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Today's Outline

Overview of Day 1:

> Web Application Security Foundations
> Overview of OWASP Testing Framework
> Web Application Penetration Testing (part 1)
> Configuration Management Testing
> Authentication Testing
» Session Management Testing
> Breaks
» 2 short breaks & 1 lunch break
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Tomorrow's Qutline

Overview of Day 2:

> Web Application Penetration Testing (Part 2)
» Authorization Testing
> Business Logic Testing
> Data Validation Testing
> Denial of Service Testing
» Web Services Testing
> AJAX Testing
> Breaks
» 2 short breaks & 1 lunch break
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Introduction

> Varied IT Background

> Developer, DBA, Sys Admin, Pen Tester,
Application Security, CISSP, CEH, RHCE, Linux+

> OWASP Live CD Project Lead
» Started in summer 2008 as a SoC project

> Global Projects Committee Member

> The “AppSec” guy for TEA



Web Application Security Foundation

Web Application Security Foundations
> Introduction
> Web Applications Overview
> HTTP Protocol
> HTTP Request & Response
» Methods, Status Codes, Headers
o HTTP Proxies

> Qverview of the Web Application Technologies
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Web Applications

> CGommon Functions of web applications

> Typical web applications
® Shopping (Amazon.com, Buy.com)
» Social Networking (Facebook, Twitter, MySpace)
» Banking (PayPal, Online Banks)
» Web Search (Google, Metacrawler, Yahoo, Bing)
® Auctions (eBay,WabiSabilLabi)
® Web mail (Gmail, Hotmail, Yahoo Mail)
o Information (wikipedia)
» Gambling and other online activities
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Web Applications

> Benefits of Web Applications

> HTTP (core of web communications)
o Lightweight & connectionless
® Resilient to communication errors & readily proxy-able
> Web browsers are everywhere
®» GUI is drawn by the client & No cross-platform issues
» Updates only have to happen at the server
> Browsers can now host rich, interactive interfaces &
client-side scripting
> Core technologies are relatively simple
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Simple Physical Architecture

Web Server Database

% Internet

User

Edge
Client/Internet Security Web Tier Data Tier
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More Complicated Physical Architecture
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Logical Architecture

Client/Internet Presentation Business Logic Data Layer
| Layer Layer ~ (Persistence)
| |
| Controller
| |
‘ HTML Forms

Create |
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Requests | Delete Y
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| View
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Web Application Tiers

Presentation Layer

11 |

> N-Tier Architecture
» “N” stands for some

_ . Workflow Layer
number 2-tier, 4-tier ﬁ
Business Rules Layer(s) 1
» Scalable web architectures @ ﬁ
consists of multiple tiers Data Layer
» Goal is to dedicate a Data Layer (Stored Procedures)

separate task to each tier

e
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Web Application Development Patterns

> In-line Coding (Old-School)

> Mixes HTML markup with code
> Generally procedural not Object Oriented

<html>
<title>Welcome Page</title>
<body>

<?

echo("<p>Glad to see you back "
$ GET['name'] . ".</p>");

?2>

</body>

</html>
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Web Application Development Patterns

<td colspan="3" bgcolor="#009933" align="center">
<%
' Loop 1 to 5 since there are only 5 possible choices set
up in the DB
For I =1 to 5
If Not IsNull(rsPoll.Fields("choice" & I).Value) Then
' Some spacing if needed
If I <> 1 Then Response.Write "&nbsp; &nbsp;"
%>
<a href="<%= SCRIPT NAME %>?action=results&pid=<%=
iPoll %>&vote=<%= I %$>"><font color="#FFFFFF"><%=
rsPoll.Fields("choice" & I).Value %></a></font>
<%

End If
Next 'I
> Example of Classic ASP in-line code
</td>
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Web Application Development Patterns

> MVC Model/View/Controller (New School)

> Break app functions into
separate parts/objects

| Moaodel View

» Controller gathers data ’\\‘ /’

> Model manipulates data ”
Controller
> View presents results l

MVC

Dispatcher
Routes

Web Server

> Isolation of parts allows for y
easier modification of each

[ Browser ]
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Web Application Security

> Why do we need web application security in the
first place?
> Security is not taught to programmers

> Everybody learns
“Hello World”

> Nobody learns
“Hello Security”
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Web Application Security

> Fundamental problem for web applications:
Everything a web application receives
cannot be trusted

> Everything is able to be forged/faked/modified
» Everything should be presumed hostile

> Most developers assume the “perfect user”
“You can do that???
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Web Application Security

> Factors in web application insecurity

> Immaturity of security programs and lack of awareness
® Security as a cost not a revenue generator

> In-house development
® Every application is custom & the defects are unique

> Qut-Sourced development
® Information Asymmetry / The Market for Lemons
» Seller knows more about the product then the buyer
» Substantial first mover advantage
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Web Application Security

> Factors in web application insecurity

> Deceptively simple to write web applications
» Making web applications that function is simple
» Making web applications that are secure is hard

> Rapidly evolving threat profile

® Add that to the time it takes to create a web app and
there's trouble ahead

> Qver extended technologies
» Most of what the web does today, it was never meant to.

10/18/09



Web Application Security

> SSL = Secure
WWW FAQs: What is a secure site?
“a site that uses the HTTPS protocol to ensure that your
information cannot be stolen by a third party between the
sender and the recelver st m—-

> SSL address only 1 of the
OWASP Top 10 (A-9)
"Insecure Communications”

Image from an online Mortgage Application
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HTTP Protocol

> Web Applications speak HTTP

> HTTP 1.0 established in RFC-1945 (May 1996)
> HTTP 1.1 established in RFC-2616 (June 1999)

From RFC 1945:
The Hypertext Transfer Protocol (HTTP) is an application-level
protocol with the lighthess and speed necessary for distributed,
collaborative, hypermedia information systems. |t is a generic,
stateless. object-oriented protocol which can be used for many
tasks, such as name servers and distributed object management
systems, through extension of its request methods (commands). A
feature of HTTP is the typing of data representation, allowing
systems to be built independently of the data being transferred.

10/18/09



HTTP Protocol

> Request/Response based communication
> User/Browser requests something
> Web server responds
> Web server waits for the next request
> “Lightness”
> Protocol is plain text
> Very simple to be a client (telnet)
> “Stateless”

» Server answers a request, closes the connection
> Ultimate amnesiacs
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HTTP Protocol

> “Extension”
> WebDAYV — Distributed Authoring

> OWASP Enigform — OpenPGP extensions on top of
HTTP

> Communicate on port 80 & 443 (traditionally)
> These are by convention only
> Responses are over high ports >1024
> http://www.example.com:8080/admin/
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How John Q Public thinks the web works

1. Enter an “address” into your browser

W

View History Bookmarks

Tools Help

£

2 |[@] | http://www.owasp.org
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2. Server sends
you a web page




How browsers really work

o Enter a URL into a browser

> Breaks the URL into host + path
® Ask a DNS server for an IP address for the host
® DNS server returns an IP address for that host
> Browser sends a request to the IP address
® If no port is given, 80 is used
® Path is used to determine what file to send
® Server replies to the request — usually with an HTML file

» Browser reads the HTML file and asks for all the files referenced in the
original HTML file

® These additional files could be images, JavaScript, CSS, etc
® Additional files could reside on different hosts, requiring more DNS
o After browser gets all the pieces, it renders a single web “page”
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HTTP Conversations

> The client begins the communication
> Makes a request of the server

» General format:
Initial line of the request
zero or more headers are added
a blank line (technically a CRLF)

an optional message body (form data, uploaded file)
Note:

CR = ASCII 13

LF = ASCII 10
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HTTP Request

Initial Line: GET /index.php HTTP/1.1

/ Host: www.owasp.org \

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.9.1.1) Gecko/20090715 Firefox/3.5.1

Zero or more -
headers Accept: text/html,application/xhtml+xml,*/*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

\ Accept-Charset: ISO-8859-1,utf-8:9=0.7,*;:9=0.7 /
Blank Line:

Message Body (optional)
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HTTP Request

Initial Line: POST /forms/login.php HTTP/1.1

/ Host: www.owasp.org \

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.9.1.1) Gecko/20090715 Firefox/3.5.1

Zero or more -
headers Accept: text/html,application/xhtml+xml,*/*

Accept-Language: en-us,en;q=0.5

Content-Type: text/plain

\ Content-length: 30 /

Blank Line:

Message Body uname=billbo&pass=hobbitsRc00l
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HTTP Request

Initial Line: POST /services/location.asmx HTTP/1.1

« DY

Host: webservices.example.com

Z
e Content-Type: text/xml; charset=utf-8

headers
0 Content-length: 428 )
Blank Line:
@ <?xml version="1.0" encoding="ut{-8"?> N
<soap12:Envelope xmlins:xsi="http://www.w3.org/
Message Body 2001/XMLSchema-instance" xmins:xsd=

"http://www.w3.0rg/2001/XMLSchema"
\ xmlins:soap12="http://www.w3.0rg/2003/05/soap- /
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HTTP Conversations

> The server responds by answering the request

> May be as simple as sending a file
> May hand off processing to another process

> General format:

Initial line of the response (version + status)
zero or more headers are added

a blank line (technically a CRLF)

the rasponse body (HTML, CSS, an image, ...)

Note
CR = ASCII 13
LF = ASCII 10
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HTTP Response

initial Line: HTTP/1.1 200 OK
/ Date: Sun, 02 Aug 2009 21:05:16 GMT \
Server: Apache/2.2.8 (EL)
X-Powered-By: PHP/5.2.6
Zero or more -
Content-length: 3942

Connection: close

\ Content-Type: text/html; charset=utf-8 /

Blank Line:

Response Body  <IDOCTYPE html PUBLIC "-/W3C//DTD XHTML 1.0
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HTTP Response

Initial Line: HTTP/1.1 200 OK
/Zero 5 Gl Content-Type: application/soap+xml; charset=utf-8 )
\headers Content-length: 872 y
Blank Line:
/ <?xml version="1.0" encoding="utf-8"?> \

<soap12:Envelope xmlins:xsi="http://www.w3.org/
2001/XMLSchema-instance" xmins:xsd=

Sessores Body "http://www.w3.0rg/2001/XMLSchema" xmins:

soap12="http://www.w3.0rg/2003/05/soap-envelope">

<soap12:Body>

A 4
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HTTP Methods / Verbs

> Requests detalls
> The initial line consists of
o HTTP Method (also called a verb)
® Path (URI)
® Version

> HTTP 1.0 has 3 methods
®» GET — used to request a resource from a server

®» POST — used to request a server receive some data

» Content-Type and Content-Length headers are key
® HEAD — same as GET but no body is sent
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HTTP Methods / Verbs

> HTTP 1.1 added several methods
®» PUT — used to upload a resource to a server
o DELETE — used to remove a resource from a server
® OPTIONS - lists the methods supported by the URI
®» TRACE - returns the received request for debugging

® CONNECT — used with proxies for tunneling
Note: There is typically no reason to support the HTTP 1.1
methods in a production server environment.
Even HEAD can be problematic at times.
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HTTP Methods / Verbs

> HTTP “Form” methods
® HTML forms use either GET or POST

» Results of a GET submission can be bookmarked
» POST is assumed to be more 'secure’

» In theory, GET should be used to retrieve data, POST

should be used to update data

» Safe vs Unsafe methods
o GET, HEAD, OPTIONS, TRACE shouldn't have side-effects
o POST, PUT, DELETE should have side-effects

10/18/09



HTTP Responses

> Response details

> The Initial line consists of
o HTTP Version
» Status Code (computer readable)
» Short Message (human readable)

» Status Codes are 3 digit integers in 5 categories
® 1 XX — informational messages
® 2XX — success messages
» 3XX — redirects the client to other resources
» 4XX — client-side errors
®» 5XX — server-side errors
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HTTP Status Codes

o> Common Status Codes to watch for

> 100 Continue

® Used with “Expect: 100-continue” header. Allows server to
'pre-approve’ large requests (aka POSTS)

» 200 OK
® most common seen, no problems with request

» 206 Partial Content
® Response to a “Range” header
» 300 Multiple Choices
® Used when multiple resources match a request

® Especially useful for multi-views to disclose files
GET /backup HTTP/1.0
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HTTP Status Codes

> 301 Moved Permanently
o All future requests should go to a new location (URI)
» 302 Found
®» Most popular method to redirect a client to a new location
®» Response includes a new location for client
» 303 See Other & 307 Temporary Redirect
o Part of HTTP 1.1 though seldom used
®» More granular version of the 302
> 304 Not Modified
o Tells client/proxy to use cached content
» Typically in response to one of the “If-Modified” headers
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HTTP Status Codes

> 400 Bad Request
® Request failed a syntax check
> 401Unauthorized

» Sent when authentication is possible but has failed or not
yet been sent

» WWW-Authenticate header is sent with this status
> 403 Forbidden

» Server refused an otherwise valid request

® Authenticating won't make a difference (no indexing)
> 404 Not found

» Resource wasn't found on the server
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HTTP Status Codes

» 405 Method Not Allowed
® Method used to access a resource Is not allowed

® e.g. Sending a GET for a POST or verifying OPTIONS

> 406 Not Acceptable

® Sent when no resource matches the Accept header

® Some servers will send a list of close matches
GET /backup HTTP/1.0

> 500 Internal Server Error
® Generic server error message
> 501 Not Implemented

® Request method not implemented or server cannot fulfill
BOGUS / HTTP/1.1
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HTTP Headers you should know

> Request Headers

> Host
® Contains the host name of the server the request is for
» Required for HTTP 1.1 but not 1.0

®e.X. Host: www.example.com

» Connection
®» How the server should handle the network connection
® Close is useful for HTTP 1.1
» Keep-alive is used by 1.0 clients what want persistence
®e.X. Connection: Close
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HTTP Headers you should know

> Referer
® Address of the page which linked to the current request
oe.X. Referer: http://linkspot.com/1l.html

> User-Agent
® The user agent string which represents the browser used
®e.X. User-Agent: Wget/1.11.4

> Content-Length
® The size of the request body (in bytes)
®e.X. Content-Length: 138
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HTTP Headers you should know

> Accept Accept-Charset  Accept-Encoding
Accept-Language Accept-Ranges
® Allows a client to specify what kind of content it will
accept and how to provide it

® Accept uses either mime types or globs (text/*,*/*)

» See /etc/mime.types for tons of examples

®e.X. Accept: text/plain,image/png,text/html
> Authorization

® Provides credentials for HT TP Authentication

® Format: scheme credentials (e.g. owasp:password)

®e.X. Authorization: Basic b3dhc3A6cGFzc3dvemQ=
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HTTP Headers you should know

> Gache-Control Pragma
® Used to influence caching of content by browser/proxies
» Cache-Control 'must' be obeyed
®» Pragma is implementation specific
®e.X. Pragma: no-cache
ee.X. Cache-Control: max-age=3600

> Content-Type
® Provides the mime type for the request body
o Used by POST and PUT requests

9e.X. Content-Type: application/x-www-form-urlencoded
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HTTP Headers you should know

> Range
» Used to request only a portion of a resource
®e.X. Range: bytes:450-1024

» X-[Something]
» Extension of HT TP headers (aka custom header)

® X-Powered-By: ASP.NET
X-AspNet-Version: 2.0.50727

» Cookie

® Sends a cookie back to the server that was previously
sent by the same server

oe.X. Cookie: admin=true;
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A bit more on cookies

> Cookies (in a browser)

» Uses

» Session management — allows a user to be
“‘remembered” from request to request

® Personalization — links preferences to a user's browser

» Tracking — follows a user << ug
> Alternatives to cookies

o |P Address

» URL manipulation

» re-writing or query string Two COOKIES
® Hldden Form flG'dS with teh whipped cream!!!1
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A bit more on cookies

How to get a cookie:
Hey, I'd like this page

-
Sure. And here's a cookie
Now | want this page .

L
’ﬁ. .‘-

Sure. hereitis

Alternatively, you could be nice to your mom.
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A bit more on cookies

» Cookies specifics

® Browser should store

» at least 300 cookies at 4 kbytes each
» at least 20 cookies per server or domain

® Cookies have case-insensitive names

» Cookies are either stored in
» memory (session) or disk (persistent)

> Cookie Expiration
® When browser closes (session ends)
® At a specified date in the future
®» When that date is set to the past
» User asks browser to delete the cookie
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A bit more on cookies

» Cookies structure

® Name / Value pair

» Value can be changed by resending a set-cookie header
» The only mandatory part of a cookie

» Expiration date
» Path

® Domain
®'Secure’

o 'HitpOnly' (not all browsers support this)

Set-Cookie: ID=12; expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.com
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HTTP Headers you should know

» Server
® The host name for the server responding

®e.X. Server: portal.example.com

» Set-Cookie
®» Send a new (or updated) cookie to the client
oe.X. Set-Cookie: role=admin;

> Via
o Tells the client what proxy handled the response
ee.x. Via: 1.1 HTTP/1.1 Proxyl, HTTP/l.1 Proxy2
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HTTP Headers you should know

> Allow

®» Sends the valid methods with a 405 Method Not Allowed
status code (leaks this)

®e.X. Allow: HEAD, GET, POST

» Location
» Used to redirect the client to a new resource location
®e.X. Location: http://example.com/new/page.php

> Retry-After
o Tells the client wait before repeating a request
o e.X. Retry-After: 120
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HTTP Headers you should know

» X-Something
® Response header extension — custom header
® Frequently 'advertises' the applications language

®e.X. X-Powered-By: Phusion Passenger
(mod rails/mod rack) 2.0.6

> WWW-Authenticate
o Tells the client which HTTP Authentication type to use
® Basic and Digest are in the RFC
» NTML is also possible — particularly with [IS
® e.Xx. WWW-Authenticate: Basic
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A few more bits about WWW-Authenticate

» Basic
» Takes [username]:[password] and Base64 encodes it
owasp:w3ak-pa$$ would become
b3dhc3A6dzNhay1wYTE3MTA1
» Digest
® Does not send the credentials across the wire
» Uses MDS5 hashing + a nonce to provide authentication
> Problems with WWW-Authenticate
® Sent with every request
® Browser remembers and resends until you close it
® For digest, implementation is spotty and parts are optional
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HTTP Proxies

> HTTP proxies act on behalf of clients as a intermediary
® Proxied requests are slightly different

GET /directory/list.asp?letter=c HTTP/1.1

GET http://example.com/directory/list.asp?letter=c HTTP/1.1

® Proxies have two flavors
» Forward Proxy (aka normal proxy)
Proxy is between users and the Internet

» Reverse proxy
Proxy is in front of 1 or more servers
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HTTP Proxies

Forward Proxy

Reverse Proxy

Server 2
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SSL & TLS

> Originally developed by Netscape
» SSL v 1.0 — never released
> SSL v 2.0 — released February 1995
> SSL v 3.0 —released in 1996
» TLS v 1.0 —released as IEFT standard in 1999

_,..-—/K_H\

{ =

Server

Open

Protected Season
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SSL and Proxies

> Proxies can be used to “break” the SSL tunnel

> In reality, its two tunnels
® One between client and proxy
®» One between proxy and server

Server Forward Proxy

_,..-—//__H\

SSL In the clear SSL
Tunnel #2 Tunnel #1
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SSL + Local Proxy = Fun

> If we run the proxy server on the same machine as our
browser, we can intercept and modify all HTTP and
HTTPS traffic

P —-
Server P \
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The State of HTTP

> HTTP Is a stateless protocol

> To create meaningful applications, we need state
®» Methods to add state
» URL re-writing
» Query Strings
» Hidden Fields
» Cookies

» Most modern languages include a session mechanism
0o manage state

® If you peek under the covers, they are using cookies
e State is usually managed in memory or in a database
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From sharing scientific papers to Facebook

> Qriginal design of the web: share some text
> As people wanted to do more, various languages were
used to add dynamic elements to the web
» CGl ( C, Perl, Snoboal, ...) .cgi, .pl
® SSI| .ssi, .shtml, shtm, .stm
o DHTML .dhtml
o XHTML & XML .xhtml, xml

®» Web Application Languages

»Very low barrier to entry (can the language spit out text)

»Web server maps a file extension to the language that will
handle a HTTP request
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Plethora of Languages for the web

> PHP .php, .php3, .phtml

> Ruby .rb, .rhtml

> Python .py, .psp, .phtml

> Perl .pl, phtml

> Java, JSP, Servlets, Applets .class, .jsp, .do

> ASP (classic), ASP.Net
.asp, .aspx, .asmx, .asax, .ascx, .mspx

> Active X (embedded in an object tag) .cab
> GoldFusion .cfm, .cfml
> Flash, Shockware, ...
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Fundamental Web App Technologies

> The building block of web applications are
> HTML
> CSS
> JavaScript
> Other technologies which may be used are
» XML
» XML-RPC, REST & SOAP
» JSON & AJAX
» RSS
> WAP & Smart Phones
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> HTML: Hyper Text Markup Language

> A text-based language to create structured documents
<IDOCTYPE html>
<html>
<title>Example Page<t/title>
<body>
<p id="greeting”>Hello World!</p>
<!-- Gratuitous space follows-->&nbsp;
<br />
</body>
</html>
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> GSS: Cascading Style Sheets

» Style sheet language which allows defining the design
of a web site in one location

v In-Line, In-Document, External

p { color: red; font-family: “Times New Roman” }

> CSS 1, CSS 2 & CSS 3 levels exist
> Support is spotty in browsers
> Use is mixed and typically used more in newer apps
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JavaScript

> JavaScript
» Scripting language used to increase interactivity of web
pages
» Started by Netscape and called “LiveScript”
> Also known as ECMAScript
» The 'J'in AJAX
> In-Line, In-Document, External options

<script type="text/javascript”>
document.write('<b>Hello World</b>");

</script>
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To learn some more

e

e | e
e

—p—

j

> We just did one heck of a fly-over

> Great resources for further info
RFCs: http://www.faqgs.org/rfcs/
Wikipedia: http://www.wikipedia.org/

w3schools.com: http://www.w3schools.com/
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OWASP Testing Guide v3

> OWASP Testing Guide v3
> Version 3 was completed as a SoC 08 project
® 349 pages, 9 sub-categories
® 66 controls to test outlined in the guide

> Available

® Online on the OWASP Wik
http://www.owasp.org/index.php/Category:OWASP_Testing Project

® Download as .doc or .pdf
® Print on demand from Lulu
» You got a copy with this class
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The OWASP Testing Framework

> Beyond the penetration tests, the Testing Guide
includes the OWASP Testing Framework
» Gan be used as a guide to inject security into the entire
SDLC (Software Development Life Cycle)
> Phased approach
®» Phase 1: Before Development Begins
nase 2: During Definition and Design
nase 3: During Development
nase 4: During Deployment
nase 5: Maintenance and Operations

¢
U U U U
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Testing Framework — A bit more detail

> Phase 1: Before Development Begins
® 1A: Review Policies and Standards
» 1B: Develop Measurements and Metrics Criteria
» Phase 2: During Definition and Design
» 2A: Review Security Requirements
» 2B: Review Design and Architecture
» 2C: Create and Review UML Models
»2D: Create and Review Threat Models
> Phase 3: During Development
» 3A: Code Walk-throughs
® 3B: Code Reviews
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Testing Framework — A bit more detail

> Phase 4: During Deployment
®4A: Application Penetration Testing
» 4B: Configuration Management Testing
> Phase 5: Maintenance and Operations
® 5A: Conduct Operational Management Reviews
» 5B: Conduct Periodic Health Checks
» 5C: Ensure Change Verification

http://www.owasp.org/index.php/The_ OWASP_Testing_Framework
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Pardon the plug

- If you are considering starting a comprehensive
application security program, I'd suggest

OWASP's OpenSAMM
(Software Assurance Maturity Model)

:ln |

Software Assuranc
Software Ma m.—.::l:.{ wlel
Dewlopmen =

SAMM Owverview

Business Funciions
] Governance | ] Deployment

Security Proctices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Palicy & Threat Secure Code Vulnerabilicy Operational
Compliance Assessment Architecture Review Management Enablement
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Now, back at the point...

> Web Application Penetration Testing

> What is it?
» Simulating an attack on a web app for the purpose
of verifying and validating the security controls

e Passive: Gathering information about the
application to help focus your attack simulation

® Active: Directly testing the security controls of an
application

> The Guide has 1 passive and 9 active categories



Web Application Penetration Testing

v Information Gathering (1G) } Passive

» Configuration management Testing (CM)
> Authentication Testing (AT)

b Session Management Testing (SM)

> Authorization Testing (AZ)

» Business Logic Testing (BL) > Active
» Data Validation Testing (DV)

» Testing for Denial of Service (DS)

» Web Services Testing (WS)

» AJAX Testing (AJ) J
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Our Schedule

" Information Gathering (IG) N
> Gonfiguration management Testing (CM) pay
> Authentication Testing (AT)

-~ Session Management Testing (SM) 4

- Authorization Testing (AZ)
> Business Logic Testing (BL)
> Data Validation Testing (DV)
> Testing for Denial of Service (DS)
> Web Services Testing (WS)
" 5 AJAX Testing (AJ)

4

Day 2
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Information Gathering (I1G)

> Information Gathering (1G)

> Focused on collecting as much information as possible
about a target application.

» aka recon
> Passive testing

® No active attacks

® You do interact with the application
(different from traditional network penetration testing)

> Uses a variety of means to gather information about the
application being tested
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Spiders, Robots, and Crawlers (OWASP-1G-001)

> Robots.ixt

> Designed to provide access restrictions to web crawlers
> Robots Exclusion Protocol

> Well-behaving crawlers will follow robots.txt but nothing
compels them

> Can provide details about web applications

User-agent: *

Allow: /stuff/safe/to/crawl

Disallow: /secret-stuff/

Disallow: /quartely-reports ?download=xls
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Search Engine Discovery/Reconnaissance (OWASP-IG-002)

> Google and other search engines have likely
already crawled the site
> Use that data to your advantage
> For Google, here's some key search operators

site: - restricts results to just the host name provided
intitle: - restricts search to the page's title
filetype: - restricts search to the provided file type

> Tons of these exist, check out Johnny Long's GHDB:
http://johnny.ihackstuff.com/ghdb/
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Search Engine Discovery/Reconnaissance (OWASP-IG-002)

Footholds .:' entries)
Examples of queries that can help a hacker ¢

Fages containing legin portals (232 entries)
These are login pages for various services. Co
website's more sensitive functions

Fages mntaining netmmrh or uulnerabilit‘; data (32 entries)
These pages contain such th || s firewall logs, honeypot logs, network information
DS logs... all ;....|L-. of fun stuff

FOR FENETRATION TESTERS
FALUME 2

sensnwe DIFEETDFIES (61 entries)
00 web sites sharing sensitive directories. The files contained in
|“:|$ will wvan from sesitive to uber-secret

sensnwe Dnllne Ehopplng Info (9 entries)

can reveal online shopping 0 like customer data
I numbers, credit card info —t

"-.-"-El;i-i.}l_.l-s DI:I.IiI'II;.' DE;;fi.l-:;s (201 entries) M U C H m O re

This category ::::::|*t:.1i_|‘5. t_I*il* 5 like printers, video cameras, and all sorts of cool things .
eb with Google O n I I n e Or

Vulnerable F|IE~5| 7 entries)

HUNDREDS o ..-|..I| erable files that Google can find on websites.. in bOOk fOrm

5 =x: vulnerabilities. These are fou
different way than tI* searches found in [I*_ Yulnerable Files

Web Server Detection (72 entries)
These links demonstrate Google's awesome ability to
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Identify Application Entry Points (OWASP-1G-003)

> In order to fully determine (and test) an application, you
must map out the attack surface

> Allows you to find any potentially weak areas

> Allows you to focus your attack on the lowest hanging
fruit

> Allows you to 'get to know' the application

> In particular, look for data entry points where the
application is taking data from the browser or user

» Use a local proxy to help you map out the application

» Where are GET, POST, Set-Cookie, hidden fields used
» Look for unusual status codes (300's, 400's, 500
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Testing for Web Application Fingerprint (OWASP-1G-004)

> Web server fingerprinting is the task of determining what
technologies are used to support the web application
> Fingerprinting is the combination of
» Explicit information provided by the server
® Implicit information learned from how the server behaves

> Fingerprinting should be a combination of manual
automated techniques

®» Much of this information can be gathered from your local
proxy session (the manual, explicit part)

> The guide lists some good manual techniques (p 64-68)
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Application Discovery (OWASP-IG-005)

> Application discovery covers looking beyond the
application being tested to find out what other
attack vectors may exist on that server

> Depends on the scope of the test

> If you can own the server hosting the app, the app is
owned

» If you can own another app on the server, you may be
able to use that position to attack your target app

> Virtual hosting, especially name based, is important to
consider
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Analysis of Error Codes (OWASP-1G-006)

> Applications can produce error codes during testing

> While these are helpful to developers, they are also very
helpful to pen testers (and of little use to users)

> You may have already seen these when identifying
application entry points (1G-003)

v If the error produces HTML, make sure to look into the
HTML comments

» ASP.Net will often 'hide' more verbose information in the
comments
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Analysis of Error Codes (OWASP-1G-006)

> Beyond custom request, the traditional ones are:

oForce a HTTP 404
GET /i-am-a-file-that-does-not-exist.html HTTP/1.1
»Look at the generated page
»Look at the headers
o Falil at getting a directory listing
» Look at proxy session for 401, 403 or 405s
» Request a non-existent dynamic file
GET /thisBogusFile.jsp HTTP/1.1

» Can find language specific errors
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Configuration Management Testing

> Configuration Management Testing

» Looks at how well the server infrastructure is
maintained

> Possibly out of the developers domain and is part of the
system administration teams duties

> Weakness here can be systemic and allow the
underlying host to be compromised
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SSL/TLS Testing (OWASP-CM-001)

> SSL is used to protect the channel over which web
applications communicate
> SSL/TLS testing verifies that strong ciphers are used for
the encryption of that tunnel
> SSL has evolved over many years
o Original ciphers were weaker (fewer bits)
e Legislation in the U.S. also forced weaker ciphers

> Client and Server negotiate and agree on a cipher that
is known by both

o If a client only offers weak ciphers, he can force weak
encryption on a mis-configured server
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DB Listener Testing (OWASP-CM-002)

> Oracle databases have a particular service called the TNS
listener

» Service which allows remote clients to connect
> TNS = Transparent Network Substrate

> Default port 1521 (2483 & 2484 also)

> Required for remote access to the database

» Potential Attacks

® DOS by stopping the listener

» Hijack the DB by setting a TNS Listener password
o Information leakage via writing files as Oracle user
» Detailed information on the database
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Infrastructure Configuration Mgmt Testing (OWASP-CM-003)

> Infrastructure Configuration Management Testing

> Is the server infrastructure hardened?

> What are the elements that make up the server
architecture?
» WAF (Web Application Firewall)
® Load Balancer
® Proxy
® Application Server
> Accessible administrative interfaces?

> Weak authentication systems — particularly between
servers?
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Application Configuration Mgmt Testing (OWASP-CM-004)

> Application Configuration Management Testing

» Was the actual server hardened?

> Do sample or example files exist?
» e.Xx. CodeBrws.asp in lIS

> Are the HTML comments that reveal sensitive data?

» Do common, well-known directories exist on the server?
o vti directories for FrontPage

> Nikto is a good open source scanner for these items

> Commercial general vulnerability scanners will help
here also (e.g. Nessus, Qualys, ISS)

» The Information Gathering resulis will drive this
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Testing for File Extensions (OWASP-CM-005)

> Testing for File Extensions
> File extensions are used by web servers to determine
what and how to handle requests for that resource

> A default action is specified to handle unknown
extensions
o Typically the default is to send the file to the client

® Misconfiguration or file renames can cause unintended
downloads also

> File extensions to check for .asa, .inc, .jJava, .cs, .swp

> Nikto and other vulnerability scanners can automate
much of this
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Old, backup and Unreferenced Files (OWASP-CM-006)

> Although all files in the web root will be served by a
web server, not all files are meant to be served

> Examples
® Backup, modified and CYA copies of files
® Orphaned files
® Files created by editors
® Log files
» Backups and archives

> Finding some of the common issues can be automated
by scanners (e.g. Nikto, Nessus, ...)
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Old, backup and Unreferenced Files (OWASP-CM-006)

» Review the application for a naming scheme or clues

» Can you infer anything from your previous 1G work?

» If there's a /role/user.jsp and a /role/approver.jsp, is there a
/role/admin.jsp?

® Look for hints in existing content

» HTML comments, JavaScript, robots.txt
®» Brute force / Blind Guessing

» Pre-pending guesses — admin.jsp

» Appending guesses — admin.jsp.old

~, bak, txt, src, dev, old, inc, orig, copy, tmp

® Server misconfiguration or vulnerabilities
®» Search engines, their cache or online archives
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Infrastructure and Application Admin Interfaces (OWASP-CM-007)

> Infrastructure and Application Administration
Interfaces

> Many management interfaces are now web-based
» Some admin access is secured by obscurity

» Methods to find these
® Directory and file enumeration
» Comment or links in source or robots.txt
e Server documentation or manuals
® Alternate ports

» Parameter tampering — change cookies, form fields, etc
Set-Cookie: adm=false
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Testing for HTTP Methods and XST (OWASP-CM-008)

> AllHTTP methods do not need to be offered on production
servers
> Many have negative security implications
o PUT, DELTE, CONNECT, TRACE, TRACK
> Methods may be mis-handled by frameworks
» HEAD treated as a GET
» BOGUS treated as GET but by-passing access controls
> OPTIONS may not tell you the truth

® Some configurations list methods like PUT but respond
with a 403 status to any actual request
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Authentication Testing

> Authentication

> Used to digitally verity the identity of the source of
communication or data

> For web applications, this is almost always a login page
with a user name and password

> From a tester's perspective, one needs to
» Understand how the authentication scheme works

» Determine if there are any methods to bypass the
scheme
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Credentials transport over an encrypted channel (OWASP-AT-001)

> One of the methods to protect credentials it to ensure they
cannot be intercepted during transmission

> Not concerned with the cipher strength (see CM-001)
> Items to check
®|s the form submitted to a HTTPS address?

»Look at the action attribute on the <form> tag
> [f not a full URL is the base page SSL'ed?
® |s the form submitted via POST?
»Look at the method attribute on the <form> tag
® Can you also login via GET

» Modify a submission and change to GET method
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Credentials transport over an encrypted channel (OWASP-AT-001)

> More items to check
o |f SSL'ed, will it also accept HTTP requests?
» Use an intercepting proxy to change to http
® |s something else submitting the credentials for you?
» AJAX / JavaScript submitting the login info
»Does it use HTTPS?
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Testing for User Enumeration (OWASP-AT-002)

> Half of what you need to become a user is the user name

> These tests are designed to determine if the application
will help you find valid user names

> ltems to check
® Conduct a valid login and observe how the application
reacts

»Does itdoa HTTP 200? Doesitdoa HTTP 3027
» What page is displayed after a successful login®?
» Is a cookie set or modified after login?

® Using the same credential, purposefully fail the login
» What changes with a bad password?
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Testing for User Enumeration (OWASP-AT-002)

> More items to check

® Try the login page with a non-existent user name

» Use a random string for the username and any password
» How does the application react?

» Bring this all together
Valid user & bad password = “Incorrect password”
Invalid user & bad password = “Username not found”
> Other methods of enumerating users
o Are different error codes displayed?
» Review URLs and redirects for clues
® Probe for URLs for users (e.g. Apache's /~bsmith/)
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Testing for Guessable (Dictionary) User Account (OWASP-AT-003)

> Most software and appliances ship with a web
interface

> Those typically come with default account to assist with
the initial setup

> Programmers also tend to leave test or debug accounts
> Demo accounts are also possible

» Use the information gathered in IG and CM to focus
your guesses

> There are multiple online resources for default
credentials, or download the administrators manual
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Brute Force Testing (OWASP-AT-004)

> Brute force testing consists of systematically trying
combinations of credentials until you find a match

» Sometimes to win, you just have to keep guessing
> Two different type of credential attacks to consider
® HT TP Authentication
®» Form-based authentication
> Types of attacks
® Dictionary Attacks — uses lists of usernames/passwords
® Search Attacks — try all possible combinations 'aa’' to 'zz'

» Rule-based search attacks — generate passwords based
on rules such as |33t speak (p4sswOrd)
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Testing for bypassing authentication schema (OWASP-AT-005)

> Authentication should occur on every portion of an
application which requires it.

> Frequently, design or implementation issues cause this
security control to fall

> There are several methods to bypass authentication

® Forced browsing

» Directly request internal 'protected' pages of the application
without using the login page
» Jump to later steps in a workflow
» Parameter manipulation

» Are there parameters which appear to effect
authentication? What happens when these are changed?
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Testing for bypassing authentication schema (OWASP-AT-005)

> More methods to bypass authentication

® Session ID Prediction
» Is the method of choosing new session identifiers
predictable?
» Can you guess a recently allocated session id and become
that user?
® SQL Injection
» Can you inject SQL into the login process so that the
username password lookup always returns true?
» More details on this in Data Validation (DV-005)
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Testing for vulnerable remember password and pwd reset (OWASP-AT-006)

> Part of user management and provisioning is password
reset functions

> Remembering passwords / auto-login features also

> Various methods exist to reset passwords

®» Send email to address on record
» Send existing password
» Send new password (may force reset on first logon)
» Send temporary, expiring password
® Security Questions / Secret Questions
» Pre-defined question lists
» User selects question and answer
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Testing for Logout and Browser Cache Mgnt (OWASP-AT-007)

> As important as properly handling login events, logout events,
time outs and caching need to be considered

> Failure here allows others to re-user old sessions

» Users don't have to tell an app they are done
® Can use a log out feature — purely optional

® No requests arrive for a sufficient time and the app expires the
user's session

> Apps can invalidate sessions
® Clearing the session cookie

» Remember that cookies are under user control
® Invalidating the session on the server side [preferred]

» Most languages have a method to kill a session
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Testing for CAPTCHA (OWASP-AT-008)

> CAPTCHA = Completely Automated Public Turning test to
tell Computers and Humans Apart

» CAPTCHA is used to mitigate against automated
computer based attacks

» Weakness in CAPTCHA
» Generated images are weak against automation
® There is a limited set of possible answers
® Decoded value of CAPCHA is sent by the client

» Poor, weak or no encryption (hidden field)
»Weak hashing is used (rainbow attacks)
» Replay of previously solved CAPTCHA's is possible
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Testing for Multiple factors Authentication (OWASP-AT-009)

> For high risk / high value systems, more then a
single credential pair is used to authenticate
> Multi-factor authentication systems combine the

traditional username / password with an additional piece
of information

® “Something you have”
® “Something you know”
® “Something you are” (biometrics)
> Combat active attacks rather then passive attacks
® Phishing vs eavesdropping
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Testing for Multiple factors Authentication (OWASP-AT-009)

> Threats potentially mitigated by MFA
® Credential Theft
® Weak Credentials
® Session based attacks
o Trojan and Malware attacks
» Password resuse
> Types of MFAs

® One-time password generation

» Grid Card, Scratch Card or other physical information
® Crypto devices such as RSA token or smart card

e Random OTPs send through alternate channel (SMS)
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Testing for Race Conditions (OWASP-AT-010)

> Race conditions exist when timing of one action has an
effect on anther separate action

> More common in multi-threaded applications

» Typically example is transferring money between
accounts
® Timing the debits and credits must be precise
» TOCTOU - time of check, time of use
> Testing is very dependent on server load, network
latency, etc

» Must also be able to simultaneously make multiple
requests
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Session Management Testing

> Remember that HTTP is s stateless protocol
originally designed to share scientific documents
» State was bolted on to HTTP

> Of the variety of session mechanisms that evolved,
session tokens (via session cookies) are dominant

> Because severs know nothing about the clients beyond
the requests they receive, if you have someone session
ID, you are them to the server

» Since sessions allow for meaningful web applications,
they are crucial to get right.
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Testing for Session Mgmt Schema (OWASP-SM-001)

> Cookies were established for session in RFC 2965
> Cookies are vital to the overall security of an application
and subject to a wide range of attacks

» Since they are sent by clients with each request,
o Clients have the ability to forge session cookies
o |f the applications accepts the forgery, its game over

» Steps in evaluating cookie strength
® Cookie collection
» Cookie reverse engineering
» Cookie manipulation
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Testing for Session Mgmt Schema (OWASP-SM-001)

> Minimal cookie considerations
o All Set-Cookie headers include 'Secure' attribute

» Cookies over encrypted channels
» Are any cookies sent of HTTP?
» Can the cookie be forced over HTTP?
® Are any cookies persistent?
» Are the Expires times reasonable?
® Are any anti-caching mechanisms used?
» Are both HTTP 1.0 and HTTP 1.1 methods used?
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Testing for Cookies attributes (OWASP-SM-002)

> Because of the importance of cookies for applications,
several mechanism have been created to increase their
security.
> Attributes important to application security

® secure — tells the browser to only send cookie over
HTTPS connections

» HitpOnly — prevents JavaScript access to the cookie to
mitigate XSS issues. Not supported on all browsers

e domain — controls what host(s) will be sent the cookie
® path — what sub-sections of the URL the cookie is valid
® expires — controls the cookies persistence
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Testing for Cookies attributes (OWASP-SM-002)

» Testing cookie attributes

» Secure attribute — should be present on all session
and other sensitive cookies

» HttpOnly — should be set for all cookies

®» Domain — set the the host of the web application.
e.g. app.ex.com NOT .ex.com

» Path — set as tightly as the application will allow

»Make sure to use a trailing /
e.g. /app1/ NOT /app1
» Expires — if set to a time in the future, ensure that no
sensitive data is stored within
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Testing for Session Fixation (OWASP-SM-003)

b Sessions ids should be set after authentication

> Many application platforms automatically generate
sessions for any request

» If the session id is provided before SSL'ing the
communication, it is subject to eavesdropping

> If a know session id can be forced on a victim, the
attacker can gain authentication via the user

» Session ids can also leak via included files that are not
SSL'ed (images, JavaScript) particularly with poorly set
domain attributes
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Testing for Session Fixation (OWASP-SM-003)

> Testing for session fixation

® Make an un-authenticated request to the application
»Note if a session id is issued

® Login
» Verify that your session id has changes

® Review the session for any non-SSL'ed requests to the
same or sibling domains

o |deally, after successful login, an HTTP 302 should be
Issued to redirect the browser to the 'landing’' page

» This purposefully breaks the back button so session ids
won't be sent outside of the authenticated area
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Testing for Exposed Session Variables (OWASP-SM-004)

> Session ids/tokens should be protected in transport

> Particularly for non-cookie based sessions
» Lesser used session mechanism
» Hidden fields
» Parameters
® URL rewriting
> When a session id is transported, check
oHTTPS vs HTTP

» HTTP headers for caching

» HTML meta-tags for caching
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Testing for CSRF (OWASP-SM-005)

> GSRF = Cross Site Request Forgery
> An attack which uses already authenticated sessions to
force a user to make unwanted / unknown actions
o Effectively, the attacker is the authenticated user

® Remember that the browser will automatically send any
cookies for that domain (session cookie t00)

> Particularly powerful attack when a single GET can
modify data

> Post help mitigate CSRF issues

o |t is still possible to conduct post CSRF attacks but those
are more complicated
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Testing for CSRF (OWASP-SM-005)

» Testing for CSRF

® Review your |G data to find URLs which modify data or
are of particular importance
http://example.com/transfer.php?to=123&amt=500.00

» Create a HTML page with a link containing the action
above

® |[n a separate window / tab, log into the application to
establish a session

® Try the link in the page you created
» Did the action happen?

> See OWASP CSRFGuard for an example mitigation
® Provides unique request tokens
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End of Day 1
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