

	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 3	

	

FOREWORD	BY	BERNHARD	MUELLER,	OWASP	MOBILE	PROJECT	 5	

FRONTISPIECE	 7	

ABOUT	THE	STANDARD	 7	
COPYRIGHT	AND	LICENSE	 7	
ACKNOWLEDGEMENTS	 7	

THE	MOBILE	APPLICATION	SECURITY	VERIFICATION	STANDARD	 8	

MOBILE	APPSEC	MODEL	 8	

ASSESSMENT	AND	CERTIFICATION	 12	

OWASP'S	STANCE	ON	CERTIFICATIONS	AND	TRUST	MARKS	 12	
GUIDANCE	FOR	CERTIFYING	MOBILE	APPS	 12	
OTHER	USES	 13	

V1:	ARCHITECTURE,	DESIGN	AND	THREAT	MODELLING	REQUIREMENTS	 14	

CONTROL	OBJECTIVE	 14	
SECURITY	VERIFICATION	REQUIREMENTS	 14	
REFERENCES	 15	

V2:	DATA	STORAGE	AND	PRIVACY	REQUIREMENTS	 16	

CONTROL	OBJECTIVE	 16	
SECURITY	VERIFICATION	REQUIREMENTS	 16	
VERIFICATION	PROCESSES	 17	
REFERENCES	 17	

V3:	CRYPTOGRAPHY	REQUIREMENTS	 18	

CONTROL	OBJECTIVE	 18	
SECURITY	VERIFICATION	REQUIREMENTS	 18	
VERIFICATION	PROCESSES	 18	
REFERENCES	 18	

V4:	AUTHENTICATION	AND	SESSION	MANAGEMENT	REQUIREMENTS	 19	

CONTROL	OBJECTIVE	 19	
SECURITY	VERIFICATION	REQUIREMENTS	 19	
VERIFICATION	PROCESSES	 19	
REFERENCES	 20	

V5:	NETWORK	COMMUNICATION	REQUIREMENTS	 21	
CONTROL	OBJECTIVE	 21	
SECURITY	VERIFICATION	REQUIREMENTS	 21	
VERIFICATION	PROCESSES	 21	
REFERENCES	 21	

V6:	ENVIRONMENTAL	INTERACTION	REQUIREMENTS	 22	

CONTROL	OBJECTIVE	 22	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 4	

SECURITY	VERIFICATION	REQUIREMENTS	 22	
VERIFICATION	PROCESSES	 22	
REFERENCES	 22	

V7:	CODE	QUALITY	AND	BUILD	SETTING	REQUIREMENTS	 24	

CONTROL	OBJECTIVE	 24	
SECURITY	VERIFICATION	REQUIREMENTS	 24	
VERIFICATION	PROCESSES	 24	
REFERENCES	 24	

V8:	RESILIENCY	AGAINST	REVERSE	ENGINEERING	REQUIREMENTS	 25	

CONTROL	OBJECTIVE	 25	
VERIFICATION	PROCESSES	 27	
REFERENCES	 27	

APPENDIX	A:	GLOSSARY	 28	

APPENDIX	B:	REFERENCES	 31	

	

	

	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 5	

Foreword	by	Bernhard	Mueller,	OWASP	Mobile	Project	
Technological	 revolutions	 can	 happen	 quickly.	
Less	 than	 a	 decade	 ago,	 smartphones	 were	
clunky	devices	with	little	keyboards	-	expensive	
playthings	for	tech-savvy	business	users.	Today,	
smartphones	are	an	essential	part	of	our	lives.	
We've	 come	 to	 rely	 on	 them	 for	 information,	
navigation	 and	 communication,	 and	 they	 are	
ubiquitous	 both	 in	 business	 and	 in	 our	 social	
lives.	

Every	new	technology	 introduces	new	security	
risks,	and	keeping	up	with	those	changes	is	one	
of	 the	 main	 challenges	 the	 security	 industry	
faces.	The	defensive	side	is	always	a	few	steps	
behind.	For	example,	the	default	reflex	for	many	
was	 to	 apply	 old	 ways	 of	 doing	 things:	
Smartphones	 are	 like	 small	 computers,	 and	mobile	 apps	 are	 just	 like	 classic	 software,	 so	
surely	 the	 security	 requirements	 are	 similar?	 But	 it	 doesn't	 work	 like	 that.	 Smartphone	
operating	 systems	 are	 different	 from	 Desktop	 operating	 systems,	 and	 mobile	 apps	 are	
different	from	web	apps.	For	example,	the	classical	method	of	signature-based	virus	scanning	
doesn't	make	sense	in	modern	mobile	OS	environments:	Not	only	is	it	incompatible	with	the	
mobile	app	distribution	model,	it's	also	technically	impossible	due	to	sandboxing	restrictions.	
Also,	some	vulnerability	classes,	such	as	buffer	overflows	and	XSS	issues,	are	less	relevant	in	
the	context	of	run-of-the-mill	mobile	apps	than	in,	say,	Desktop	apps	and	web	applications	
(exceptions	apply).	

Over	time,	our	industry	has	gotten	a	better	grip	on	the	mobile	threat	landscape.	As	it	turns	
out,	mobile	security	is	all	about	data	protection:	Apps	store	our	personal	information,	
pictures,	recordings,	notes,	account	data,	business	information,	location	and	much	more.	
They	act	as	clients	that	connect	us	to	services	we	use	on	a	daily	basis,	and	as	
communications	hubs	that	processes	each	and	every	message	we	exchange	with	others.	
Compromise	a	person's	smartphone	and	you	get	unfiltered	access	to	that	person's	life.	
When	we	consider	that	mobile	devices	are	more	readily	lost	or	stolen	and	mobile	malware	
is	on	the	rise,	the	need	for	data	protection	becomes	even	more	apparent.	

A	security	standard	for	mobile	apps	must	therefore	focus	on	how	mobile	apps	handle,	store	
and	protect	sensitive	information.	Even	though	modern	mobile	operating	systems	like	iOS	
and	Android	offer	good	APIs	for	secure	data	storage	and	communication,	those	have	to	be	
implemented	and	used	correctly	in	order	to	be	effective.	Data	storage,	inter-app	
communication,	proper	usage	of	cryptographic	APIs	and	secure	network	communication	are	
only	some	of	the	aspects	that	require	careful	consideration.	

An	important	question	in	need	of	industry	consensus	is	how	far	exactly	one	should	go	in	
protecting	the	confidentiality	and	integrity	of	data.	For	example,	most	of	us	would	agree	
that	a	mobile	app	should	verify	the	server	certificate	in	a	TLS	exchange.	But	what	about	SSL	
certificate	pinning?	Does	not	doing	it	result	in	a	vulnerability?	Should	this	be	a	requirement	
if	an	app	handles	sensitive	data,	or	is	it	maybe	even	counter-productive?	Do	we	need	to	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 6	

encrypt	data	stored	in	SQLite	databases,	even	though	the	OS	sandboxes	the	app?	What	is	
appropriate	for	one	app	might	be	unrealistic	for	another.	The	MASVS	is	an	attempt	to	
standardize	these	requirements	using	verification	levels	that	fit	different	threat	scenarios.	

Furthermore,	the	appearance	of	root	malware	and	remote	administration	tools	has	created	
awareness	of	the	fact	that	mobile	operating	systems	themselves	have	exploitable	flaws,	so	
containerization	strategies	are	increasingly	used	to	afford	additional	protection	to	sensitive	
data	and	prevent	client-side	tampering.	This	is	where	things	get	complicated.	Hardware-
backed	security	features	and	OS-level	containerization	solutions,	such	as	Android	for	Work	
and	Samsung	Knox,	do	exist,	but	they	aren't	consistently	available	across	different	devices.	
As	a	band	aid,	it	is	possible	implement	software-based	protection	measures	-	but	
unfortunately,	there	are	no	standards	or	testing	processes	for	verifying	these	kinds	of	
protections.	

As	a	result,	mobile	app	security	testing	reports	are	all	over	the	place:	For	example,	some	
testers	report	a	lack	of	obfuscation	or	root	detection	in	an	Android	app	as	“security	flaw”.	
On	the	other	hand,	measures	like	string	encryption,	debugger	detection	or	control	flow	
obfuscation	aren't	considered	mandatory.	However,	this	binary	way	of	looking	at	things	
doesn't	make	sense	because	resiliency	is	not	a	binary	proposition:	It	depends	on	the	
particular	client-side	threats	one	aims	to	defend	against.	Software	protections	are	not	
useless,	but	they	can	ultimately	be	bypassed,	so	they	must	never	be	used	as	a	replacement	
for	security	controls.	

The	overall	goal	of	the	MASVS	is	to	offer	a	baseline	for	mobile	application	security	(MASVS-
L1),	while	also	allowing	for	the	inclusion	of	defense-in-depth	measures	(MASVS-L2)	and	
protections	against	client-side	threats	(MASVS-R).	The	MASVS	is	meant	to	achieve	the	
following:	

• Provide	requirements	for	software	architects	and	developers	seeking	to	develop	
secure	mobile	applications;	

• Offer	an	industry	standard	that	can	be	tested	against	in	mobile	app	security	reviews;	
• Provide	specific	recommendations	as	to	what	level	of	security	is	recommended	for	

different	use-cases.	

We	are	aware	that	100%	industry	consensus	is	impossible	to	achieve.	Nevertheless,	we	
hope	that	the	MASVS	is	useful	in	providing	guidance	throughout	all	phases	of	mobile	app	
development	and	testing.	As	an	open	source	standard,	the	MASVS	will	evolve	over	time,	
and	we	welcome	any	contributions	and	suggestions.	

	 	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 7	

Frontispiece	

About	the	Standard	

Welcome	to	the	Mobile	Application	Security	Verification	Standard	(MASVS)	0.9.2.	The	
MASVS	is	a	community	effort	to	establish	a	framework	of	security	requirements	needed	to	
design,	develop	and	test	secure	mobile	apps	on	iOS	and	Android.	

The	MASVS	is	a	culmination	of	community	effort	and	industry	feedback.	We	expect	this	
standard	to	evolve	over	time	and	welcome	feedback	from	the	community.	The	best	way	to	
get	in	contact	with	us	is	via	the	OWASP	Mobile	Project	Slack	channel:	

https://owasp.slack.com/messages/project-mobile_omtg/details/	

Accounts	can	be	created	at	the	following	URL:	

http://owasp.herokuapp.com/.	

Copyright	and	License	

Copyright	©	2017	The	OWASP	Foundation.	This	document	is	released	
under	the	Creative	Commons	Attribution	ShareAlike	3.0	license.	For	
any	reuse	or	distribution,	you	must	make	clear	to	others	the	license	
terms	of	this	work.	

Acknowledgements	

Version	0.9.3,	April	2017	
Project	Leads	 Authors	 Contributors	and	

Reviewers	

Bernhard	Mueller	
Sven	Schleier	

Bernhard	Mueller	 Stephen	Corbiaux	
Sven	Schleier	
Jeroen	Willemsen	
Anant	Shrivastava	
Abdessamad	Temmar	
Alexander	Antukh	
Roberto	Martelloni	
Stefaan	Seys	
Prabhant	Singh	
Francesco	Stillavato	
Abhinav	Sejpal	

This	document	started	as	a	fork	of	the	OWASP	Application	Security	Verification	Standard	
written	by	Jim	Manico.	

	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 8	

The	Mobile	Application	Security	Verification	Standard	
The	MASVS	can	be	used	to	establish	a	level	of	confidence	in	the	security	of	mobile	apps.	The	
requirements	were	developed	with	the	following	objectives	in	mind:	

• Use	as	a	metric	-	To	provide	a	security	standard	against	which	existing	mobile	apps	can	
be	compared	by	developers	and	application	owners;	

• Use	as	guidance	-	To	provide	guidance	during	all	phases	of	mobile	app	development	
and	testing;	

• Use	during	procurement	-	To	provide	a	baseline	for	mobile	app	security	verification.	

Mobile	AppSec	Model	

The	MASVS	defines	two	strict	security	verification	levels	(L1	and	L2),	as	well	a	set	of	reverse	
engineering	resiliency	requirements	(MASVS-R)	that	is	flexible,	i.e.	adaptable	to	an	app-
specific	threat	model.	MASVS-L1	and	MASVS-L2	contain	generic	security	requirements	and	
are	recommended	for	all	mobile	apps	(L1)	and	apps	that	handle	highly	sensitive	data	(L2).	
MASVS-R	covers	additional	protective	controls	that	can	be	applied	if	preventing	client-side	
threats	is	a	design	goal.	

Fulfilling	the	requirements	in	MASVS-L1	results	in	a	secure	app	that	follows	security	best	
practices	and	doesn't	suffer	from	common	vulnerabilities.	MASVS-L2	adds	additional	
security	measures	such	as	SSL	pinning,	resulting	in	an	app	that	is	resilient	against	more	
sophisticated	attacks	-	assuming	the	security	controls	of	the	mobile	operating	system	are	
intact	and	the	end	user	is	not	viewed	as	a	potential	adversary.	Fulfilling	all,	or	subsets	of,	
the	software	protection	requirements	in	MASVS-R	helps	impede	specific	client-side	threats	
where	the	end	user	is	malicious	and/or	the	mobile	OS	is	compromised.	

Note	that	the	software	protection	controls	listed	in	MASVS-R	must	never	be	used	as	a	
replacement	for	security	controls.	Instead,	they	are	intended	to	add	threat-specific,	
additional	protective	controls	to	apps	that	also	fulfil	the	MASVS	requirements	in	MASVS	
L1	or	L2.	

	
Figure	1:	Security	Verification	Levels.	MASVS-L1	provides	a	solid	security	baseline	that	is	appropriate	for	most	mobile	apps.	

MASVS-L2	adds	defense-in-depth-controls.	MASVS-R	represents	an	optional	protective	layer	for	impeding	reverse	
engineering	and	tampering.	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 9	

Document	Structure	

The	first	part	of	the	MASVS	contains	a	description	of	the	security	model	and	available	
verification	levels,	followed	by	recommendations	on	how	to	use	the	standard	in	practice.	
The	detailed	security	requirements,	along	with	a	mapping	to	the	verification	levels,	are	
listed	in	the	second	part.	The	requirements	have	been	grouped	2into	eight	categories	(V1	to	
V8)	based	on	technical	objective	/	scope.	The	following	nomenclature	is	used	throughout	
the	MASVS:	

• Requirement	category:	MASVS-V[x],	e.g.	MASVS-V2:	Data	Storage	and	Privacy	
• Requirement:	MASVS-[x].[y],	e.g.	MASVS-V2.2:	"No	sensitive	data	is	written	to	

application	logs."	
	
At	the	end	of	each	category,	we	included	a	link	to	the	relevant	section	in	the	OWASP	Mobile	
Security	Testing	Guide.	The	testing	guide	elaborates	further	on	each	requirement	and	
provides	detailed	verification	instructions	for	iOS	and	Android	apps.	We	also	added	links	to	
other	useful	standards	and	resources.	

The	Verification	Levels	in	Detail	
MASVS-L1:	Standard	Security	

A	mobile	app	that	achieves	MASVS-L1	adheres	to	mobile	application	security	best	practices.	
It	fulfils	basic	requirements	in	terms	of	code	quality,	handling	of	sensitive	data,	and	
interaction	with	the	mobile	environment.	A	testing	process	must	be	in	place	to	verify	the	
security	controls.	This	level	is	appropriate	for	all	mobile	applications.	

MASVS-L2:	Defense-in-Depth	

MASVS-L2	introduces	advanced	security	controls	that	go	beyond	the	standard	
requirements.	To	fulfil	L2,	a	threat	model	must	exist,	and	security	must	be	an	integral	part	
of	the	app's	architecture	and	design.	This	level	is	appropriate	for	applications	that	handle	
sensitive	data,	such	as	mobile	banking.	

MASVS-R:	Resiliency	Against	Reverse	Engineering	and	Tampering	

The	app	has	state-of-the-art	security,	and	is	also	resilient	against	specific,	clearly	defined	
client-side	attacks,	such	as	tampering,	modding,	or	reverse	engineering	to	extract	sensitive	
code	or	data.	Such	an	app	either	leverages	hardware	security	features	or	sufficiently	strong	
and	verifiable	software	protection	techniques.	MASVS-R	is	applicable	to	apps	that	handle	
highly	sensitive	data	and	may	serve	as	a	means	of	protecting	intellectual	property	or	
tamper-proofing	an	app.	

Recommended	Use	

Apps	can	be	verified	against	MASVS	L1	or	L2	based	on	prior	risk	assessment	and	overall	
level	of	security	required.	L1	is	applicable	to	all	mobile	apps,	while	L2	is	generally	
recommended	for	apps	that	handle	more	sensitive	data	and/or	functionality.	MASVS-R	(or	
parts	of	it)	can	be	applied	to	verify	resiliency	against	specific	threats,	such	as	repackaging	or	
extraction	of	sensitive	data,	in	addition	to	proper	security	verification.	

In	summary,	the	following	verification	types	are	available:	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 10	

• MASVS-L1	
• MASVS-L1+R	
• MASVS-L2	
• MASVS-L2+R	

The	different	combinations	reflect	different	grades	of	security	and	resiliency.	The	goal	is	to	
allow	for	flexibility:	For	example,	a	mobile	game	might	not	warrant	adding	MASVS-L2	
security	controls	such	as	2-factor	authentication	for	usability	reasons,	but	have	a	strong	
business	need	for	tampering	prevention.	

What	Verification	Type	to	Choose	

Implementing	the	requirements	of	MASVS	L2	increases	security,	while	at	the	same	time	
increasing	cost	of	development	and	potentially	worsening	the	end	user	experience	(the	
classical	trade-off).	In	general,	L2	should	be	used	for	apps	whenever	it	makes	sense	from	a	
risk	vs.	cost	perspective	(i.e.,	where	the	potential	loss	caused	by	a	compromise	
confidentiality	or	integrity	is	higher	than	the	cost	incurred	by	the	additional	security	
controls).	A	risk	assessment	should	be	the	first	step	before	applying	the	MASVS.	

Examples	

MASVS-L1	

• All	mobile	apps.	MASVS-L1	lists	security	best	practices	that	can	be	followed	with	a	
reasonable	impact	on	development	cost	and	user	experience.	Apply	the	requirements	
in	MASVS-L1	for	any	app	that	don't	qualify	for	one	of	the	higher	levels.	

MASVS-L2	

• Health-Care	Industry:	Mobile	apps	that	store	personally	identifiable	information	that	
can	be	used	for	identity	theft,	fraudulent	payments,	or	a	variety	of	fraud	schemes.	For	
the	US	healthcare	sector,	compliance	considerations	include	the	Health	Insurance	
Portability	and	Accountability	Act	(HIPAA)	Privacy,	Security,	Breach	Notification	Rules	
and	Patient	Safety	Rule.	

• Financial	Industry:	Apps	that	enable	access	to	highly	sensitive	information	like	credit	
card	numbers,	personal	information,	or	allow	the	user	to	move	funds.	These	apps	
warrant	additional	security	controls	to	prevent	fraud.	Financial	apps	need	to	ensure	
compliance	to	the	Payment	Card	Industry	Data	Security	Standard	(PCI	DSS),	Gramm	
Leech	Bliley	Act	and	Sarbanes-Oxley	Act	(SOX).	

MASVS	L1+R	

• Mobile	apps	where	IP	protection	is	a	business	goal.	The	resiliency	controls	listed	in	
MASVS-R	can	be	used	to	increase	the	effort	needed	to	obtain	the	original	source	code	
and	to	impede	tampering	/	cracking.	

• Gaming	Industry:	Games	with	an	essential	need	to	prevent	modding	and	cheating,	such	
as	competitive	online	games.	Cheating	is	an	important	issue	in	online	games,	as	a	large	
amount	of	cheaters	leads	to	a	disgruntled	the	player	base	and	can	ultimately	cause	a	
game	to	fail.	MASVS-R	provides	basic	anti-tampering	controls	to	help	increase	the	
effort	for	cheaters.	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 11	

MASVS	L2+R	

• Financial	Industry:	Online	banking	apps	that	allow	the	user	to	move	funds,	where	
techniques	code	injection	and	instrumentation	on	compromised	devices	pose	a	risk.	In	
this	case,	controls	from	MASVS-R	can	be	used	to	impede	tampering,	raising	the	bar	for	
malware	authors.	

• All	mobile	apps	that,	by	design,	need	to	store	sensitive	data	on	the	mobile	device,	and	
at	the	same	time	must	support	a	wide	range	of	devices	and	operating	system	versions.	
In	this	case,	resiliency	controls	can	be	used	as	a	defense-in-depth	measure	to	increase	
the	effort	for	attackers	aiming	to	extract	the	sensitive	data.	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 12	

Assessment	and	Certification	

OWASP's	Stance	on	Certifications	and	Trust	Marks	

OWASP,	as	a	vendor-neutral	not-for-profit	organization,	does	not	certify	any	vendors,	
verifiers	or	software.	

All	such	assurance	assertions,	trust	marks,	or	certifications	are	not	officially	vetted,	
registered,	or	certified	by	OWASP,	so	an	organization	relying	upon	such	a	view	needs	to	be	
cautious	of	the	trust	placed	in	any	third	party	or	trust	mark	claiming	ASVS	certification.	

This	should	not	inhibit	organizations	from	offering	such	assurance	services,	as	long	as	they	
do	not	claim	official	OWASP	certification.	

Guidance	for	Certifying	Mobile	Apps	

The	recommended	way	of	verifying	compliance	of	a	mobile	app	with	the	MASVS	is	by	
performing	an	"open	book"	review,	meaning	that	the	testers	are	granted	access	to	key	
resources	such	as	architects	and	developers	of	the	app,	project	documentation,	source	
code,	and	authenticated	access	to	endpoints,	including	access	to	at	least	one	user	account	
for	each	role.	

It	is	important	to	note	that	the	MASVS	only	covers	security	of	the	(client-side)	mobile	app	
and	the	network	communication	between	the	app	and	its	remote	endpoint(s),	as	well	as	a	
few	basic	and	generic	requirements	related	to	user	authentication	and	session	
management.	It	does	not	contain	specific	requirements	for	the	remote	services	(e.g.	web	
services)	associated	with	the	app,	safe	for	a	limited	set	of	generic	requirements	pertaining	
to	authentication	and	session	management.	However,	MASVS	V1	specifies	that	remote	
services	must	be	covered	by	the	overall	threat	model,	and	be	verified	against	appropriate	
standards,	such	as	the	OWASP	ASVS.	

A	certifying	organization	must	include	in	any	report	the	scope	of	the	verification	
(particularly	if	a	key	component	is	out	of	scope),	a	summary	of	verification	findings,	
including	passed	and	failed	tests,	with	clear	indications	of	how	to	resolve	the	failed	tests.	
Keeping	detailed	work	papers,	screenshots	or	movies,	scripts	to	reliably	and	repeatedly	
exploit	an	issue,	and	electronic	records	of	testing,	such	as	intercepting	proxy	logs	and	
associated	notes	such	as	a	clean-up	list,	is	considered	standard	industry	practice.	It	is	not	
sufficient	to	simply	run	a	tool	and	report	on	the	failures;	this	does	not	provide	sufficient	
evidence	that	all	issues	at	a	certifying	level	have	been	tested	and	tested	thoroughly.	In	case	
of	dispute,	there	should	be	sufficient	supportive	evidence	to	demonstrate	that	every	
verified	requirement	has	indeed	been	tested.	

The	OWASP	Mobile	Security	Testing	Guide	(MSTG)	

The	OWASP	MSTG	is	a	manual	for	testing	the	security	of	mobile	apps.	It	describes	the	
technical	processes	for	verifying	the	requirements	listed	in	the	MASVS.	The	MSTG	includes	a	
list	of	test	cases,	each	of	which	map	to	a	requirement	in	the	MASVS.	While	the	MASVS	
requirements	are	high-level	and	generic,	the	MSTG	provides	in-depth	recommendations	
and	testing	procedures	on	a	per-mobile-OS	basis.		

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 13	

The	Role	of	Automated	Security	Testing	Tools	

The	use	of	source	code	scanners	and	black-box	testing	tools	is	encouraged	in	order	to	
increase	efficiency	whenever	possible.	It	is	however	not	possible	to	complete	MASVS	
verification	using	automated	tools	alone:	Every	mobile	app	is	different,	and	understanding	
the	overall	architecture,	business	logic,	and	technical	pitfalls	of	the	specific	technologies	
and	frameworks	being	used	is	a	mandatory	requirement	to	verify	security.	

Other	Uses	

As	Detailed	Security	Architecture	Guidance	

One	of	the	more	common	uses	for	the	Mobile	Application	Security	Verification	Standard	is	
as	a	resource	for	security	architects.	The	two	major	security	architecture	frameworks,	
SABSA	or	TOGAF,	are	missing	a	great	deal	of	information	that	is	necessary	to	complete	
mobile	application	security	architecture	reviews.	MASVS	can	be	used	to	fill	in	those	gaps	by	
allowing	security	architects	to	choose	better	controls	for	issues	common	to	mobile	apps.	

As	a	Replacement	for	Off-the-Shelf	Secure	Coding	Checklists	

Many	organizations	can	benefit	from	adopting	the	MASVS,	by	choosing	one	of	the	two	
levels,	or	by	forking	MASVS	and	changing	what	is	required	for	each	application's	risk	level	in	
a	domain-specific	way.	We	encourage	this	type	of	forking	as	long	as	traceability	is	
maintained,	so	that	if	an	app	has	passed	requirement	4.1,	this	means	the	same	thing	for	
forked	copies	as	the	standard	evolves.	

As	a	Basis	for	Security	Testing	Methodologies	

A	good	mobile	app	security	testing	methodology	should	cover	all	requirements	listed	in	the	
MASVS.	The	OWASP	Mobile	Security	Testing	Guide	(MSTG)	describes	black-box	and	white-
box	test	cases	for	each	verification	requirement.	

As	a	Guide	for	Automated	Unit	and	Integration	Tests	

The	MASVS	is	designed	to	be	highly	testable,	with	the	sole	exception	of	architectural	
requirements.	Automated	unit,	integration	and	acceptance	testing	based	on	the	MASVS	
requirements	can	be	integrated	in	the	continuous	development	lifecycle.	This	not	only	
increases	developer	security	awareness,	but	also	improves	the	overall	quality	of	the	
resulting	apps,	and	reduces	the	amount	of	findings	during	security	testing	in	the	pre-release	
phase.	

For	Secure	Development	Training	

MASVS	can	also	be	used	to	define	characteristics	of	secure	mobile	apps.	Many	"secure	
coding"	courses	are	simply	ethical	hacking	courses	with	a	light	smear	of	coding	tips.	This	
does	not	help	developers.	Instead,	secure	development	courses	can	use	the	MASVS,	with	a	
strong	focus	on	the	proactive	controls	documented	in	the	MASVS,	rather	than	e.g.	the	Top	
10	code	security	issues.	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 14	

V1:	Architecture,	Design	and	Threat	Modelling	Requirements	

Control	Objective	

In	a	perfect	world,	security	would	be	considered	throughout	all	phases	of	development.	In	
reality	however,	security	is	often	only	a	consideration	at	a	late	stage	in	the	SDLC.	Besides	
the	technical	controls,	the	MASVS	requires	processes	to	be	in	place	that	ensure	that	the	
security	has	been	explicitly	addressed	when	planning	the	architecture	of	the	mobile	app,	
and	that	the	functional	and	security	roles	of	all	components	are	known.	Since	most	mobile	
applications	act	as	clients	to	remote	services,	it	must	be	ensured	that	appropriate	security	
standards	are	also	applied	to	those	services	-	testing	the	mobile	app	in	isolation	is	not	
sufficient.	

The	category	“V1”	lists	requirements	pertaining	to	architecture	and	design	of	the	app.	As	
such,	this	is	the	only	category	that	does	not	map	to	technical	test	cases	in	the	OWASP	
Mobile	Testing	Guide.	To	cover	topics	such	as	threat	modelling,	secure	SDLC,	key	
management,	users	of	the	MASVS	should	consult	the	respective	OWASP	projects	and/or	
other	standards	such	as	the	ones	linked	below.	

Security	Verification	Requirements	

#	 Description	 L1	 L2	
1.1	 All	app	components	are	identified	and	known	to	be	needed.	 ✓	 ✓	

1.2	 All	third	party	components	used	by	the	mobile	app,	such	as	libraries	and	
frameworks,	are	identified,	and	checked	for	known	vulnerabilities.	 ✓	 ✓	

1.3	 Security	controls	are	never	enforced	only	on	the	client	side,	but	on	the	
respective	remote	endpoints.	 ✓	 ✓	

1.4	 A	high-level	architecture	for	the	mobile	app	and	all	connected	remote	
services	has	been	defined	and	security	has	been	addressed	in	that	
architecture.	

✓	 ✓	

1.5	 Data	considered	sensitive	in	the	context	of	the	mobile	app	is	clearly	
identified.	

✓	 ✓	

1.6	 All	app	components	are	defined	in	terms	of	the	business	functions	and/or	
security	functions	they	provide.	

	 ✓	

1.7	 A	threat	model	for	the	mobile	app	and	the	associated	remote	services	has	
been	produced	that	identifies	potential	threats	and	countermeasures.	

	 ✓	

1.8	 All	third	party	components	have	been	assessed	(associated	risks)	before	
being	used	or	implemented.	A	process	is	in	place	to	ensure	that	each	time	
a	security	update	for	a	third	party	component	is	published,	the	change	is	
inspected	and	the	risk	evaluated.	

	 ✓	

1.9	 All	security	controls	have	a	centralized	implementation.	 	 ✓	

1.10	 All	components	that	are	not	part	of	the	application	but	that	the	
application	relies	on	to	operate,	are	clearly	identified	and	the	security	
implications	of	using	those	components	are	known.	

	 ✓	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 15	

#	 Description	 L1	 L2	
1.11	 There	is	an	explicit	policy	for	how	cryptographic	keys	(if	any)	are	

managed,	and	the	lifecycle	of	cryptographic	keys	is	enforced.	Ideally,	
follow	a	key	management	standard	such	as	NIST	SP	800-57.	

	 ✓	

1.12	 Remote	endpoints	verify	that	connecting	clients	use	an	up-to-date	
version	of	the	mobile	app.	

	 ✓	

1.13	 Security	is	addressed	within	all	parts	of	the	software	development	
lifecycle.	

	 ✓	

References	

For	more	information,	see	also:	

• OWASP	Mobile	Top	10:	M10	-	Extraneous	Functionality	
• OWASP	Security	Architecture	cheat	sheet:	

https://www.owasp.org/index.php/Application_Security_Architecture_Cheat_Sheet	
• OWASP	Thread	modelling:	

https://www.owasp.org/index.php/Application_Threat_Modeling	
• OWASP	Secure	SDLC	Cheat	Sheet:	

https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet	
• Microsoft	SDL:	https://www.microsoft.com/en-us/sdl/	
• NIST	SP	800-57:	http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-

revised2_Mar08-2007.pdf	
	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 16	

V2:	Data	Storage	and	Privacy	Requirements	

Control	Objective	

The	protection	of	sensitive	data,	such	as	user	credentials	and	private	information,	is	a	key	
focus	in	mobile	security.	Firstly,	sensitive	data	may	be	unintentionally	exposed	to	other	
apps	running	on	the	same	device	if	operating	system	mechanisms	like	IPC	are	used	
improperly.	Data	may	also	unintentionally	leak	to	platform	cloud	storage,	backups,	or	the	
keyboard	cache.	Furthermore,	mobile	devices	are	lost	or	stolen	more	easily	compared	to	
other	types	of	devices,	so	an	adversary	gaining	physical	access	is	a	more	likely	scenario.	In	
that	case,	additional	protections	can	be	implemented	to	make	retrieving	the	sensitive	data	
more	difficult.	

Note	that,	as	the	MASVS	is	app-centric,	it	does	not	cover	device-level	policies	such	as	those	
enforced	by	MDM	and	EDM	solutions.	We	however	encourage	the	use	of	such	solutions	in	
an	Enterprise	context	to	further	enhance	data	security.	

Definition	of	Sensitive	Data	

Sensitive	data	in	the	context	of	the	MASVS	pertains	to	both	user	credentials	and	any	other	
data	considered	sensitive	in	the	particular	context,	such	as:	

• Personally	identifiable	information	(PII)	that	can	be	abused	for	identity	theft:	Social	
security	numbers,	credit	card	numbers,	bank	account	numbers,	health	information;	

• Highly	sensitive	data	that	would	lead	to	reputational	harm	and/or	financial	costs	if	
compromised:	Contractual	information,	information	covered	by	non-disclosure	
agreements,	management	information;	

• Any	data	that	must	be	protected	by	law	or	for	compliance	reasons.	
	

The	majority	of	data	disclosure	issues	can	be	prevented	by	following	simple	rules.	
Therefore,	most	of	the	controls	listed	in	this	chapter	are	mandatory	from	MASVS-L1.	

Security	Verification	Requirements	

#	 Description	 L1	 L2	
2.1	 System	credential	storage	facilities	are	used	appropriately	to	store	

sensitive	data,	such	as	user	credentials	or	cryptographic	keys.	
✓	 ✓	

2.2	 No	sensitive	data	is	written	to	application	logs.	 ✓	 ✓	

2.3	 No	sensitive	data	is	shared	with	third	parties	unless	it	is	a	necessary	part	
of	the	architecture.	 ✓	 ✓	

2.4	 The	keyboard	cache	is	disabled	on	text	inputs	that	process	sensitive	data.	 ✓	 ✓	

2.5	 The	clipboard	is	deactivated	on	text	fields	that	may	contain	sensitive	data.	 ✓	 ✓	

2.6	 No	sensitive	data	is	exposed	via	IPC	mechanisms.	 ✓	 ✓	

2.7	 No	sensitive	data,	such	as	passwords	and	credit	card	numbers,	is	exposed	
through	the	user	interface	or	leaks	to	screenshots.	

✓	 ✓	

2.8	 No	sensitive	data	is	included	in	backups	generated	by	the	mobile	
operating	system.	

	 ✓	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 17	

#	 Description	 L1	 L2	
2.9	 The	app	removes	sensitive	data	from	views	when	backgrounded.	 	 ✓	

2.10	 The	app	does	not	hold	sensitive	data	in	memory	longer	than	necessary,	
and	memory	is	cleared	explicitly	after	use.	

	 ✓	

2.11	 The	app	enforces	a	minimum	device-access-security	policy,	such	as	
requiring	the	user	to	set	a	device	passcode.	

	 ✓	

2.12	 The	app	educates	the	user	about	the	types	of	personally	identifiable	
information	processed,	as	well	as	security	best	practices	the	user	should	
follow	in	using	the	app.	

	 ✓	

Verification	Processes	

The	OWASP	Mobile	Security	Testing	Guide	provides	detailed	instructions	for	verifying	the	
requirements	listed	in	this	section.	

For	Android:	

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-
Storage.md	

For	iOS:	

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-
Storage.md	

References	

• OWASP	Mobile	Top	10:	M2	-	Insecure	Data	Storage	
• CWE:	https://cwe.mitre.org/data/definitions/922.html	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 18	

V3:	Cryptography	Requirements	

Control	Objective	

Cryptography	is	an	essential	ingredient	when	it	comes	to	protecting	data	stored	on	a	mobile	
device.	It	is	also	a	category	where	things	can	go	utterly	wrong,	especially	when	standard	
conventions	are	not	followed.	The	purpose	of	the	controls	in	this	chapter	is	to	ensure	that	
the	verified	application	uses	cryptography	according	to	industry	best	practices,	including:	

• Use	of	proven	cryptographic	libraries;	
• Proper	choice	and	configuration	of	cryptographic	primitives;	
• A	suitable	random	number	generator	wherever	randomness	is	required.	

Security	Verification	Requirements	

#	 Description	 L1	 L2	
3.1	 The	app	does	not	rely	on	symmetric	cryptography	with	hardcoded	keys	as	a	

sole	method	of	encryption.	
✓	 ✓	

3.2	 The	app	uses	proven	implementations	of	cryptographic	primitives.	 ✓	 ✓	

3.3	 The	app	uses	cryptographic	primitives	that	are	appropriate	for	the	
particular	use-case,	configured	with	parameters	that	adhere	to	industry	
best	practices.	

✓	 ✓	

3.4	 The	app	does	not	use	cryptographic	protocols	or	algorithms	that	are	widely	
considered	depreciated	for	security	purposes.	 ✓	 ✓	

3.5	 The	app	doesn't	re-use	the	same	cryptographic	key	for	multiple	purposes.	 ✓	 ✓	

3.6	 All	random	values	are	generated	using	a	sufficiently	secure	random	
number	generator.	

✓	 ✓	

Verification	Processes	

The	OWASP	Mobile	Security	Testing	Guide	provides	detailed	instructions	for	verifying	the	
requirements	listed	in	this	section.	

For	Android:	

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05e-Testing-
Cryptography.md	

For	iOS:	

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06e-Testing-
Cryptography.md	

References	

• OWASP	Mobile	Top	10:	M6	-	Broken	Cryptography	
• CWE:	https://cwe.mitre.org/data/definitions/310.html	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 19	

V4:	Authentication	and	Session	Management	Requirements	

Control	Objective	

In	most	cases,	user	login	to	a	remote	service	is	an	integral	part	of	the	overall	mobile	app	
architecture.	Even	though	most	of	the	logic	happens	at	the	endpoint,	MASVS	defines	some	
basic	requirements	regarding	how	user	accounts	and	sessions	are	managed.	The	
requirements	can	be	easily	verified	without	access	to	the	source	code	of	the	service	
endpoint.	

Security	Verification	Requirements	

#	 Description	 L1	 L2	

4.1	

If	the	app	provides	users	with	access	to	a	remote	service,	an	acceptable	
form	of	authentication	such	as	username/password	authentication	is	
performed	at	the	remote	endpoint.	

✓	 ✓	

4.2	
The	remote	endpoint	uses	randomly	generated	access	tokens	to	
authenticate	client	requests	without	sending	the	user's	credentials.	

✓	 ✓	

4.3	
The	remote	endpoint	terminates	the	existing	session	when	the	user	logs	
out.	

✓	 ✓	

4.4	 A	password	policy	exists	and	is	enforced	at	the	remote	endpoint.	 ✓	 ✓	

4.5	

The	remote	endpoint	implements	an	exponential	back-off,	or	temporarily	
locks	the	user	account,	when	incorrect	authentication	credentials	are	
submitted	an	excessive	number	of	times	.	

✓	 ✓	

4.6	

Biometric	authentication,	if	any,	is	not	event-bound	(i.e.	using	an	API	that	
simply	returns	"true"	or	"false").	Instead,	it	is	based	on	unlocking	the	
keychain/keystore.	

	 ✓	

4.7	
Sessions	are	terminated	at	the	remote	endpoint	after	a	predefined	period	
of	inactivity.	

	 ✓	

4.8	
A	second	factor	of	authentication	exists	at	the	remote	endpoint	and	the	
2FA	requirement	is	consistently	enforced.	

	 ✓	

4.9	
Step-up	authentication	is	required	to	enable	actions	that	deal	with	
sensitive	data	or	transactions.	

	 ✓	

4.10	

The	app	informs	the	user	of	all	login	activities	with	his	or	her	account.	
Users	are	able	view	a	list	of	devices	used	to	access	the	account,	and	to	
block	specific	devices.	

	 ✓	

Verification	Processes	

The	OWASP	Mobile	Security	Testing	Guide	provides	detailed	instructions	for	verifying	the	
requirements	listed	in	this	section.	

For	Android:	

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-
Authentication.md	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 20	

For	iOS:	

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06f-Testing-
Authentication-and-Session-Management.md	

	References	

• OWASP	Mobile	Top	10:	M4	-	Insecure	Authentication,	M6	-	Insecure	Authorization	
• CWE:	https://cwe.mitre.org/data/definitions/287.html	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 21	

V5:	Network	Communication	Requirements	

Control	Objective	

The	purpose	of	the	controls	listed	in	this	section	is	to	ensure	the	confidentiality	and	
integrity	of	information	exchanged	between	the	mobile	app	and	remote	service	endpoints.	
At	the	very	least,	a	mobile	app	must	set	up	a	secure,	encrypted	channel	for	network	
communication	using	the	TLS	protocol	with	appropriate	settings.	Level	2	lists	additional	
defense-in-depth	measure	such	as	SSL	pinning.	

Security	Verification	Requirements	

#	 Description	 L1	 L2	

5.1	
Data	is	encrypted	on	the	network	using	TLS.	The	secure	channel	is	used	
consistently	throughout	the	app.	 ✓	 ✓	

5.2	

The	TLS	settings	are	in	line	with	current	best	practices,	or	as	close	as	
possible	if	the	mobile	operating	system	does	not	support	the	
recommended	standards.	

✓	 ✓	

5.3	

The	app	verifies	the	X.509	certificate	of	the	remote	endpoint	when	the	
secure	channel	is	established.	Only	certificates	signed	by	a	valid	CA	are	
accepted.	

✓	 ✓	

5.4	

The	app	either	uses	its	own	certificate	store,	or	pins	the	endpoint	
certificate	or	public	key,	and	subsequently	does	not	establish	connections	
with	endpoints	that	offer	a	different	certificate	or	key,	even	if	signed	by	a	
trusted	CA.	

	 ✓	

5.5	
The	app	doesn't	rely	on	a	single	insecure	communication	channel	(email	or	
SMS)	for	critical	operations,	such	as	enrolments	and	account	recovery.	

	 ✓	

Verification	Processes	

The	OWASP	Mobile	Security	Testing	Guide	provides	detailed	instructions	for	verifying	the	
requirements	listed	in	this	section.	

For	Android:		
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-Network-
Communication.md	
For	iOS:		
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-Network-
Communication.md	

	References	

• OWASP	Mobile	Top	10:	M3	-	Insecure	Communication	
• CWE:	https://cwe.mitre.org/data/definitions/319.html	
• CWE:	https://cwe.mitre.org/data/definitions/295.html	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 22	

V6:	Platform	Interaction	Requirements	

Control	Objective	

The	controls	in	this	group	ensure	that	the	app	uses	platform	APIs	and	standard	components	
in	a	secure	manner.	Additionally,	the	controls	cover	communication	between	apps	(IPC).	

Security	Verification	Requirements	

#	 Description	 L1	 L2	

6.1	 The	app	only	requests	the	minimum	set	of	permissions	necessary.	 ✓	 ✓	

6.2	

All	 inputs	 from	 external	 sources	 and	 the	 user	 are	 validated	 and,	 if	
necessary,	sanitized.	This	includes	data	received	via	the	UI,	IPC	mechanisms	
such	as	intents,	custom	URLs,	and	network	sources.	

✓	 ✓	

6.3	
The	app	does	not	export	sensitive	functionality	via	custom	URL	schemes,	
unless	these	mechanisms	are	properly	protected.	

✓	 ✓	

6.4	
The	app	does	not	export	sensitive	functionality	through	IPC	facilities,	unless	
these	mechanisms	are	properly	protected.	

✓	 ✓	

6.5	 JavaScript	is	disabled	in	WebViews	unless	explicitly	required.	 ✓	 ✓	

6.6	

WebViews	 are	 configured	 to	 allow	 only	 the	 minimum	 set	 of	 protocol	
handlers	required	(ideally,	only	https	is	supported).	Potentially	dangerous	
handlers,	such	as	file,	tel	and	app-id,	are	disabled.	

✓	 ✓	

6.7	 The	app	does	not	load	user-supplied	local	resources	into	WebViews.	 ✓	 ✓	

6.8	
If	 Java	objects	are	exposed	 in	a	WebView,	verify	 that	 the	WebView	only	
renders	JavaScript	contained	within	the	app	package.	 ✓	 ✓	

6.9	 Object	serialization,	if	any,	is	implemented	using	safe	serialization	APIs.	 ✓	 ✓	

6.10	

The	 app	 detects	whether	 it	 is	 being	 executed	 on	 a	 rooted	 or	 jailbroken	
device.	Depending	on	the	business	requirement,	users	are	warned,	or	the	
app	is	terminated	if	the	device	is	rooted	or	jailbroken.	

	 ✓	

Verification	Processes	

The	OWASP	Mobile	Security	Testing	Guide	provides	detailed	instructions	for	verifying	the	
requirements	listed	in	this	section.	

For	Android:		
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05h-Testing-Platform-
Interaction.md	
For	iOS:		
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06h-Testing-Platform-
Interaction.md

References	

• OWASP	Mobile	Top	10:	M1	-	Improper	Platform	Usage	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 23	

• CWE:	https://cwe.mitre.org/data/definitions/20.html	
• CWE:	https://cwe.mitre.org/data/definitions/749.html	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 24	

V7:	Code	Quality	and	Build	Setting	Requirements	

Control	Objective	

The	goal	of	this	control	is	to	ensure	that	basic	security	coding	practices	are	followed	in	
developing	the	app,	and	that	"free"	security	features	offered	by	the	compiler	are	activated.	

Security	Verification	Requirements	

#	 Description	 L1	 L2	

7.1	 The	app	is	signed	and	provisioned	with	valid	certificate.	 ✓	 ✓	

7.2	
The	app	has	been	built	in	release	mode,	with	settings	appropriate	for	a	
release	build	(e.g.	non-debuggable).	 ✓	 ✓	

7.3	 Debugging	symbols	have	been	removed	from	native	binaries.	 ✓	 ✓	

7.4	
Debugging	code	has	been	removed,	and	the	app	does	not	log	verbose	
errors	or	debugging	messages.	

✓	 ✓	

7.5	 The	app	catches	and	handles	possible	exceptions.	 ✓	 ✓	

7.6	 Error	handling	logic	in	security	controls	denies	access	by	default.	 ✓	 ✓	

7.7	 In	unmanaged	code,	memory	is	allocated,	freed	and	used	securely.	 ✓	 ✓	

7.8	

Free	security	features	offered	by	the	toolchain,	such	as	byte-code	
minification,	stack	protection,	PIE	support	and	automatic	reference	
counting,	are	activated.	

✓	 ✓	

Verification	Processes	

The	OWASP	Mobile	Security	Testing	Guide	provides	detailed	instructions	for	verifying	the	
requirements	listed	in	this	section.	

For	Android:	
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05i-Testing-Code-
Quality-and-Build-Settings.md	
For	iOS:	
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06i-Testing-Code-
Quality-and-Build-Settings.md	

References	

• OWASP	Mobile	Top	10:	M7	-	Client	Code	Quality	
• CWE:	https://cwe.mitre.org/data/definitions/119.html	
• CWE:	https://cwe.mitre.org/data/definitions/89.html	
• CWE:	https://cwe.mitre.org/data/definitions/388.html	
• CWE:	https://cwe.mitre.org/data/definitions/489.html	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 25	

V8:	Resiliency	Against	Reverse	Engineering	Requirements	

Control	objective	

This	section	covers	software	protection	measures	that	are	recommended	for	apps	that	
process,	or	give	access	to,	sensitive	data	or	functionality.	Lack	of	any	of	these	controls	does	
not	cause	a	vulnerability	-	instead,	they	are	meant	to	increase	the	app's	resiliency	against	
reverse	engineering,	making	it	more	difficult	for	adversaries	to	gain	an	understanding	of	the	
app's	internals	or	extract	data	from	the	app.	

The	controls	in	this	section	differ	from	previous	sections	in	that	they	do	not	apply	to	all	
mobile	apps	generically.	Rather,	the	controls	described	here	should	be	applied	as	needed,	
based	on	assessment	of	the	risk	caused	by	unauthorized	modification	and/or	reverse	
engineering	of	the	app.	

The	OWASP	document	"Technical	Risks	of	Reverse	Engineering	and	Unauthorized	Code	
Modification	Reverse	Engineering	and	Code	Modification	Prevention"	(see	references	
below)	lists	business	risks	as	well	as	dependent	technical	threats	related	to	tampering	and	
reverse	engineering.	In	the	sections	below,	we	refer	to	the	technical	threats	described	in	
that	document.	

For	any	of	the	controls	in	the	list	below	to	be	effective,	the	app	must	fulfil	at	least	all	of	
MASVS-L1,	as	well	as	all	any	lower-numbered	requirements.	For	examples,	the	obfuscation	
controls	listed	in	under	"impede	comprehension"	must	be	combined	with	those	listed	under	
"app	isolation",	"impede	dynamic	analysis	and	tampering"	and	"device	binding".	

Note	that	software	protections	must	never	be	used	as	a	replacement	for	security	controls.	
The	controls	listed	in	MASVR-R	are	intended	to	add	threat-specific,	additional	protective	
controls	to	apps	that	also	fulfil	the	MASVS	security	requirements.	

The	following	considerations	apply:	

1. A	threat	model	must	be	defined	that	clearly	outlines	the	attacker's	goals.	Additionally,	
a	target	must	be	set	that	specifies	the	level	of	protection	the	protection	scheme	is	
meant	to	provide	(e.g.,	cause	an	effort	of	at	least	20	man-days	for	a	skilled	reverse	
engineer	to	reach	defined	goal	X	using	state-of-the-art	tools	and	processes).	

2. The	protection	scheme	should	be	verified	using	manual	resiliency	testing	by	a	subject	
matter	expert	(see	also	the	"reverse	engineering"	and	"assessing	software	protections"	
chapters	in	the	Mobile	Security	Testing	Guide).	

Impede	Dynamic	Analysis	and	Tampering	
#	 Description	 R	
8.1	 The	app	implements	two	or	more	functionally	independent	methods	of	root	

detection	and	responds	to	the	presence	of	a	rooted	device	either	by	alerting	
the	user	or	terminating	the	app.	

✓	

8.2	 The	app	implements	multiple	functionally	independent	debugging	defenses	
that,	in	context	of	the	overall	protection	scheme,	force	adversaries	to	invest	

✓	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 26	

#	 Description	 R	
considerable	manual	effort	to	enable	debugging.	All	available	debugging	
protocols	must	be	covered	(e.g.	JDWP	and	native).	

8.3	 The	app	detects,	and	responds	to,	tampering	with	executable	files	and	
critical	data.	 ✓	

8.4	 The	app	detects	the	presence	of	widely	used	reverse	engineering	tools,	such	
as	code	injection	tools,	hooking	frameworks	and	debugging	servers.	

✓	

8.5	 The	app	detects,	and	response	to,	being	run	in	an	emulator	using	any	
method.	

✓	

8.6	 The	app	detects,	and	responds	to,	modifications	of	process	memory,	such	as	
relocation	table	patches	and	injected	code.	

✓	

8.7	 The	app	implements	multiple	different	responses	to	tampering,	debugging	
and	emulation,	including	stealthy	responses	that	don't	simply	terminate	the	
app.	

✓	

8.8	 All	executable	files	and	libraries	belonging	to	the	app	are	either	encrypted	on	
the	file	level	and/or	important	code	and	data	segments	inside	the	
executables	are	encrypted	or	packed.	Trivial	static	analysis	does	not	reveal	
important	code	or	data.	

✓	

8.9	 Obfuscating	transformations	and	functional	defenses	are	interdependent	
and	well-integrated	throughout	the	app.	

✓	

	
Device	Binding	

#	 Description	 R	
8.10	 The	app	implements	a	'device	binding'	functionality	using	a	device	

fingerprint	derived	from	multiple	properties	unique	to	the	device.	
✓	

	
Impede	Comprehension	

#	 Description	 R	
8.11	 The	app	uses	multiple	functionally	independent	methods	of	emulator	

detection	that,	in	context	of	the	overall	protection	scheme,	force	adversaries	
to	invest	significant	manual	effort	to	run	the	app	in	an	emulator	(supersedes	
requirement	8.7).	

✓	

8.12	 If	the	architecture	requires	sensitive	information	be	stored	on	the	device,	
the	app	only	runs	on	operating	system	versions	and	devices	that	offer	
hardware-backed	key	storage.	Alternatively,	the	information	is	protected	
using	obfuscation.	Considering	current	published	research,	the	obfuscation	
type	and	parameters	are	sufficient	to	cause	significant	manual	effort	for	
reverse	engineers	seeking	to	comprehend	or	extract	the	sensitive	data.	

✓	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 27	

#	 Description	 R	
8.13	 If	the	architecture	requires	sensitive	computations	be	performed	on	the	

client-side,	these	computations	are	isolated	from	the	operating	system	by	
using	a	hardware-based	SE	/	TEE.	Alternatively,	the	information	is	protected	
using	obfuscation.	Considering	current	published	research,	the	obfuscation	
type	and	parameters	are	sufficient	to	cause	significant	manual	effort	for	
reverse	engineers	seeking	to	comprehend	the	sensitive	portions	of	the	code	
and/or	data.	

✓	

Verification	Processes	

The	OWASP	Mobile	Security	Testing	Guide	provides	detailed	instructions	for	verifying	the	
requirements	listed	in	this	section.	

For	Android:		
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05j-Testing-Resiliency-
Against-Reverse-Engineering.md	
For	iOS:		
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-
Against-Reverse-Engineering.md	

References	

• OWASP	Mobile	Top	10:	M8	-	Code	Tampering,	M9	-	Reverse	Engineering	
• WASP	Reverse	Engineering	Threats	-

https://www.owasp.org/index.php/Technical_Risks_of_Reverse_Engineering_and_Una
uthorized_Code_Modification	

• OWASP	Reverse	Engineering	and	Code	Modification	Prevention	-	
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modifica
tion_Prevention_Project	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 28	

Appendix	A:	Glossary	
• 2FA	–	Two-factor	authentication(2FA)	adds	a	second	level	of	authentication	to	an	

account	log-in.	
• Address	Space	Layout	Randomization	(ASLR)	–	A	technique	to	make	exploiting	

memory	corruption	bugs	more	difficult.	
• Application	Security	–	Application-level	security	focuses	on	the	analysis	of	components	

that	comprise	the	application	layer	of	the	Open	Systems	Interconnection	Reference	
Model	(OSI	Model),	rather	than	focusing	on	for	example	the	underlying	operating	
system	or	connected	networks.	

• Application	Security	Verification	–	The	technical	assessment	of	an	application	against	
the	OWASP	MASVS.	

• Application	Security	Verification	Report	–	A	report	that	documents	the	overall	results	
and	supporting	analysis	produced	by	the	verifier	for	a	particular	application.	

• Authentication	–	The	verification	of	the	claimed	identity	of	an	application	user.	
• Automated	Verification	–	The	use	of	automated	tools	(either	dynamic	analysis	tools,	

static	analysis	tools,	or	both)	that	use	vulnerability	signatures	to	find	problems.	
• Black	box	testing	–	It	is	a	method	of	software	testing	that	examines	the	functionality	of	

an	application	without	peering	into	its	internal	structures	or	workings.	
• Component	–	a	self-contained	unit	of	code,	with	associated	disk	and	network	

interfaces	that	communicates	with	other	components.	
• Cross-Site	Scripting	(XSS)	–	A	security	vulnerability	typically	found	in	web	applications	

allowing	the	injection	of	client-side	scripts	into	content.	
• Cryptographic	module	–	Hardware,	software,	and/or	firmware	that	implements	

cryptographic	algorithms	and/or	generates	cryptographic	keys.	
• DAST	–Dynamic	application	security	testing	(DAST)	technologies	are	designed	to	detect	

conditions	indicative	of	a	security	vulnerability	in	an	application	in	its	running	state.	
• Design	Verification	–	The	technical	assessment	of	the	security	architecture	of	an	

application.	
• Dynamic	Verification	–	The	use	of	automated	tools	that	use	vulnerability	signatures	to	

find	problems	during	the	execution	of	an	application.	
• Globally	Unique	Identifier	(GUID)	–	a	unique	reference	number	used	as	an	identifier	in	

software.	
• Hyper	Text	Transfer	Protocol	(HTTP)	–	An	application	protocol	for	distributed,	

collaborative,	hypermedia	information	systems.	It	is	the	foundation	of	data	
communication	for	the	World	Wide	Web.	

• Hardcoded	keys	–	Cryptographic	keys	which	are	stored	in	the	device	itself.	
• IPC	–	Inter	Process	Communications,In	IPC	Processes	communicate	with	each	other	

and	with	the	kernel	to	coordinate	their	activities.	
• Input	Validation	–	The	canonicalization	and	validation	of	untrusted	user	input.	
• JAVA	Bytecode	-	Java	bytecode	is	the	instruction	set	of	the	Java	virtual	machine(JVM).	

Each	bytecode	is	composed	of	one,	or	in	some	cases	two	bytes	that	represent	the	
instruction	(opcode),	along	with	zero	or	more	bytes	for	passing	parameters.	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 29	

• Malicious	Code	–	Code	introduced	into	an	application	during	its	development	
unbeknownst	to	the	application	owner,	which	circumvents	the	application's	intended	
security	policy.	Not	the	same	as	malware	such	as	a	virus	or	worm!	

• Malware	–	Executable	code	that	is	introduced	into	an	application	during	runtime	
without	the	knowledge	of	the	application	user	or	administrator.	

• Open	Web	Application	Security	Project	(OWASP)	–	The	Open	Web	Application	Security	
Project	(OWASP)	is	a	worldwide	free	and	open	community	focused	on	improving	the	
security	of	application	software.	Our	mission	is	to	make	application	security	"visible,"	
so	that	people	and	organizations	can	make	informed	decisions	about	application	
security	risks.	See:	http://www.owasp.org/	

• Personally	Identifiable	Information	(PII)	-	is	information	that	can	be	used	on	its	own	or	
with	other	information	to	identify,	contact,	or	locate	a	single	person,	or	to	identify	an	
individual	in	context.	

• PIE	–	Position-independent	executable	(PIE)	is	a	body	of	machine	code	that,	being	
placed	somewhere	in	the	primary	memory,	executes	properly	regardless	of	its	absolute	
address.	

• PKI	–	A	PKI	is	an	arrangement	that	binds	public	keys	with	respective	identities	of	
entities.	The	binding	is	established	through	a	process	of	registration	and	issuance	of	
certificates	at	and	by	a	certificate	authority	(CA).	

• SAST	–	Static	application	security	testing	(SAST)	is	a	set	of	technologies	designed	to	
analyze	application	source	code,	byte	code	and	binaries	for	coding	and	design	
conditions	that	are	indicative	of	security	vulnerabilities.	SAST	solutions	analyze	an	
application	from	the	“inside	out”	in	a	nonrunning	state.	

• SDLC	–	Software	development	lifecycle.	
• Security	Architecture	–	An	abstraction	of	an	application's	design	that	identifies	and	

describes	where	and	how	security	controls	are	used,	and	also	identifies	and	describes	
the	location	and	sensitivity	of	both	user	and	application	data.	

• Security	Configuration	–	The	runtime	configuration	of	an	application	that	affects	how	
security	controls	are	used.	

• Security	Control	–	A	function	or	component	that	performs	a	security	check	(e.g.	an	
access	control	check)	or	when	called	results	in	a	security	effect	(e.g.	generating	an	
audit	record).	

• SQL	Injection	(SQLi)	–	A	code	injection	technique	used	to	attack	data	driven	
applications,	in	which	malicious	SQL	statements	are	inserted	into	an	entry	point.	

• SSO	Authentication	–	Single	Sign	On(SSO)	occurs	when	a	user	logs	in	to	one	Client	and	
is	then	signed	in	to	other	Clients	automatically,	regardless	of	the	platform,	technology,	
or	domain	the	user	is	using.	For	example	when	you	log	in	in	google	you	automatically	
login	in	the	youtube	,	docs	and	mail	service.	

• Threat	Modeling	-	A	technique	consisting	of	developing	increasingly	refined	security	
architectures	to	identify	threat	agents,	security	zones,	security	controls,	and	important	
technical	and	business	assets.	

• Transport	Layer	Security	–	Cryptographic	protocols	that	provide	communication	
security	over	the	Internet	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 30	

• URI/URL/URL	fragments	–	A	Uniform	Resource	Identifier	is	a	string	of	characters	used	
to	identify	a	name	or	a	web	resource.	A	Uniform	Resource	Locator	is	often	used	as	a	
reference	to	a	resource.	

• User	acceptance	testing	(UAT)–	Traditionally	a	test	environment	that	behaves	like	the	
production	environment	where	all	software	testing	is	performed	before	going	live.	

• Verifier	–	The	person	or	team	that	is	reviewing	an	application	against	the	OWASP	ASVS	
requirements.	

• Whitelist	–	A	list	of	permitted	data	or	operations,	for	example	a	list	of	characters	that	
are	allowed	to	perform	input	validation.	

• X.509	Certificate	–	An	X.509	certificate	is	a	digital	certificate	that	uses	the	widely	
accepted	international	X.509	public	key	infrastructure	(PKI)	standard	to	verify	that	a	
public	key	belongs	to	the	user,	computer	or	service	identity	contained	within	the	
certificate.	

OWASP	Mobile	Application	Security	Verification	Standard	v0.9.2	 31	

Appendix	B:	References	
The	following	OWASP	projects	are	most	likely	to	be	useful	to	users/adopters	of	this	
standard:	

• OWASP	Mobile	Security	Project	-	
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project	

• OWASP	Mobile	Security	Testing	Guide	-	
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide	

• OWASP	Mobile	Top	10	Risks	-	
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-
_Top_Ten_Mobile_Risks	

• OWASP	Reverse	Engineering	and	Code	Modification	Prevention	-	
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modifica
tion_Prevention_Project	

Similarly,	the	following	web	sites	are	most	likely	to	be	useful	to	users/adopters	of	this	
standard:	

• MITRE	Common	Weakness	Enumeration	-	http://cwe.mitre.org/	
• PCI	Security	Standards	Council	-	https://www.pcisecuritystandards.org	
• PCI	Data	Security	Standard	(DSS)	v3.0	Requirements	and	Security	Assessment	

Procedures	https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf	

