAG_DEBUGGABLE) != 0);

}
...

public static boolean detectDebugger() {
return Debug.isDebuggerConnected();

}

...

OWASP

Open Web Application
Security Project

CONCLUSIONS

The OWASP Mobile Security Testing Guide is an open, agile,
crowd-sourced effort, made of the contributions of dozens of
authors and reviewers from all over the world

It was designed to provide standards for the purpose of verifying
the security of mobile applications and develop more secure

apps

If you have feedback or suggestions, or want to contribute, you
can create an issue on the GitHub or join the Slack channel!
* https://www.github.com/OWASP/owasp-mstg/

OWASP

Open Web Application
Security Project

CONCLUSIONS

“Don’'t just follow the OWASP Mobile Security Testing Guide.

True excellence at mobile application security requires a deep

understanding of mobile operating systems, coding, network
security, cryptography, and a whole lot of other things, many of

which we can only touch on briefly in this book.
Don't stop at security testing.
Write your own apps, compile your own kernels, dissect mobile
malware, learn how things tick.
And as you keep learning new things, consider contributing to
the MISTG yourself”

OWASP

Open Web Application
Security Project

OLJASP

Open Web Application
Security Project

Thank for your attention!!

Questions??

OWASP Italy Day
Cagliari, 19t October 2018

TIME FOR A CUP OF

