
CONCURRENCY VULNERABILITIES

OWASP Testing Guide

: ~NZ$18 + pp

OWASP Code Review

: ~NZ$15 + pp

OWASP Developers Guide

: ~NZ$15 + pp

OWASP BOOKS

WEB APPLICATION SECURITY

WHAT ABOUT SQL INJECTION?

WEB APPLICATION SECURITY

WEB APPLICATION SECURITY

Web servers are multithreaded applications

: Thread pools

: Locking

: IO requests

Web applications need to be thread aware

: Danger of multiple threads interacting with an object

at the same time

What happens when threads act simultaneously?

: Depends on the language and framework

: Depends on the situation

: Depends on the server load

CONCURRENCY VULNERABILITIES

Race conditions

: TOCTOU

: Object reuse out of context

: Object modification during workflow

Deadlocks

: Common condition when data updated by two

sources

: Record locking, database transactions

MULTI ACCESS ISSUES

Thread safety

: Multithreaded applications

Cross user data vulnerabilities

: Access through shared objects

Single user data vulnerabilities

: Access through unshared objects

Asynchronous requests

: Synchronisation issues

CONCURRENCY VULNERABILITIES

Thread safe objects

: Automatically handle locking

: Ensure access by one thread at a time

: Not cause a deadlock

Threading errors

: Not all objects are thread safe

: Serious and subtle problems

: Difficult to identify

: Difficult to reproduce

THREAD SAFETY

THREAD SAFETY

THE APPLICATION

NUMUSERS

NEW USER SIGNUP

NUMUSERS++

USER QUIT

NUMUSERS--

RACE

Depending on who wins the race and when the
threads intercept, numusers could end up as 10 or
11 (should be 10)

The app starts with 10 users

ASP.Net

: Requests for a given session are serialized, so

session variables are thread-safe by default

Java Servlets

: HttpSession, including associated variables are not

thread-safe

THREAD SAFETY

Struts 1.x

: Actions are singletons and thus prone to issues

Struts 2.x

: New instances of Actions are spawned for each

request and are thread safe

THREAD SAFETY

How does this affect security?

: Consider an online banking system

THREAD SAFETY

THREAD SAFETY

More interesting are;

: Issues affecting users

CONCURRENCY ISSUES

The ones that make it into the headlines!

UNCONFIRMED ISSUES

UNCONFIRMED ISSUES

Variables shared between threads

: Shared between sessions

: Class globals

: Static declarations

Shared data

: Any data not instantiated for the session

: Data reused in following sessions

How can this affect user accounts?

: Session token identifier returned to two threads

: Different browser sessions have the same identifier

WHAT HAPPENED?

CROSS USER THREAD SAFETY

THE APPLICATION

SHARED OBJECT

USER 1 USER 2

Depending on where the object is used, it can
cause a security issue

Servlets

: Unless it implements the SingleThreadModel

interface, the Servlet is a singleton by default

: There is only one instance of the Servlet

Member fields

: Storing user data in Servlet member fields introduces

a data access race condition between threads

JAVA

JAVA

public class GuestBook extends HttpServlet {

 String name;

 protected void doPost (HttpServletRequest req,

 HttpServletResponse res) {

 name = req.getParameter("name");

 ...

 out.println(name + ", thanks for visiting!");

 }

}

Thread 1: assign "Dick" to name
Thread 2: assign "Jane" to name
Thread 1: print "Jane, thanks for visiting!“
Thread 2: print "Jane, thanks for visiting!"

Java beans

: When a bean is a singleton (which is by default), it

simply means that every time you access the bean,

you will get a reference to the same object

JAVA

<bean id="myBean" class="MyClass" />

Object bean1 = context.getBean("myBean");

Object bean2 = context.getBean("myBean");

Object bean3 = context.getBean("myBean");

bean1, bean2, and bean3 are all the same instance of MyClass.

JSP pages

: JSP pages by default are not thread safe

: Local variables are ok

: Instance variables modified within the service

section of a JSP will be shared by all requests

Can mark it as unsafe

: <%@ page isThreadSafe="false" %>

: Will cause [N] instances of the servlet to be loaded

and initialized

JAVA

Thread safe

: Most, but not all, classes and types are safe

Shared data

: Static variables in class

: A static reference to a helper class that contains

member variables

: A helper class that contains a static variable

The application collection

: Global application-specific information that is visible

to the entire application.

ASP .NET

Static declaration

: Static classes, methods and variables are shared by

every request

: Developer must be careful not to have “unsafe” code

ASP .NET

public static class Global

{

 /// Global variable storing important stuff.

 static string _importantData;

 /// Get or set the static important data.

 public static string ImportantData

 {

 get

 {

 return _importantData;

 }

 set

 {

 _importantData = value;

 }

 }

Pools

: Application pools

: Thread pools

: Object pools

: Jobs

: Etc....

WHY ARE THEY HARD TO DETECT

Server load

: Did you test with 10 simultaneous connections?

: Did you test with 100 simultaneous connections?

WHY ARE THEY HARD TO DETECT

Did you even test with just 2 simultaneous connections?

SERVER LOAD

THE APPLICATION

SHARED OBJECT

USER 1
WRITES

1 User thread accessing the shared object over its
‘workflow life’

USER 1
READS

SERVER LOAD

THE APPLICATION

SHARED OBJECT

USER 1
WRITES USER 2

WRITES

2 User threads accessing the shared object over its
‘workflow life’. User2 has overwritten user1 data

USER 1
READS USER 2

READS

Session

: Store and retrieve values for a user

: Assigned to their session token

Single User

: Can only be accessed by the associated user

: Usually thread safe for read/write

Safe?

: Not always

: Can be changed by different thread

SESSION VARIABLES

SESSION VARIABLES

THE APPLICATION

SESSION OBJECT

APPLICATION
WRITES

1 User thread accessing the session object over its
‘workflow life’

APPLICATION
READS

SESSION VARIABLES

THE APPLICATION

SESSION OBJECT

APPLICATION
WRITES

2 User threads accessing the session object over its
‘workflow life’

APPLICATION
READS

APPLICATION
WRITES

APPLICATION
READS

Real world example

SESSION VARIABLES

Login()

{

..

Session["Username"] = Username.Text;

Session["Password"] = Password.Text;

If CheckLogin()

 Session["Authed"]=TRUE;

Else {

 Session["Username"] = "";

 Session["Password"] = "";

}

..

}

Real world example

SESSION VARIABLES

LoadUserData()

{

..

If !(Session["Authed"]=TRUE)

 return FALSE;

..

GetUserDataFromDB(Session["Username"])

;

//Display user data

..

Return TRUE;

}

Real world example

SESSION VARIABLES

LoadUserData()

{

..

If !(Session["Authed"]=TRUE)

 return FALSE;

..

GetUserDataFromDB(Session["Username"]);

//Display user data

..

Return TRUE;

}

Login()

{

..

Session["Username"] = Username.Text;

Session["Password"] = Password.Text;

If CheckLogin()

 Session["Authed"]=TRUE;

Else {

 Session["Username"] = "";

 Session["Password"] = "";

}

..

}

Login with valid creds, sets Session*“Authed”+ = TRUE

Hit Login() function against with different username, sets Session*“Username”+

Race with LoadUserData()

Win the race and view other users data

TOCTOU

: Time of check, time of use

Change in state

: Between the time in which a given resource is

checked, and the time that resource is used, a

change occurs in the resource to invalidate the

results of the check

Threading issues

: All of the previously discussed issues

RACE CONDITIONS

Usual shopping process

RACE CONDITIONS

Raced shopping process

Add To Cart Contents After
Payment Processed

Can be affected by race conditions

ASYNCHRONOUS REQUESTS

THE APPLICATION

UPDATECART()

PURCHASE()

Change quantity

Debit account

Update cost

Send Order

Race condition exists between the backend
functions, to which order they are executed

Change quantity

Debit account

Update cost

Send Order

Most major browsers have had issues

: Complicated window, DOM, object sharing

: Faulty synchronization between objects

BROWSER CONCURRENCY ISSUES

SHARED OBJECT

Race!

Application design

: Be aware of which objects are shared

: Do not use static/globals for user specific data

Code level

: Safe locking

: Syncronisation, Mutexes

: Be aware of thread safe/unsafe types

: Use intelligent queries

SOLUTIONS

UPDATE Account ... where ID=## and Balance=[LASTKNOWNBALANCE]

Code reviews

: Investigate static/global classes

: Identify all singleton java objects

: Check session[] use pre authentication

Load testing

: Identify how to detect issues

: Use stress testing tools to mimic simultaneous use

Cross user suggestions

: Session should be hooked to dbase ID

: User data should be associated with session

: Do not allow concurrent session use

SOLUTIONS

www.insomniasec.com

