Hands-on OWASP Testing Guide v3
using the OWASP Live CD

Day 1

Web Application Security: Foundations

Overview: of the OWASRP: Testing Guide Framework
Web Application Penetration Testing| (Part 1)

Matt Tesauro

OWASP' Live CDi Project lLead
Global Prejectst Commitiee VMember,

Today's Outline

Overview of Day 1:

> Web Application Security Foundations
> Overview of OWASP Testing Framework
> Web Application Penetration Testing (part 1)
> Configuration Management Testing
> Authentication Testing
» Session Management Testing
> Breaks
» 2 short breaks & 1 lunch break

10/18/09 2

Tomorrow's Qutline

Overview of Day 2:

> Web Application Penetration Testing (Part 2)
» Authorization Testing
> Business Logic Testing
> Data Validation Testing
> Denial of Service Testing
» Web Services Testing
> AJAX Testing
> Breaks
» 2 short breaks & 1 lunch break

10/18/09 K

Introduction

> Varied IT Background

> Developer, DBA, Sys Admin, Pen Tester,
Application Security, CISSP, CEH, RHCE, Linux+

> OWASP Live CD Project Lead
» Started in summer 2008 as a SoC project

> Global Projects Committee Member

> The “AppSec” guy for TEA

Web Application Security Foundation

Web Application Security Foundations
> Introduction
> Web Applications Overview
> HTTP Protocol
> HTTP Request & Response
» Methods, Status Codes, Headers
o HTTP Proxies

> Qverview of the Web Application Technologies

10/18/09 S

Web Applications

> CGommon Functions of web applications

> Typical web applications
® Shopping (Amazon.com, Buy.com)
» Social Networking (Facebook, Twitter, MySpace)
» Banking (PayPal, Online Banks)
» Web Search (Google, Metacrawler, Yahoo, Bing)
® Auctions (eBay,WabiSabilLabi)
® Web mail (Gmail, Hotmail, Yahoo Mail)
o Information (wikipedia)
» Gambling and other online activities

10/18/09 6

Web Applications

> Benefits of Web Applications

> HTTP (core of web communications)
o Lightweight & connectionless
® Resilient to communication errors & readily proxy-able
> Web browsers are everywhere
®» GUI is drawn by the client & No cross-platform issues
» Updates only have to happen at the server
> Browsers can now host rich, interactive interfaces &
client-side scripting
> Core technologies are relatively simple

10/18/09 7

Simple Physical Architecture

Web Server Database

% Internet

User

Edge
Client/Internet Security Web Tier Data Tier

10/18/09

More Complicated Physical Architecture

| |
\
| -
| WS
| |
‘ LB’ ‘ 1
i !
‘ \
| |
— WS?
User ‘ ‘ |
\
‘ LBZ ‘ ‘ :
\ |
| !
\
‘ Cws
| |
\
| | |
| Edge |
Client/Internet Security Web Tier Data Tier

10/18/09

Logical Architecture

Client/Internet Presentation Business Logic Data Layer
| Layer Layer ~ (Persistence)
| |
| Controller
| |
‘ HTML Forms

Create |

|
|
|
|
HTTP(S) + |
Request Get & Post \ Update |
Requests | Delete Y
|
|
|
|
|
|

|
| (CruD)
% | Data
| Search | Source
User ‘ Returned |

HTTP(s) Page Business

Response | (HTML, JS, Rules |
| CSS, etc)
| Model |
| View

10/18/09

Web Application Tiers

Presentation Layer

11 |

> N-Tier Architecture
» “N” stands for some

_ . Workflow Layer
number 2-tier, 4-tier ﬁ
Business Rules Layer(s) 1
» Scalable web architectures @ ﬁ
consists of multiple tiers Data Layer
» Goal is to dedicate a Data Layer (Stored Procedures)

separate task to each tier

e

10/18/09

Web Application Development Patterns

> In-line Coding (Old-School)

> Mixes HTML markup with code
> Generally procedural not Object Oriented

<html>
<title>Welcome Page</title>
<body>

<?

echo("<p>Glad to see you back "
$ GET['name'] . ".</p>");

?2>

</body>

</html>

10/18/09

Web Application Development Patterns

<td colspan="3" bgcolor="#009933" align="center">
<%
' Loop 1 to 5 since there are only 5 possible choices set
up in the DB
For I =1 to 5
If Not IsNull(rsPoll.Fields("choice" & I).Value) Then
' Some spacing if needed
If I <> 1 Then Response.Write " "
%>
<a href="<%= SCRIPT NAME %>?action=results&pid=<%=
iPoll %>&vote=<%= I %$>"><%=
rsPoll.Fields("choice" & I).Value %>
<%

End If
Next 'I
> Example of Classic ASP in-line code
</td>

10/18/09

Web Application Development Patterns

> MVC Model/View/Controller (New School)

> Break app functions into
separate parts/objects

| Moaodel View

» Controller gathers data ’\\‘ /’

> Model manipulates data ”
Controller
> View presents results l

MVC

Dispatcher
Routes

Web Server

> Isolation of parts allows for y
easier modification of each

[Browser]

10/18/09

Web Application Security

> Why do we need web application security in the
first place?
> Security is not taught to programmers

> Everybody learns
“Hello World”

> Nobody learns
“Hello Security”

10/18/09

Web Application Security

> Fundamental problem for web applications:
Everything a web application receives
cannot be trusted

> Everything is able to be forged/faked/modified
» Everything should be presumed hostile

> Most developers assume the “perfect user”
“You can do that???

10/18/09

Web Application Security

> Factors in web application insecurity

> Immaturity of security programs and lack of awareness
® Security as a cost not a revenue generator

> In-house development
® Every application is custom & the defects are unique

> Qut-Sourced development
® Information Asymmetry / The Market for Lemons
» Seller knows more about the product then the buyer
» Substantial first mover advantage

10/18/09

Web Application Security

> Factors in web application insecurity

> Deceptively simple to write web applications
» Making web applications that function is simple
» Making web applications that are secure is hard

> Rapidly evolving threat profile

® Add that to the time it takes to create a web app and
there's trouble ahead

> Qver extended technologies
» Most of what the web does today, it was never meant to.

10/18/09

Web Application Security

> SSL = Secure
WWW FAQs: What is a secure site?
“a site that uses the HTTPS protocol to ensure that your
information cannot be stolen by a third party between the
sender and the recelver st m—-

> SSL address only 1 of the
OWASP Top 10 (A-9)
"Insecure Communications”

Image from an online Mortgage Application

10/18/09

HTTP Protocol

> Web Applications speak HTTP

> HTTP 1.0 established in RFC-1945 (May 1996)
> HTTP 1.1 established in RFC-2616 (June 1999)

From RFC 1945:
The Hypertext Transfer Protocol (HTTP) is an application-level
protocol with the lighthess and speed necessary for distributed,
collaborative, hypermedia information systems. |t is a generic,
stateless. object-oriented protocol which can be used for many
tasks, such as name servers and distributed object management
systems, through extension of its request methods (commands). A
feature of HTTP is the typing of data representation, allowing
systems to be built independently of the data being transferred.

10/18/09

HTTP Protocol

> Request/Response based communication
> User/Browser requests something
> Web server responds
> Web server waits for the next request
> “Lightness”
> Protocol is plain text
> Very simple to be a client (telnet)
> “Stateless”

» Server answers a request, closes the connection
> Ultimate amnesiacs

10/18/09

HTTP Protocol

> “Extension”
> WebDAYV — Distributed Authoring

> OWASP Enigform — OpenPGP extensions on top of
HTTP

> Communicate on port 80 & 443 (traditionally)
> These are by convention only
> Responses are over high ports >1024
> http://www.example.com:8080/admin/

10/18/09

How John Q Public thinks the web works

1. Enter an “address” into your browser

W

View History Bookmarks

Tools Help

£

2 |[@] | http://www.owasp.org

10/18/09

2. Server sends
you a web page

How browsers really work

o Enter a URL into a browser

> Breaks the URL into host + path
® Ask a DNS server for an IP address for the host
® DNS server returns an IP address for that host
> Browser sends a request to the IP address
® If no port is given, 80 is used
® Path is used to determine what file to send
® Server replies to the request — usually with an HTML file

» Browser reads the HTML file and asks for all the files referenced in the
original HTML file

® These additional files could be images, JavaScript, CSS, etc
® Additional files could reside on different hosts, requiring more DNS
o After browser gets all the pieces, it renders a single web “page”

10/18/09

HTTP Conversations

> The client begins the communication
> Makes a request of the server

» General format:
Initial line of the request
zero or more headers are added
a blank line (technically a CRLF)

an optional message body (form data, uploaded file)
Note:

CR = ASCII 13

LF = ASCII 10

10/18/09

HTTP Request

Initial Line: GET /index.php HTTP/1.1

/ Host: www.owasp.org \

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.9.1.1) Gecko/20090715 Firefox/3.5.1

Zero or more -
headers Accept: text/html,application/xhtml+xml,*/*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

\ Accept-Charset: ISO-8859-1,utf-8:9=0.7,*;:9=0.7 /
Blank Line:

Message Body (optional)

10/18/09

HTTP Request

Initial Line: POST /forms/login.php HTTP/1.1

/ Host: www.owasp.org \

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.9.1.1) Gecko/20090715 Firefox/3.5.1

Zero or more -
headers Accept: text/html,application/xhtml+xml,*/*

Accept-Language: en-us,en;q=0.5

Content-Type: text/plain

\ Content-length: 30 /

Blank Line:

Message Body uname=billbo&pass=hobbitsRc00l

10/18/09

HTTP Request

Initial Line: POST /services/location.asmx HTTP/1.1

« DY

Host: webservices.example.com

Z
e Content-Type: text/xml; charset=utf-8

headers
0 Content-length: 428)
Blank Line:
@ <?xml version="1.0" encoding="ut{-8"?> N
<soap12:Envelope xmlins:xsi="http://www.w3.org/
Message Body 2001/XMLSchema-instance" xmins:xsd=

"http://www.w3.0rg/2001/XMLSchema"
\ xmlins:soap12="http://www.w3.0rg/2003/05/soap- /

10/18/09

HTTP Conversations

> The server responds by answering the request

> May be as simple as sending a file
> May hand off processing to another process

> General format:

Initial line of the response (version + status)
zero or more headers are added

a blank line (technically a CRLF)

the rasponse body (HTML, CSS, an image, ...)

Note
CR = ASCII 13
LF = ASCII 10

10/18/09

HTTP Response

initial Line: HTTP/1.1 200 OK
/ Date: Sun, 02 Aug 2009 21:05:16 GMT \
Server: Apache/2.2.8 (EL)
X-Powered-By: PHP/5.2.6
Zero or more -
Content-length: 3942

Connection: close

\ Content-Type: text/html; charset=utf-8 /

Blank Line:

Response Body <IDOCTYPE html PUBLIC "-/W3C//DTD XHTML 1.0

10/18/09

HTTP Response

Initial Line: HTTP/1.1 200 OK
/Zero 5 Gl Content-Type: application/soap+xml; charset=utf-8)
\headers Content-length: 872 y
Blank Line:
/ <?xml version="1.0" encoding="utf-8"?> \

<soap12:Envelope xmlins:xsi="http://www.w3.org/
2001/XMLSchema-instance" xmins:xsd=

Sessores Body "http://www.w3.0rg/2001/XMLSchema" xmins:

soap12="http://www.w3.0rg/2003/05/soap-envelope">

<soap12:Body>

A 4

10/18/09

HTTP Methods / Verbs

> Requests detalls
> The initial line consists of
o HTTP Method (also called a verb)
® Path (URI)
® Version

> HTTP 1.0 has 3 methods
®» GET — used to request a resource from a server

®» POST — used to request a server receive some data

» Content-Type and Content-Length headers are key
® HEAD — same as GET but no body is sent

10/18/09

HTTP Methods / Verbs

> HTTP 1.1 added several methods
®» PUT — used to upload a resource to a server
o DELETE — used to remove a resource from a server
® OPTIONS - lists the methods supported by the URI
®» TRACE - returns the received request for debugging

® CONNECT — used with proxies for tunneling
Note: There is typically no reason to support the HTTP 1.1
methods in a production server environment.
Even HEAD can be problematic at times.

10/18/09

HTTP Methods / Verbs

> HTTP “Form” methods
® HTML forms use either GET or POST

» Results of a GET submission can be bookmarked
» POST is assumed to be more 'secure’

» In theory, GET should be used to retrieve data, POST

should be used to update data

» Safe vs Unsafe methods
o GET, HEAD, OPTIONS, TRACE shouldn't have side-effects
o POST, PUT, DELETE should have side-effects

10/18/09

HTTP Responses

> Response details

> The Initial line consists of
o HTTP Version
» Status Code (computer readable)
» Short Message (human readable)

» Status Codes are 3 digit integers in 5 categories
® 1 XX — informational messages
® 2XX — success messages
» 3XX — redirects the client to other resources
» 4XX — client-side errors
®» 5XX — server-side errors

10/18/09

HTTP Status Codes

o> Common Status Codes to watch for

> 100 Continue

® Used with “Expect: 100-continue” header. Allows server to
'pre-approve’ large requests (aka POSTS)

» 200 OK
® most common seen, no problems with request

» 206 Partial Content
® Response to a “Range” header
» 300 Multiple Choices
® Used when multiple resources match a request

® Especially useful for multi-views to disclose files
GET /backup HTTP/1.0

10/18/09

HTTP Status Codes

> 301 Moved Permanently
o All future requests should go to a new location (URI)
» 302 Found
®» Most popular method to redirect a client to a new location
®» Response includes a new location for client
» 303 See Other & 307 Temporary Redirect
o Part of HTTP 1.1 though seldom used
®» More granular version of the 302
> 304 Not Modified
o Tells client/proxy to use cached content
» Typically in response to one of the “If-Modified” headers

10/18/09

HTTP Status Codes

> 400 Bad Request
® Request failed a syntax check
> 401Unauthorized

» Sent when authentication is possible but has failed or not
yet been sent

» WWW-Authenticate header is sent with this status
> 403 Forbidden

» Server refused an otherwise valid request

® Authenticating won't make a difference (no indexing)
> 404 Not found

» Resource wasn't found on the server

10/18/09

HTTP Status Codes

» 405 Method Not Allowed
® Method used to access a resource Is not allowed

® e.g. Sending a GET for a POST or verifying OPTIONS

> 406 Not Acceptable

® Sent when no resource matches the Accept header

® Some servers will send a list of close matches
GET /backup HTTP/1.0

> 500 Internal Server Error
® Generic server error message
> 501 Not Implemented

® Request method not implemented or server cannot fulfill
BOGUS / HTTP/1.1

10/18/09

HTTP Headers you should know

> Request Headers

> Host
® Contains the host name of the server the request is for
» Required for HTTP 1.1 but not 1.0

®e.X. Host: www.example.com

» Connection
®» How the server should handle the network connection
® Close is useful for HTTP 1.1
» Keep-alive is used by 1.0 clients what want persistence
®e.X. Connection: Close

10/18/09

HTTP Headers you should know

> Referer
® Address of the page which linked to the current request
oe.X. Referer: http://linkspot.com/1l.html

> User-Agent
® The user agent string which represents the browser used
®e.X. User-Agent: Wget/1.11.4

> Content-Length
® The size of the request body (in bytes)
®e.X. Content-Length: 138

10/18/09

HTTP Headers you should know

> Accept Accept-Charset Accept-Encoding
Accept-Language Accept-Ranges
® Allows a client to specify what kind of content it will
accept and how to provide it

® Accept uses either mime types or globs (text/*,*/*)

» See /etc/mime.types for tons of examples

®e.X. Accept: text/plain,image/png,text/html
> Authorization

® Provides credentials for HT TP Authentication

® Format: scheme credentials (e.g. owasp:password)

®e.X. Authorization: Basic b3dhc3A6cGFzc3dvemQ=

10/18/09

HTTP Headers you should know

> Gache-Control Pragma
® Used to influence caching of content by browser/proxies
» Cache-Control 'must' be obeyed
®» Pragma is implementation specific
®e.X. Pragma: no-cache
ee.X. Cache-Control: max-age=3600

> Content-Type
® Provides the mime type for the request body
o Used by POST and PUT requests

9e.X. Content-Type: application/x-www-form-urlencoded

10/18/09

HTTP Headers you should know

> Range
» Used to request only a portion of a resource
®e.X. Range: bytes:450-1024

» X-[Something]
» Extension of HT TP headers (aka custom header)

® X-Powered-By: ASP.NET
X-AspNet-Version: 2.0.50727

» Cookie

® Sends a cookie back to the server that was previously
sent by the same server

oe.X. Cookie: admin=true;

10/18/09

A bit more on cookies

> Cookies (in a browser)

» Uses

» Session management — allows a user to be
“‘remembered” from request to request

® Personalization — links preferences to a user's browser

» Tracking — follows a user << ug
> Alternatives to cookies

o |P Address

» URL manipulation

» re-writing or query string Two COOKIES
® Hldden Form flG'dS with teh whipped cream!!!1

10/18/09

A bit more on cookies

How to get a cookie:
Hey, I'd like this page

-
Sure. And here's a cookie
Now | want this page .

L
’ﬁ. .‘-

Sure. hereitis

Alternatively, you could be nice to your mom.

10/18/09

A bit more on cookies

» Cookies specifics

® Browser should store

» at least 300 cookies at 4 kbytes each
» at least 20 cookies per server or domain

® Cookies have case-insensitive names

» Cookies are either stored in
» memory (session) or disk (persistent)

> Cookie Expiration
® When browser closes (session ends)
® At a specified date in the future
®» When that date is set to the past
» User asks browser to delete the cookie

10/18/09

A bit more on cookies

» Cookies structure

® Name / Value pair

» Value can be changed by resending a set-cookie header
» The only mandatory part of a cookie

» Expiration date
» Path

® Domain
®'Secure’

o 'HitpOnly' (not all browsers support this)

Set-Cookie: ID=12; expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.com

10/18/09

HTTP Headers you should know

» Server
® The host name for the server responding

®e.X. Server: portal.example.com

» Set-Cookie
®» Send a new (or updated) cookie to the client
oe.X. Set-Cookie: role=admin;

> Via
o Tells the client what proxy handled the response
ee.x. Via: 1.1 HTTP/1.1 Proxyl, HTTP/l.1 Proxy2

10/18/09

HTTP Headers you should know

> Allow

®» Sends the valid methods with a 405 Method Not Allowed
status code (leaks this)

®e.X. Allow: HEAD, GET, POST

» Location
» Used to redirect the client to a new resource location
®e.X. Location: http://example.com/new/page.php

> Retry-After
o Tells the client wait before repeating a request
o e.X. Retry-After: 120

10/18/09

HTTP Headers you should know

» X-Something
® Response header extension — custom header
® Frequently 'advertises' the applications language

®e.X. X-Powered-By: Phusion Passenger
(mod rails/mod rack) 2.0.6

> WWW-Authenticate
o Tells the client which HTTP Authentication type to use
® Basic and Digest are in the RFC
» NTML is also possible — particularly with [IS
® e.Xx. WWW-Authenticate: Basic

10/18/09

A few more bits about WWW-Authenticate

» Basic
» Takes [username]:[password] and Base64 encodes it
owasp:w3ak-pa$$ would become
b3dhc3A6dzNhay1wYTE3MTA1
» Digest
® Does not send the credentials across the wire
» Uses MDS5 hashing + a nonce to provide authentication
> Problems with WWW-Authenticate
® Sent with every request
® Browser remembers and resends until you close it
® For digest, implementation is spotty and parts are optional

10/18/09

HTTP Proxies

> HTTP proxies act on behalf of clients as a intermediary
® Proxied requests are slightly different

GET /directory/list.asp?letter=c HTTP/1.1

GET http://example.com/directory/list.asp?letter=c HTTP/1.1

® Proxies have two flavors
» Forward Proxy (aka normal proxy)
Proxy is between users and the Internet

» Reverse proxy
Proxy is in front of 1 or more servers

10/18/09

HTTP Proxies

Forward Proxy

Reverse Proxy

Server 2

10/18/09

SSL & TLS

> Originally developed by Netscape
» SSL v 1.0 — never released
> SSL v 2.0 — released February 1995
> SSL v 3.0 —released in 1996
» TLS v 1.0 —released as IEFT standard in 1999

_,..-—/K_H\

{ =

Server

Open

Protected Season

10/18/09

SSL and Proxies

> Proxies can be used to “break” the SSL tunnel

> In reality, its two tunnels
® One between client and proxy
®» One between proxy and server

Server Forward Proxy

_,..-—//__H\

SSL In the clear SSL
Tunnel #2 Tunnel #1

10/18/09

SSL + Local Proxy = Fun

> If we run the proxy server on the same machine as our
browser, we can intercept and modify all HTTP and
HTTPS traffic

P —-
Server P \

10/18/09

The State of HTTP

> HTTP Is a stateless protocol

> To create meaningful applications, we need state
®» Methods to add state
» URL re-writing
» Query Strings
» Hidden Fields
» Cookies

» Most modern languages include a session mechanism
0o manage state

® If you peek under the covers, they are using cookies
e State is usually managed in memory or in a database

10/18/09

From sharing scientific papers to Facebook

> Qriginal design of the web: share some text
> As people wanted to do more, various languages were
used to add dynamic elements to the web
» CGl (C, Perl, Snoboal, ...) .cgi, .pl
® SSI| .ssi, .shtml, shtm, .stm
o DHTML .dhtml
o XHTML & XML .xhtml, xml

®» Web Application Languages

»Very low barrier to entry (can the language spit out text)

»Web server maps a file extension to the language that will
handle a HTTP request

10/18/09

Plethora of Languages for the web

> PHP .php, .php3, .phtml

> Ruby .rb, .rhtml

> Python .py, .psp, .phtml

> Perl .pl, phtml

> Java, JSP, Servlets, Applets .class, .jsp, .do

> ASP (classic), ASP.Net
.asp, .aspx, .asmx, .asax, .ascx, .mspx

> Active X (embedded in an object tag) .cab
> GoldFusion .cfm, .cfml
> Flash, Shockware, ...

10/18/09

Fundamental Web App Technologies

> The building block of web applications are
> HTML
> CSS
> JavaScript
> Other technologies which may be used are
» XML
» XML-RPC, REST & SOAP
» JSON & AJAX
» RSS
> WAP & Smart Phones

10/18/09

> HTML: Hyper Text Markup Language

> A text-based language to create structured documents
<IDOCTYPE html>
<html>
<title>Example Page<t/title>
<body>
<p id="greeting”>Hello World!</p>
<!-- Gratuitous space follows-->

</body>
</html>

10/18/09

> GSS: Cascading Style Sheets

» Style sheet language which allows defining the design
of a web site in one location

v In-Line, In-Document, External

p { color: red; font-family: “Times New Roman” }

> CSS 1, CSS 2 & CSS 3 levels exist
> Support is spotty in browsers
> Use is mixed and typically used more in newer apps

10/18/09

JavaScript

> JavaScript
» Scripting language used to increase interactivity of web
pages
» Started by Netscape and called “LiveScript”
> Also known as ECMAScript
» The 'J'in AJAX
> In-Line, In-Document, External options

<script type="text/javascript”>
document.write('Hello World");

</script>
10/18/09 64

To learn some more

e

e | e
e

—p—

j

> We just did one heck of a fly-over

> Great resources for further info
RFCs: http://www.faqgs.org/rfcs/
Wikipedia: http://www.wikipedia.org/

w3schools.com: http://www.w3schools.com/

10/18/09

OWASP Testing Guide v3

> OWASP Testing Guide v3
> Version 3 was completed as a SoC 08 project
® 349 pages, 9 sub-categories
® 66 controls to test outlined in the guide

> Available

® Online on the OWASP Wik
http://www.owasp.org/index.php/Category:OWASP_Testing Project

® Download as .doc or .pdf
® Print on demand from Lulu
» You got a copy with this class

10/18/09

The OWASP Testing Framework

> Beyond the penetration tests, the Testing Guide
includes the OWASP Testing Framework
» Gan be used as a guide to inject security into the entire
SDLC (Software Development Life Cycle)
> Phased approach
®» Phase 1: Before Development Begins
nase 2: During Definition and Design
nase 3: During Development
nase 4: During Deployment
nase 5: Maintenance and Operations

¢
U U U U

10/18/09

Testing Framework — A bit more detail

> Phase 1: Before Development Begins
® 1A: Review Policies and Standards
» 1B: Develop Measurements and Metrics Criteria
» Phase 2: During Definition and Design
» 2A: Review Security Requirements
» 2B: Review Design and Architecture
» 2C: Create and Review UML Models
»2D: Create and Review Threat Models
> Phase 3: During Development
» 3A: Code Walk-throughs
® 3B: Code Reviews

10/18/09

Testing Framework — A bit more detail

> Phase 4: During Deployment
®4A: Application Penetration Testing
» 4B: Configuration Management Testing
> Phase 5: Maintenance and Operations
® 5A: Conduct Operational Management Reviews
» 5B: Conduct Periodic Health Checks
» 5C: Ensure Change Verification

http://www.owasp.org/index.php/The_ OWASP_Testing_Framework

10/18/09

Pardon the plug

- If you are considering starting a comprehensive
application security program, I'd suggest

OWASP's OpenSAMM
(Software Assurance Maturity Model)

:ln |

Software Assuranc
Software Ma m.—.::l:.{ wlel
Dewlopmen =

SAMM Owverview

Business Funciions
] Governance |] Deployment

Security Proctices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Palicy & Threat Secure Code Vulnerabilicy Operational
Compliance Assessment Architecture Review Management Enablement

10/18/09

Now, back at the point...

> Web Application Penetration Testing

> What is it?
» Simulating an attack on a web app for the purpose
of verifying and validating the security controls

e Passive: Gathering information about the
application to help focus your attack simulation

® Active: Directly testing the security controls of an
application

> The Guide has 1 passive and 9 active categories

Web Application Penetration Testing

v Information Gathering (1G) } Passive

» Configuration management Testing (CM)
> Authentication Testing (AT)

b Session Management Testing (SM)

> Authorization Testing (AZ)

» Business Logic Testing (BL) > Active
» Data Validation Testing (DV)

» Testing for Denial of Service (DS)

» Web Services Testing (WS)

» AJAX Testing (AJ) J

10/18/09

Our Schedule

" Information Gathering (IG) N
> Gonfiguration management Testing (CM) pay
> Authentication Testing (AT)

-~ Session Management Testing (SM) 4

- Authorization Testing (AZ)
> Business Logic Testing (BL)
> Data Validation Testing (DV)
> Testing for Denial of Service (DS)
> Web Services Testing (WS)
" 5 AJAX Testing (AJ)

4

Day 2

10/18/09

Information Gathering (I1G)

> Information Gathering (1G)

> Focused on collecting as much information as possible
about a target application.

» aka recon
> Passive testing

® No active attacks

® You do interact with the application
(different from traditional network penetration testing)

> Uses a variety of means to gather information about the
application being tested

10/18/09

Spiders, Robots, and Crawlers (OWASP-1G-001)

> Robots.ixt

> Designed to provide access restrictions to web crawlers
> Robots Exclusion Protocol

> Well-behaving crawlers will follow robots.txt but nothing
compels them

> Can provide details about web applications

User-agent: *

Allow: /stuff/safe/to/crawl

Disallow: /secret-stuff/

Disallow: /quartely-reports ?download=xls

10/18/09

Search Engine Discovery/Reconnaissance (OWASP-IG-002)

> Google and other search engines have likely
already crawled the site
> Use that data to your advantage
> For Google, here's some key search operators

site: - restricts results to just the host name provided
intitle: - restricts search to the page's title
filetype: - restricts search to the provided file type

> Tons of these exist, check out Johnny Long's GHDB:
http://johnny.ihackstuff.com/ghdb/

10/18/09

Search Engine Discovery/Reconnaissance (OWASP-IG-002)

Footholds .:' entries)
Examples of queries that can help a hacker ¢

Fages containing legin portals (232 entries)
These are login pages for various services. Co
website's more sensitive functions

Fages mntaining netmmrh or uulnerabilit‘; data (32 entries)
These pages contain such th || s firewall logs, honeypot logs, network information
DS logs... all ;....|L-. of fun stuff

FOR FENETRATION TESTERS
FALUME 2

sensnwe DIFEETDFIES (61 entries)
00 web sites sharing sensitive directories. The files contained in
|“:|$ will wvan from sesitive to uber-secret

sensnwe Dnllne Ehopplng Info (9 entries)

can reveal online shopping 0 like customer data
I numbers, credit card info —t

"-.-"-El;i-i.}l_.l-s DI:I.IiI'II;.' DE;;fi.l-:;s (201 entries) M U C H m O re

This category ::::::|*t:.1i_|‘5. t_I*il* 5 like printers, video cameras, and all sorts of cool things .
eb with Google O n I I n e Or

Vulnerable F|IE~5| 7 entries)

HUNDREDS o ..-|..I| erable files that Google can find on websites.. in bOOk fOrm

5 =x: vulnerabilities. These are fou
different way than tI* searches found in [I*_ Yulnerable Files

Web Server Detection (72 entries)
These links demonstrate Google's awesome ability to

10/18/09 77

Identify Application Entry Points (OWASP-1G-003)

> In order to fully determine (and test) an application, you
must map out the attack surface

> Allows you to find any potentially weak areas

> Allows you to focus your attack on the lowest hanging
fruit

> Allows you to 'get to know' the application

> In particular, look for data entry points where the
application is taking data from the browser or user

» Use a local proxy to help you map out the application

» Where are GET, POST, Set-Cookie, hidden fields used
» Look for unusual status codes (300's, 400's, 500

10/18/09

Testing for Web Application Fingerprint (OWASP-1G-004)

> Web server fingerprinting is the task of determining what
technologies are used to support the web application
> Fingerprinting is the combination of
» Explicit information provided by the server
® Implicit information learned from how the server behaves

> Fingerprinting should be a combination of manual
automated techniques

®» Much of this information can be gathered from your local
proxy session (the manual, explicit part)

> The guide lists some good manual techniques (p 64-68)

10/18/09

Application Discovery (OWASP-IG-005)

> Application discovery covers looking beyond the
application being tested to find out what other
attack vectors may exist on that server

> Depends on the scope of the test

> If you can own the server hosting the app, the app is
owned

» If you can own another app on the server, you may be
able to use that position to attack your target app

> Virtual hosting, especially name based, is important to
consider

10/18/09

Analysis of Error Codes (OWASP-1G-006)

> Applications can produce error codes during testing

> While these are helpful to developers, they are also very
helpful to pen testers (and of little use to users)

> You may have already seen these when identifying
application entry points (1G-003)

v If the error produces HTML, make sure to look into the
HTML comments

» ASP.Net will often 'hide' more verbose information in the
comments

10/18/09

Analysis of Error Codes (OWASP-1G-006)

> Beyond custom request, the traditional ones are:

oForce a HTTP 404
GET /i-am-a-file-that-does-not-exist.html HTTP/1.1
»Look at the generated page
»Look at the headers
o Falil at getting a directory listing
» Look at proxy session for 401, 403 or 405s
» Request a non-existent dynamic file
GET /thisBogusFile.jsp HTTP/1.1

» Can find language specific errors

10/18/09

Configuration Management Testing

> Configuration Management Testing

» Looks at how well the server infrastructure is
maintained

> Possibly out of the developers domain and is part of the
system administration teams duties

> Weakness here can be systemic and allow the
underlying host to be compromised

10/18/09

SSL/TLS Testing (OWASP-CM-001)

> SSL is used to protect the channel over which web
applications communicate
> SSL/TLS testing verifies that strong ciphers are used for
the encryption of that tunnel
> SSL has evolved over many years
o Original ciphers were weaker (fewer bits)
e Legislation in the U.S. also forced weaker ciphers

> Client and Server negotiate and agree on a cipher that
is known by both

o If a client only offers weak ciphers, he can force weak
encryption on a mis-configured server

10/18/09

DB Listener Testing (OWASP-CM-002)

> Oracle databases have a particular service called the TNS
listener

» Service which allows remote clients to connect
> TNS = Transparent Network Substrate

> Default port 1521 (2483 & 2484 also)

> Required for remote access to the database

» Potential Attacks

® DOS by stopping the listener

» Hijack the DB by setting a TNS Listener password
o Information leakage via writing files as Oracle user
» Detailed information on the database

10/18/09

Infrastructure Configuration Mgmt Testing (OWASP-CM-003)

> Infrastructure Configuration Management Testing

> Is the server infrastructure hardened?

> What are the elements that make up the server
architecture?
» WAF (Web Application Firewall)
® Load Balancer
® Proxy
® Application Server
> Accessible administrative interfaces?

> Weak authentication systems — particularly between
servers?

10/18/09

Application Configuration Mgmt Testing (OWASP-CM-004)

> Application Configuration Management Testing

» Was the actual server hardened?

> Do sample or example files exist?
» e.Xx. CodeBrws.asp in lIS

> Are the HTML comments that reveal sensitive data?

» Do common, well-known directories exist on the server?
o vti directories for FrontPage

> Nikto is a good open source scanner for these items

> Commercial general vulnerability scanners will help
here also (e.g. Nessus, Qualys, ISS)

» The Information Gathering resulis will drive this

10/18/09

Testing for File Extensions (OWASP-CM-005)

> Testing for File Extensions
> File extensions are used by web servers to determine
what and how to handle requests for that resource

> A default action is specified to handle unknown
extensions
o Typically the default is to send the file to the client

® Misconfiguration or file renames can cause unintended
downloads also

> File extensions to check for .asa, .inc, .jJava, .cs, .swp

> Nikto and other vulnerability scanners can automate
much of this

10/18/09

Old, backup and Unreferenced Files (OWASP-CM-006)

> Although all files in the web root will be served by a
web server, not all files are meant to be served

> Examples
® Backup, modified and CYA copies of files
® Orphaned files
® Files created by editors
® Log files
» Backups and archives

> Finding some of the common issues can be automated
by scanners (e.g. Nikto, Nessus, ...)

10/18/09

Old, backup and Unreferenced Files (OWASP-CM-006)

» Review the application for a naming scheme or clues

» Can you infer anything from your previous 1G work?

» If there's a /role/user.jsp and a /role/approver.jsp, is there a
/role/admin.jsp?

® Look for hints in existing content

» HTML comments, JavaScript, robots.txt
®» Brute force / Blind Guessing

» Pre-pending guesses — admin.jsp

» Appending guesses — admin.jsp.old

~, bak, txt, src, dev, old, inc, orig, copy, tmp

® Server misconfiguration or vulnerabilities
®» Search engines, their cache or online archives

10/18/09

Infrastructure and Application Admin Interfaces (OWASP-CM-007)

> Infrastructure and Application Administration
Interfaces

> Many management interfaces are now web-based
» Some admin access is secured by obscurity

» Methods to find these
® Directory and file enumeration
» Comment or links in source or robots.txt
e Server documentation or manuals
® Alternate ports

» Parameter tampering — change cookies, form fields, etc
Set-Cookie: adm=false

10/18/09

Testing for HTTP Methods and XST (OWASP-CM-008)

> AllHTTP methods do not need to be offered on production
servers
> Many have negative security implications
o PUT, DELTE, CONNECT, TRACE, TRACK
> Methods may be mis-handled by frameworks
» HEAD treated as a GET
» BOGUS treated as GET but by-passing access controls
> OPTIONS may not tell you the truth

® Some configurations list methods like PUT but respond
with a 403 status to any actual request

10/18/09

Authentication Testing

> Authentication

> Used to digitally verity the identity of the source of
communication or data

> For web applications, this is almost always a login page
with a user name and password

> From a tester's perspective, one needs to
» Understand how the authentication scheme works

» Determine if there are any methods to bypass the
scheme

10/18/09

Credentials transport over an encrypted channel (OWASP-AT-001)

> One of the methods to protect credentials it to ensure they
cannot be intercepted during transmission

> Not concerned with the cipher strength (see CM-001)
> Items to check
®|s the form submitted to a HTTPS address?

»Look at the action attribute on the <form> tag
> [f not a full URL is the base page SSL'ed?
® |s the form submitted via POST?
»Look at the method attribute on the <form> tag
® Can you also login via GET

» Modify a submission and change to GET method

10/18/09

Credentials transport over an encrypted channel (OWASP-AT-001)

> More items to check
o |f SSL'ed, will it also accept HTTP requests?
» Use an intercepting proxy to change to http
® |s something else submitting the credentials for you?
» AJAX / JavaScript submitting the login info
»Does it use HTTPS?

10/18/09

Testing for User Enumeration (OWASP-AT-002)

> Half of what you need to become a user is the user name

> These tests are designed to determine if the application
will help you find valid user names

> ltems to check
® Conduct a valid login and observe how the application
reacts

»Does itdoa HTTP 200? Doesitdoa HTTP 3027
» What page is displayed after a successful login®?
» Is a cookie set or modified after login?

® Using the same credential, purposefully fail the login
» What changes with a bad password?

10/18/09

Testing for User Enumeration (OWASP-AT-002)

> More items to check

® Try the login page with a non-existent user name

» Use a random string for the username and any password
» How does the application react?

» Bring this all together
Valid user & bad password = “Incorrect password”
Invalid user & bad password = “Username not found”
> Other methods of enumerating users
o Are different error codes displayed?
» Review URLs and redirects for clues
® Probe for URLs for users (e.g. Apache's /~bsmith/)

10/18/09

Testing for Guessable (Dictionary) User Account (OWASP-AT-003)

> Most software and appliances ship with a web
interface

> Those typically come with default account to assist with
the initial setup

> Programmers also tend to leave test or debug accounts
> Demo accounts are also possible

» Use the information gathered in IG and CM to focus
your guesses

> There are multiple online resources for default
credentials, or download the administrators manual

10/18/09

Brute Force Testing (OWASP-AT-004)

> Brute force testing consists of systematically trying
combinations of credentials until you find a match

» Sometimes to win, you just have to keep guessing
> Two different type of credential attacks to consider
® HT TP Authentication
®» Form-based authentication
> Types of attacks
® Dictionary Attacks — uses lists of usernames/passwords
® Search Attacks — try all possible combinations 'aa’' to 'zz'

» Rule-based search attacks — generate passwords based
on rules such as |33t speak (p4sswOrd)

10/18/09

Testing for bypassing authentication schema (OWASP-AT-005)

> Authentication should occur on every portion of an
application which requires it.

> Frequently, design or implementation issues cause this
security control to fall

> There are several methods to bypass authentication

® Forced browsing

» Directly request internal 'protected' pages of the application
without using the login page
» Jump to later steps in a workflow
» Parameter manipulation

» Are there parameters which appear to effect
authentication? What happens when these are changed?

10/18/09

Testing for bypassing authentication schema (OWASP-AT-005)

> More methods to bypass authentication

® Session ID Prediction
» Is the method of choosing new session identifiers
predictable?
» Can you guess a recently allocated session id and become
that user?
® SQL Injection
» Can you inject SQL into the login process so that the
username password lookup always returns true?
» More details on this in Data Validation (DV-005)

10/18/09

Testing for vulnerable remember password and pwd reset (OWASP-AT-006)

> Part of user management and provisioning is password
reset functions

> Remembering passwords / auto-login features also

> Various methods exist to reset passwords

®» Send email to address on record
» Send existing password
» Send new password (may force reset on first logon)
» Send temporary, expiring password
® Security Questions / Secret Questions
» Pre-defined question lists
» User selects question and answer

10/18/09

Testing for Logout and Browser Cache Mgnt (OWASP-AT-007)

> As important as properly handling login events, logout events,
time outs and caching need to be considered

> Failure here allows others to re-user old sessions

» Users don't have to tell an app they are done
® Can use a log out feature — purely optional

® No requests arrive for a sufficient time and the app expires the
user's session

> Apps can invalidate sessions
® Clearing the session cookie

» Remember that cookies are under user control
® Invalidating the session on the server side [preferred]

» Most languages have a method to kill a session

10/18/09

Testing for CAPTCHA (OWASP-AT-008)

> CAPTCHA = Completely Automated Public Turning test to
tell Computers and Humans Apart

» CAPTCHA is used to mitigate against automated
computer based attacks

» Weakness in CAPTCHA
» Generated images are weak against automation
® There is a limited set of possible answers
® Decoded value of CAPCHA is sent by the client

» Poor, weak or no encryption (hidden field)
»Weak hashing is used (rainbow attacks)
» Replay of previously solved CAPTCHA's is possible

10/18/09

Testing for Multiple factors Authentication (OWASP-AT-009)

> For high risk / high value systems, more then a
single credential pair is used to authenticate
> Multi-factor authentication systems combine the

traditional username / password with an additional piece
of information

® “Something you have”
® “Something you know”
® “Something you are” (biometrics)
> Combat active attacks rather then passive attacks
® Phishing vs eavesdropping

10/18/09

Testing for Multiple factors Authentication (OWASP-AT-009)

> Threats potentially mitigated by MFA
® Credential Theft
® Weak Credentials
® Session based attacks
o Trojan and Malware attacks
» Password resuse
> Types of MFAs

® One-time password generation

» Grid Card, Scratch Card or other physical information
® Crypto devices such as RSA token or smart card

e Random OTPs send through alternate channel (SMS)

10/18/09

Testing for Race Conditions (OWASP-AT-010)

> Race conditions exist when timing of one action has an
effect on anther separate action

> More common in multi-threaded applications

» Typically example is transferring money between
accounts
® Timing the debits and credits must be precise
» TOCTOU - time of check, time of use
> Testing is very dependent on server load, network
latency, etc

» Must also be able to simultaneously make multiple
requests

10/18/09

Session Management Testing

> Remember that HTTP is s stateless protocol
originally designed to share scientific documents
» State was bolted on to HTTP

> Of the variety of session mechanisms that evolved,
session tokens (via session cookies) are dominant

> Because severs know nothing about the clients beyond
the requests they receive, if you have someone session
ID, you are them to the server

» Since sessions allow for meaningful web applications,
they are crucial to get right.

10/18/09

Testing for Session Mgmt Schema (OWASP-SM-001)

> Cookies were established for session in RFC 2965
> Cookies are vital to the overall security of an application
and subject to a wide range of attacks

» Since they are sent by clients with each request,
o Clients have the ability to forge session cookies
o |f the applications accepts the forgery, its game over

» Steps in evaluating cookie strength
® Cookie collection
» Cookie reverse engineering
» Cookie manipulation

10/18/09

Testing for Session Mgmt Schema (OWASP-SM-001)

> Minimal cookie considerations
o All Set-Cookie headers include 'Secure' attribute

» Cookies over encrypted channels
» Are any cookies sent of HTTP?
» Can the cookie be forced over HTTP?
® Are any cookies persistent?
» Are the Expires times reasonable?
® Are any anti-caching mechanisms used?
» Are both HTTP 1.0 and HTTP 1.1 methods used?

10/18/09

Testing for Cookies attributes (OWASP-SM-002)

> Because of the importance of cookies for applications,
several mechanism have been created to increase their
security.
> Attributes important to application security

® secure — tells the browser to only send cookie over
HTTPS connections

» HitpOnly — prevents JavaScript access to the cookie to
mitigate XSS issues. Not supported on all browsers

e domain — controls what host(s) will be sent the cookie
® path — what sub-sections of the URL the cookie is valid
® expires — controls the cookies persistence

10/18/09

Testing for Cookies attributes (OWASP-SM-002)

» Testing cookie attributes

» Secure attribute — should be present on all session
and other sensitive cookies

» HttpOnly — should be set for all cookies

®» Domain — set the the host of the web application.
e.g. app.ex.com NOT .ex.com

» Path — set as tightly as the application will allow

»Make sure to use a trailing /
e.g. /app1/ NOT /app1
» Expires — if set to a time in the future, ensure that no
sensitive data is stored within

10/18/09

Testing for Session Fixation (OWASP-SM-003)

b Sessions ids should be set after authentication

> Many application platforms automatically generate
sessions for any request

» If the session id is provided before SSL'ing the
communication, it is subject to eavesdropping

> If a know session id can be forced on a victim, the
attacker can gain authentication via the user

» Session ids can also leak via included files that are not
SSL'ed (images, JavaScript) particularly with poorly set
domain attributes

10/18/09

Testing for Session Fixation (OWASP-SM-003)

> Testing for session fixation

® Make an un-authenticated request to the application
»Note if a session id is issued

® Login
» Verify that your session id has changes

® Review the session for any non-SSL'ed requests to the
same or sibling domains

o |deally, after successful login, an HTTP 302 should be
Issued to redirect the browser to the 'landing’' page

» This purposefully breaks the back button so session ids
won't be sent outside of the authenticated area

10/18/09

Testing for Exposed Session Variables (OWASP-SM-004)

> Session ids/tokens should be protected in transport

> Particularly for non-cookie based sessions
» Lesser used session mechanism
» Hidden fields
» Parameters
® URL rewriting
> When a session id is transported, check
oHTTPS vs HTTP

» HTTP headers for caching

» HTML meta-tags for caching

10/18/09

Testing for CSRF (OWASP-SM-005)

> GSRF = Cross Site Request Forgery
> An attack which uses already authenticated sessions to
force a user to make unwanted / unknown actions
o Effectively, the attacker is the authenticated user

® Remember that the browser will automatically send any
cookies for that domain (session cookie t00)

> Particularly powerful attack when a single GET can
modify data

> Post help mitigate CSRF issues

o |t is still possible to conduct post CSRF attacks but those
are more complicated

10/18/09

Testing for CSRF (OWASP-SM-005)

» Testing for CSRF

® Review your |G data to find URLs which modify data or
are of particular importance
http://example.com/transfer.php?to=123&amt=500.00

» Create a HTML page with a link containing the action
above

® |[n a separate window / tab, log into the application to
establish a session

® Try the link in the page you created
» Did the action happen?

> See OWASP CSRFGuard for an example mitigation
® Provides unique request tokens

10/18/09

End of Day 1

10/18/09 118

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118

