
The OWASP Foundation
http://www.owasp.org

OWASP AppSec
Brazil 2010, Campinas, SP

Taint Analysis of JavaScript Code 
to Detect Web Applications 
Vulnerabilities
Gabriel Quadros
Conviso IT Security
gquadros@conviso.com.br
(77) 9105-0500



Summary



3

Summary

Topics

• Introduction

• Client-side vulnerabilities

• Approaches to analysis

• JsInstrumentator

• Conclusion



4

Introduction

About me

• Security Consultant and Researcher at Conviso IT 
Security (www.conviso.com.br)

• Completing the Bachelor of Computer Science at 
Universidade Estadual do Sudoeste da Bahia - UESB

• Involved in computer security since 2003



5

Introduction

Motivation

• To analyze the increasing amount of client-side code 
present in Web applications

• Web 2.0

• More code, more bugs

• Poorly written client-side code can also contain 
vulnerabilities!

• Fuzzing?!?



6

Introduction

Fuzzing?!?

<script>
    var nav = navigator.userAgent;

    if (nav.indexOf("XXX69YYY") != -1) {
        document.write("Welcome to " + 

unescape(document.location.href) + 
"!");
    } else {
        document.write("Access denied!");
    }
</script>



7

Client-side vulnerabilities

JavaScript

• DOM-Based XSS

• Open Redirect

• CSRF – JSON Hijacking, …

• Session Fixation

• ...



8

Client-side vulnerabilities

DOM-Based XSS

<script>
code = document.location.hash.slice(1);
eval(code);

</script>

http://site/pagina.html#alert(1)



9

Client-side vulnerabilities

RIA

• XSS in Flash

• Open Redirect

• ...



10

Approaches to analysis

In what ways can we analyze this kind of code 
dinamically?

1) To analyze the IR generated by the JIT compilers

2) To analyze the Assembly code generated by the JIT 
compilers

3) Modify the JavaScript interpreter

4) Rewrite the JavaScript code through a Web proxy

5) Write an add-on for your browser



11

Approaches to analysis

1) To analyze the IR generated by the JIT 
compilers

• JIT compiler → Performance gain in the execution of 
JavaScript code

• Used by all major browsers

–FF 3.x: TraceMonkey/nanojit, FF 4: JägerMonkey/Nitro

–Opera >= 10.5: Carakan

–Chrome: V8 (!)

– IE 9: Chakra



12

Approaches to analysis

1) To analyze the IR generated by the JIT 
compilers

• Most of them translates the JavaScript code to an IR 
before generating the native code

• As a result, we have an equivalent code with simpler 
syntax for analysis

• This approach has not been widely explored



13

Approaches to analysis

Nanojit – Low level intermediate representation 
(LIR) | nanojit/LIRopcode.tbl



14

Approaches to analysis

1) To analyze the IR generated by the JIT 
compilers

• Advantages

–Ease of analysis: three-address code, SSA, etc.

• Disadvantages

–JIT compiler dependent

–The analysis may be incomplete: the compiler supports 
DOM objects? The compilation occurs only when it 
detects a hot spot?

– Installation



15

Approaches to analysis

2) To analyze the Assembly code generated by the 
JIT compilers

• Directly analyze the native code

• V8 engine

• Has also not been widely explored



16

Approaches to analysis

2) To analyze the Assembly code generated by the 
JIT compilers

• Advantages

–Maybe reuse of analysis tools written for native code: 
Valgrind and PIN plugins, VINE+TEMU, BAP, etc.

• Disadvantages

–Browser dependent: you need to know where to find 
the native code generated and how the DOM objects 
are represented

–The analysis may be incomplete

– Installation



17

Approaches to analysis

3) Modify the JavaScript interpreter

• Choose a browser that uses the desired interpreter, 
which should be preferably Open Source

• Locate the code responsible for interpreting the 
JavaScript and modify it

• How to modify the interpreter?

– Insert the analysis code in the interpretation code

–Add code to generate run traces in the interpreter's IR 
and then analyze

–Add code to generate run traces in your own IR and then 
analyze



18

Approaches to analysis

3) Modify the JavaScript interpreter

• Advantages

–Direct implementation: the interpreter is usually 
structured as a big switch-case structure

• Disadvantages

–Browser dependent

–Restriction of the language used in development: 
typically C or C++

– Installation



19

Approaches to analysis

4) Rewrite the JavaScript code through a Web 
proxy

• Use a Web proxy to intercept the JavaScript code and 
rewrite it to add the analysis code

• Can be implemented without a Web proxy, by modifying 
the browser to intercept the code

• As the previous method, is widely used in academic 
research



20

Approaches to analysis

4) Rewrite the JavaScript code through a Web 
proxy

• Advantages

–Browser independent

–Ease of development

– Installation

• Disadvantages

–Changes the original JavaScript code



21

Approaches to analysis

5) Write an add-on for your browser

• Used in some community projects. Ex.: noXSS

• It can be interesting if the API provides support to 
JavaScript analysis



22

Approaches to analysis

5) Write an add-on for your browser

• Advantages

– Installation

• Disadvantages

–Browser dependent

–Subject to the limitations of the API



23

JsInstrumentator

Introduction

• A Web proxy to perform dynamic analysis of JavaScript 
code

• Detection of vulnerabilities that involve the use of user-
controlled data in dangerous methods like: eval(), 
document.write(), etc.

• Taint Analysis over strings

• Available at: http://code.google.com/p/jsinstrumentator/



24

JsInstrumentator

Taint Analysis

• Information Flow Analysis

• “Information flows from object x to object y, denoted x => 
y, whenever information stored in x is transferred to, or 
used to derive information transferred to, y.” (Denning)

• Based on the work “Detecting History sniffing via 
Information Flow” of Jang et al., available at: 
http://pho.ucsd.edu/rjhala/dif.pdf



25

JsInstrumentator

Taint Analysis – Steps

• Define the sources of untrusted, user-controllabe data

• Define the critical points where a tainted data should go 
to detect a vulnerability

• Propagate the tainted data

–To taint an object, we add a taint mark which allow us 
to track the propagation of the initial sources



26

JsInstrumentator

Taint Analysis – Some untrusted data sources



27

JsInstrumentator

Taint Analysis – Some critical points



28

JsInstrumentator

How is the analysis performed?

• Rewriting the JavaScript code

• Need to parse the JavaScript AST

• Rewriting rules



29

JsInstrumentator

Example – Original code

<script>
a = “123”;
b = document.location;
c = a + b;
document.XXX.innerHTML = c;

</script>



30

JsInstrumentator

Example – Rewritten code

// TSET object

<script>
  // a = “123”;
(TSET.direct.push(),
tmp1 = “123”,
tmp2 = TSET.taint(tmp1),
TSET.check(tmp2, “a”),
a = tmp2,
TSET.direct.pop(),
tmp2)



31

JsInstrumentator

// b = document.location;
  (TSET.direct.push(),
tmp1 = document.location,
tmp2 = TSET.taint(tmp1),
TSET.check(tmp2, “b”),
b = tmp2,
TSET.direct.pop(),
tmp2)



32

JsInstrumentator

// c = a + b;
(TSET.direct.push(),

tmp1 = 
(tmp2 = a,

  TSET.direct.add(tmp2),
 tmp3 = b,

  TSET.direct.add(tmp3),
 tmp4 = a + b,
 tmp4 = TSET.taint(tmp4),
 tmp4
),

tmp5 = TSET.taint(tmp1),
TSET.check(tmp5, “c”),
c = tmp5,
TSET.direct.pop(),
tmp5)



33

JsInstrumentator

// document.XXX.innerHTML = c;

...
TSET.check(..., “document”, “XXX.innerHTML”),
...



34

JsInstrumentator

Implementation

• Python

• Twisted Web for the Web proxy

• BeautifulSoup for parsing HTML

• Pynarcisus for parsing JavaScript

• Integration with Firebug to detect vulnerabilities



35

JsInstrumentator

Next steps

• Extend the Taint Analysis for other data types

• Add support for detecting other types of vulnerabilities

• Integration with a string solver to improve fuzzing

• Community contribution



Conclusion



37

Conclusion

Conclusions

• To perform more advanced analyses of client-side code 
is a real need

• The approaches presented can be applied to other file 
formats which can hold code

• It can also be used to protect against the exploitation of 
vulnerabilities



Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

