
@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

COMMON API SECURITY PITFALLS

@PhilippeDeRyck 2

Load the Restograde
application

GET /reviews

@PhilippeDeRyck 3

@PhilippeDeRyck

• Traveling the world to deliver security courses
• In-depth web security training for developers
• Custom training courses with developer-oriented labs
• Covering web security, API security, Angular/React security

• 15+ years of security experience
• Founder of Pragmatic Web Security
• Author of Primer on client-side web security
• Creator of Web Security Fundamentals on edX

• Course curator of the SecAppDev course
• Yearly security course targeted towards developers
• More information on https://secappdev.org

GOOGLE DEVELOPER EXPERT

PH.D. IN WEB SECURITY

DR. PHILIPPE DE RYCK

(NOT EMPLOYED BY GOOGLE)

“ “
We do this because we want to create a more

secure and privacy-respecting Web.

“ “
We do this because we want to create a more

secure and privacy-respecting Web.

@PhilippeDeRyck 7

NginX config
location / {

return 301 https://$host$request_uri;
}

@PhilippeDeRyck

HTTPS AS A BASELINE REQUIREMENT

• Moving your sites to 100% HTTPS should be a priority
• HTTPS has become too important to ignore, even for public content
• A single HTTP step in the chain is already a vulnerability, so 100% HTTPS is a must
• HTTPS is often depended upon as the baseline for security

• After the move to HTTPS, redirect HTTP traffic to the HTTPS endpoint
• Only relevant for endpoints dealing with navigational requests from a browser
• API-only endpoints should disable HTTP and only need to support HTTPS

• Enable HTTP Strict Transport Security for all HTTPS domains
• Install a long-lived HSTS policy on as many domains as possible
• Carefully move to a global HSTS policy with includeSubDomains

8

@PhilippeDeRyck 9

SUPPORTING HTTP

APIs are accessed from code, so there is no need
to support a redirect from HTTP to HTTPS.

Lock your API further down by enabling HSTS.

“ “
on beta.facebook.com and mbasic.beta.facebook.com rate

limiting was missing on forgot password endpoints

@PhilippeDeRyck

UNLIMITED ACCESS TO AN API

• Unlimited access to an API can have severe consequences

• Denial of service is probably the best case scenario

• Extracting information or brute forcing access codes are a lot worse

• Various rate-limiting strategies can be used

• Limiting per connection property (IP address)

• Limiting per user (account / access token / API key)

• Limiting per application property (user account / resource type)

• Limiting based on context (region / type of app)

• Often implemented as a business driver instead of a security feature

• These limits are quite liberal, so complement with stricter limits in shorter windows

11

HTTP/1.1 429 Too Many Requests
Retry-After: 3600

@PhilippeDeRyck 13

NO RATE LIMITING

Rate limiting prevents malicious code from abusing
legitimate / illegitimate access to your API

“ “he could query for someone else's phone
number and the API would simply send back a
response containing the other person's data.

@PhilippeDeRyck 15

@PhilippeDeRyck

INSECURE DIRECT OBJECT REFERENCES

• Predictable identifiers enable the enumeration of resources
• Dangerous if resources are not shielded by strict authorization checks
• Many APIs only check authentication status, but not which user is authenticated

• The only proper mitigation is implementing proper authorization checks
• E.g. checking if the current user is the owner of the resource

• The use of non-predictable identifiers is a complementary strategy
• UUIDs are a good example of such an identifier
• Just be careful about using them as primary keys in the database

16

@PhilippeDeRyck 17

LACK OF PROPER AUTHORIZATION

Always complement an initial authentication check
with appropriate authorization checks (e.g.

ownership of a resource)

@PhilippeDeRyck 18

Works fine with
a stateful REST

backend

@PhilippeDeRyck 19

Works fine with
a stateful REST

backend

Might benefit
from a stateless
REST backend

@PhilippeDeRyck

THE TRUTH IS A LOT MORE COMPLICATED

• Pure REST APIs should be stateless

• The server is stateless, and the client provides all the required information

• A valid argument for stateless backends is flexible scalability

• Purity is rarely a good argument to throw working solutions overboard

• An API can just as well keep session state on the server

• Works perfectly well with small to medium-scale applications

• Makes scalability harder, but not impossible

• We have been doing this for 20 years with sticky sessions, session replication, ...

• OAuth 2.0 is commonly used in both a stateful and stateless manner

• The debate on reference tokens vs self-contained tokens is essentially the same issue

20

@PhilippeDeRyck 21

CHANGING SESSIONS FOR NO GOOD REASON

Server-side session data is not compatible with the
REST paradigm, but still works well with small to

medium-scale applications.

@PhilippeDeRyck 22

21 3 4

@PhilippeDeRyck 23

2

1

3 4

@PhilippeDeRyck

THE LOCALITY OF SESSION DATA IMPACTS SECURITY

• Server-side sessions share an ID with the client and store data on the server
• Attacks on session management focus on guessing or stealing the ID
• The data stored in the server-side session object can be considered trusted

• Client-side sessions are a completely different paradigm
• The actual data is stored on the client, so it can be easily accessed
• The data comes in from the client, and is untrusted by default

• Client-side sessions require additional data protection measures
• Mandatory integrity checks to detect tampering with the data
• Optional confidentiality mechanisms to prevent disclosure of information

24

@PhilippeDeRyck 25

@PhilippeDeRyck 26

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

DecodedJWT jwt = JWT.decode(token);
} catch (JWTDecodeException exception){

//Invalid token
}

1
2
3
4
5
6

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

Algorithm algorithm = Algorithm.HMAC256("secret");
JWTVerifier verifier = JWT.require(algorithm)

.build(); //Reusable verifier instance
DecodedJWT jwt = verifier.verify(token);

} catch (JWTVerificationException exception){
//Invalid signature/claims

}

1
2
3
4
5
6
7
8
9

Decoding only

Signature verification

@PhilippeDeRyck 27

MISHANDLING CLIENT-SIDE SESSION DATA

Client-side session data is easy to read and
manipulate. You need to ensure confidentiality and

integrity before using any of the session data.

@PhilippeDeRyck 28

@PhilippeDeRyck

HMAC-BASED JWT SIGNATURES

29

data yxzN...sFno=

yxzN...sFno=

GENERATE HMAC

VERIFY HMAC

yxzN...sFno=

HMAC

SECRET KEY

data

data

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

@PhilippeDeRyck

ASYMMETRIC JWT SIGNATURES

30

payload yxzN...sFno=

GENERATE SIGNATURE

VERIFY SIGNATURE

SIGNATURE

PRIVATE KEY

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

PUBLIC KEY

C171...dfb

yxzN...sFno=

payload C171...dfb

C171...dfb

@PhilippeDeRyck

JWT SIGNATURES

• JWTs support both symmetric and asymmetric signatures
• Symmetric signatures are HMACs that depend on a shared secret key
• Asymmetric are digital signatures that depend on a public/private key pair

• Symmetric signatures are useful to use within a single trust zone
• Backend service storing claims in a JWT for use within the application
• Symmetric signatures are not the right choice when other (internal) services are involved

• Never ever share your secret signing key!

• Asymmetric signatures are useful in distributed scenarios
• SSO or OAuth 2.0 scenarios using JWTs to transfer claims to other services
• Everyone with the public key can verify the signature
• Used in OpenID Connect (e.g., social login scenarios)

31

@PhilippeDeRyck 32

MISUSING THE JWT SIGNATURE SCHEME

Shared secrets for verifying JWT tokens are for use
within the boundaries of the application.

Most scenarios should use a public/private key pair.

@PhilippeDeRyck 33

@PhilippeDeRyck 34

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = new JWSHeader.Builder(JWSAlgorithm.RS256)
.jwkURL(new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
.build();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.issueTime(new Date())
.issuer("restograde.com")
.claim("username", "philippe")
.build();

JWSSigner signer = new RSASSASigner(privateKey);
SignedJWT jwt = new SignedJWT(header, claimsSet);
jwt.sign(signer);
result = jwt.serialize();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

@PhilippeDeRyck

KEY IDENTIFICATION IN JWTS

• Asymmetric algorithms use a key pair
• The private key is used to generate a signature and is kept secret
• The public key is used to verify a signature and can be publicly known

• Simple approach uses the kid parameter to identify the public key
• The parameter could include a fingerprint of the public key
• Of course, this still requires the receiver to obtain the public key one way or another

• But the public key is public, so it can also be included as part of the JWT token
• The specification supports this through various parameters
• The set of parameters are jku, jwk, kid, x5u, and x5c

35

@PhilippeDeRyck 36

LACK OF PROPER JWT KEY MANAGEMENT

Cryptographic keys used for encryption and signatures
need to be frequently rotated.

Your API should be prepared to handle key rotation.

@PhilippeDeRyck 37

Cookie: ID=42

Cookie: JWT=eyJhbGci…

Authorization: Bearer 42

Authorization: Bearer eyJhbGci…

@PhilippeDeRyck 38

Can contain identifiers & session objects Can contain identifiers & session objects

COOKIES AUTHORIZATION HEADER

Only works well with a single domain Freedom to include headers to any domain

Automatically handled by the browser Requires custom code to get, store and
send session data

Always present, including on DOM
resources

Only present on XHR calls, unless you add it
through a ServiceWorker

@PhilippeDeRyck

(DIS)ADVANTAGES OF THE AUTHORIZATION HEADER

• The Authorization header offers a lot of flexibility

• Custom control over where and how to add session data in the header

• Not tied to a specific domain, so easy to support APIs on different domains

• Cookies are tied to a domain, so are hard to use in such a context

• No more dealing with cookie security flags and Cross-Site Request Forgery (CSRF)
• The downside here is that you need to make sure your code is secure

• The Authorization header is not handled by the browser in any way

• DOM resources being loaded will not carry any session information

• Loading scripts, images, stylesheets through HTML elements

• CORS requests with credentials will carry cookies, but not an Authorization header

• Calling third-party APIs requires the application to explicitly obtain session information

39

@PhilippeDeRyck 40

UNDERESTIMATING THE IMPACT OF SESSION TRANSPORT

Cookies are often frowned upon in an API world, and
custom headers are preferred.

Both have vastly different security properties, so make
sure you understand them fully.

“ “The browser offers a storage that can’t be read by JavaScript:
HttpOnly cookies. It’s a good way to identify a requester

without risking XSS attacks.

@PhilippeDeRyck 42
HttpOnly cookies

@PhilippeDeRyck

THE DEAL WITH HTTPONLY

• The HttpOnly flag resolves a consequence of an XSS attack
• Stealing the session identifier becomes a lot harder
• But you still have an XSS vulnerability in your application

• XSS allows the attacker to execute arbitrary code
• That code can trigger authenticated requests, modify the DOM, ...

• HttpOnly is still recommended, because it raises the bar
• XSS attacks become a little bit harder to execute and to persist
• XSS attacks from subdomains become less powerful (with domain-based cookies)

• In Chrome, HttpOnly prevents cookies from entering the rendering process
• Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

43

@PhilippeDeRyck 44

Load unrelated page

Legitimate
requests within
the application

Restograde
context

Maliciousfood
context Forged requests

@PhilippeDeRyck

DEFENDING AGAINST CSRF ATTACKS

• To defend against CSRF, the application must identify forged requests
• By design, there is no way to identify if a request came from a malicious context
• The Referer header may help, but is not always present

• Common CSRF defenses add a secret token to legitimate requests
• Only legitimate contexts have the token
• Attackers can still make requests with cookies, but not with the secret token

• Recently, additional client-side security mechanisms have been introduced
• The Origin header tells the server where a request is coming from
• The SameSite cookie flag prevents the use of cookies on forged requests

45

@PhilippeDeRyck 46

@PhilippeDeRyck

SECURITY CONSIDERATIONS WITH CUSTOM TRANSPORT MECHANISMS

• Implementing a custom transport mechanism has security implications
• All of a sudden, developers need to implement code to attach session data to requests
• Angular interceptors look simple enough, but are often insecure

• Interceptors are applied to every outgoing request
• The moment you send a request to a third-party API, the interceptor adds session data
• This would leak session data to a third party, allowing them to take over the session
• Instead, the interceptor should only attach data to whitelisted origins

• Good libraries support whitelisting out of the box
• The @auth0/angular-jwt library is popular to use JWT with the Authorization header
• Allows you to decode and extract the JWT information
• Supports adding tokens based on a whitelist of origins

47

@PhilippeDeRyck 48

Regardless of the session storage mechanism,
XSS means game over

Using cookies requires the use of CSRF
protection, or force the use of CORS preflights

Using the Authorization header requires
proper destination whitelisting

@PhilippeDeRyck 49

CONFUSION ABOUT THE IMPACT OF XSS AND CSRF

Cookie-based mechanisms require explicit CSRF
defenses. Authorization-header based mechanism

require a secure implementation.

@PhilippeDeRyck 50

application/json

OPTIONS /api/reviews/1
Origin: https://maliciousfood.com
Access-Control-Request-Method: PUT

@PhilippeDeRyck

THE RELATION BETWEEN CORS AND CSRF

• Before CORS, ”non-simple” requests could be same-origin
• A server expecting a DELETE would rely on the browser refusing cross-origin DELETEs
• But with CORS, this security assumption changes

• Simply denying access to the response of such requests is not enough
• If the request triggered a state-changing action on the server, it is too late
• Therefore, CORS needs to ask for approval before sending such a request

• CORS asks for approval with a preflight OPTIONS request
• The request tells the server what the browser wants to do
• The server needs to respond with the proper CORS headers to authorize the request

51

@PhilippeDeRyck 52

FAILING TO ENFORCE A STRICT CORS POLICY

Cross-origin API requests are only fully protected by
CORS if they cannot be forged with HTML elements.

Force the use of preflight requests by not accepting
form-based content types.

@PhilippeDeRyck 53

if(origin.startsWith("https://restograde.com"))

if(origin.endsWith("restograde.com"))

if(origin.contains("restograde.com"))

Origin: https://restograde.com

Origin: https://restograde.com.maliciousfood.com

Origin: https://maliciousrestograde.com

@PhilippeDeRyck

MISMATCHING ORIGINS

• Matching the value of the Origin header against a whitelist is crucial
• The outcome of this matching will directly influence the authorization decision
• Real-world CORS implementations have trouble implementing matching correctly

• Always perform matching against the full origin
• Partial matching can be bypassed by registering crafted domains
• Failing to include the domain allows bypass attacks using HTTP pages

• Do not allow null as a valid origin
• The value null is used as the canonicalization of an untrusted context
• Whitelisting null is worse than using a wildcard, since null allows the use of credentials
• Whitelisting null means the endpoint accepts authenticated requests from anywhere

54

@PhilippeDeRyck 55

SetEnvIf Origin "http(s)?://.*$" ACO=$0
Header add Access-Control-Allow-Origin %{ACO}e env=ACO
Header set Access-Control-Allow-Headers "Range"
Header set Access-Control-Allow-Credentials "true"

@PhilippeDeRyck 56

SetEnvIf Origin "http(s)?://.*$" ACO=$0
Header add Access-Control-Allow-Origin %{ACO}e env=ACO
Header set Access-Control-Allow-Headers "Range"
Header set Access-Control-Allow-Credentials "true"

@PhilippeDeRyck 57

FAILURE TO CONFIGURE OR IMPLEMENT CORS

CORS policies heavily depend on checking
the value of the Origin header.

Enforce strict whitelisting, and verify your
implementation against common mistakes.

/users/1’%20OR%20’1’=‘1

@PhilippeDeRyck

INPUT VALIDATION SHOULD BE A FIRST LINE OF DEFENSE

• Input validation is useful to reject obvious malicious data
• Helps prevent against DoS attacks by rejecting unreasonably large inputs
• Helps prevent against injection attacks by rejecting crafted payloads

• Rules of thumb of input validation
• Enforce sensible length limits on inputs

• E.g., 5MB of text is probably not a valid password
• Enforce strict content types on provided data

• E.g., an API expecting JSON data should not accept anything else, even if it looks like JSON
• Enforce strict data type checking on inputs

• Numbers are numbers, and SQL code as input should result in an error
• When unsure about the input, better to be too lax than too strict

• Being too strict breaks functionality, and input validation is only a first line of defense
59

@PhilippeDeRyck 60

LACK OF INPUT VALIDATION

A lack of input validation is the enabler for various
other attacks.

Ensure that input validation is as strict as possible
without triggering false positives

philippe'or'1'!='@pragmaticwebsecurity.com

@PhilippeDeRyck

INPUT VALIDATION FAILS AS A PRIMARY DEFENSE

• Once data is complex enough, input validation will not prevent attacks
• Determining the validity of complex data at input time is virtually impossible
• Complex validation procedures often suffer from bypass attacks
• Overly strict validation procedures will break legitimate functionality

• Many attacks can only be stopped when output is generated
• At output time, the context determines how data may be considered dangerous

• Examples are XSS, SQL injection, command injection, ...
• At input time, it is not possible to anticipate all potential output locations

• As a consequence, it is not possible to use input validation as a primary defense

62

@PhilippeDeRyck 63

RELYING ON INPUT VALIDATION AS A PRIMARY DEFENSE

Even though input validation is a good first line of
defense, it will fail as the only defense.

Do not rely on input validation alone.

@PhilippeDeRyck 64

What happens when
!

goes wrong?

@PhilippeDeRyck 65

FAILURE TO COMPARTMENTALIZE

Many APIs combine sensitive features (e.g.
Authentication) and application logic (e.g. data

access) into a single service. Compartmentalization
helps limit the impact of a vulnerability.

@PhilippeDeRyck 66

Question everything
How is this different from what we used to do?

Do we really understand what we’re doing?
Have we validated the integrity and format of that data?

…

@PhilippeDeRyck

1-day workshops

5-day dual-track program

Whiteboard hacking (aka hands-on Threat Modeling)

Building secure web & web service applications

Securing Kubernetes the hard way

Jim Manico

Sebastien Deleersnyder

Jimmy Mesta

Crypto, AppSec Processes, web security,
access control, mobile security, ...

@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

