
Securing Password Storage
Increasing Resistance to Brute Force Attacks

-jOHN (Steven)	

Internal CTO	

@m1splacedsoul	

	

v0.4	

	

	

	

Scott Matsumoto	

Principal Consultant	

@smatsumoto	

	

Chandu Ketkar	

Technical Manager	

@cketkar	

	

***Comments from
presentation

discussion in boxes
like this

throughout***	

History /etc/password

etc/password

root:0:0:EC90xWpTKCo

jsteven:102:500:EC90xWpTKCo

hjackman:100:100:KMEzyulaQQ2

bgoldthwa:101:101:Po2gweIEPZ2

msoul:103:500:NTB4S.iQhwk

nminaj:104:500:a2N/98VTt2c

2	

•  Circa 1973

•  ‘one-way’ password encryption

•  chmod a+r /etc/passwd

•  DES took 1 sec per password

…bringing us to 2012
What do you see here?

How do we know what it is?

How could we figure this out?

In the news
LinkedIn

IEEE

Yahoo

…

00000fac2ec84586f9f5221a05c0e9acc3d2e670

0000022c7caab3ac515777b611af73afc3d2ee50

deb46f052152cfed79e3b96f51e52b82c3d2ee8e

00000dc7cc04ea056cc8162a4cbd65aec3d2f0eb

00000a2c4f4b579fc778e4910518a48ec3d2f111

b3344eaec4585720ca23b338e58449e4c3d2f628

674db9e37ace89b77401fa2bfe456144c3d2f708

37b5b1edf4f84a85d79d04d75fd8f8a1c3d2fbde

00000e56fae33ab04c81e727bf24bedbc3d2fc5a

0000058918701830b2cca174758f7af4c3d30432

000002e09ee4e5a8fcdae7e3082c9d8ec3d304a5

d178cbe8d2a38a1575d3feed73d3f033c3d304d8

00000273b52ee943ab763d2bb3d83f5dc3d30904

3	

SHA1('password’)= 1e4c9b93f3f0682250b6cf8331b7ee68fd8

Your passwords
WILL be

extracted from
your system

Golden Rules

#1 – Don’t be on the front
page of InfoWeek

#2 – Have a great story when
you’re on the front page of
InfoWeek

The Threat Model

TM => Requirements = Threats your going to
address

Threat Actor	

 Attack Vector	

[T1] External Hacker AV0 - Observe client operations

AV1 - Inject DB, bulk credentials lift

AV2 - Brute force PW w/ AuthN API

AV3 - AppSec attack (XSS, CSRF)

AV4 - Register 2 users, compare

[T2] MiM AV1 - Interposition, Proxy

AV2 - Interposition, Proxy, SSL

AV3 - Timing attacks

[T3] Internal/Admin AV1 - Bulk credential export

AV2 - [T1] style attack

AV3 - Direct action w/ DB

Threat Actors

Threat Actor	

 Attack Vector	

[T1] External Hacker AV0 - Observe client operations

AV1 - Inject DB, bulk credentials lift

AV2 - Brute force PW w/ AuthN API

AV3 - AppSec attack (XSS, CSRF)

AV4 - Register 2 users, compare

[T2] MiM AV1 - Interposition, Proxy

AV2 - Interposition, Proxy, SSL

AV3 - Timing attacks

[T3] Internal/Admin AV1 - Bulk credential export

AV2 - [T1] style attack

AV3 - Direct action w/ DB

Stored Passwords Requirements

Attack Vectors should be
b ro ke n o u t b y 1)
acquisition of PW DB
and 2) reversing the DB.	

The Threat’s Tool box
Reverse it...

1. Dictionary attack

2. Brute-force attack

3. Rainbow Table attack

4.  Length-extension attack

5. Padding Oracle attack

6. Chosen plaintext attack

7.  Crypt-analytic attack

8. Side-channel attack

Thwarting these
attacks is the focus of

this presentation	

Current
Industry
Practices

•  Plaintext
•  Encrypted
•  Hashed (using SHA)
•  Salt and Hash
•  Adaptive Hashes

•  PBKDF
•  bcrypt
•  scrypt

Hash Properties

Uniqueness

Determinism

Collision resistance

Non-reversibility

Non-predictability

Diffusion

Lightning fast

Use a Better Hash?
SHA-1

SHA-2

 SHA-224/256

 SHA-384/SHA-512

SHA-3

What property of hashes do	

 these effect?	

Can We Successfully Attack a Hash?
Depends on the threat-actor...

•  Script-kiddie

•  Some guy

•  Well-equipped Attacker

•  Nation-state

Is the algorithm supported by
your script-kiddie tool?

Table Sizes �
Search Space	

Lookup	
 Table	

(Brute	
 Force)	

Rainbow	
 Table	

(NTLM	
 hashes)	

307,000	
 word	

dic@onary	
 16	
 MB	
 461	
 MB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)4	
 338	
 MB	
 8.0	
 GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)5	
 	
 21	
 GB	
 8.0	
 GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)6	
 	
 1.3	
 TB	
 8.0	
 GB	

(a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)7	
 87	
 TB	
 8.0	
 GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)8	
 5,560	
 TB	
 134.6GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)9	
 357,000	
 TB	
 No	
 table	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)10	
 22,900,149	
 TB	
 No	
 table	

Rainbow Tables: Fast but Inherent
Limitations

Tables are crafted for specific complexity and length
Source: ophcrack	

Passwords with
lengths and complexity

in the white area
aren’t cracked by the

Rainbow Table	

What Does the Salt Do?

De-duplicates digest texts

Adds entropy to input space*

•  increases brute force time

•  requires a unique table per user

salt%||%digest%=%hash(salt%||%plaintext);

Can salted hashes be Attacked?
Depends on the threat-actor...

•  Script-kiddie

•  Some guy

•  Well-equipped Attacker

•  Nation-state

Attacking a table of salted
hashes means building a
Rainbow Table per user

We need a “Well-
equipped Attacker”
to build one table
per users – right?	

Brute Force Time for SHA-1 hashed,
mixed-case-a alphanumeric password

Per User Table Building

	
 8	
 Characters	
 	
 9	
 Characters	

AQacking	
 a	
 single	

hash	
 (32	
 M/sec)	

NVS	
 4200M	
 GPU	

(Dell	
 Laptop)	
 80	
 days	
 13	
 years	

AQacking	
 a	
 single	

hash	
 (85	
 M/sec)	
 $169	
 Nvidia	
 GTS	
 250	
 30	
 days	
 5	
 years	

AQacking	
 a	
 single	

hash	
 (2.3	
 B/sec)	

$325	
 ATI	
 Radeon	
 HD	

5970	
 1	
 day	
 68	
 days	

We Can Attack a Salted Hash?
A salted-(SHA)hash can be
broken with a modest
investment in hardware

Our threat actor didn’t need to
be as well-equipped as we
thought
•  Script-kiddie
•  Some guy
•  Well-equipped Attacker
•  Nation-state

Adaptive
Hashes

Algorithms designed specifically
to remove the “lightning-
fast” property of hashes

Thus: protecting passwords
from Brute Force and
Rainbow Table attacks

Adaptive Hashes increase the
amount of time each hash
takes through iteration

PW-Based Key Derivation (PBKDF)

pbkdf2(salt, pw, c){
 hmac=“hmac-sha-1”
 key=pw
 d=salt

 for (int i=0, i < c,i++){
 d = hmac(key, d)
 }

 return d
}

*** Pseudo-code ignores some detail for clarity’s sake	

Loop c times over a
HMAC-SHA-1*

HMAC: key is the
password; text is the
salt

How many 0s are needed
for c

•  NIST: 1000

•  iOS4: 10000
As stated, this is sufficiently
simplified as to be misleading. See
http://tools.ietf.org/html/
rfc2898#section-5.2 for detail.	

bcrypt

2cost iterations slows down each
hash operation

Is 212 enough these days?

Resists GPU parallelization, but
not FPGA

pw_hash contains the salt

bcrypt(salt, pw, c){
 d = “OrpheanBeholderScryDoubt”
 keyState = EksBlowfishSetup(c, salt, pw)

 for (int i=0, i < 64,i++){
 d = blowfish(kyState, d)
 }

 return c || salt || d
}

scrypt

scrypt(salt, pw, N, p, dkLen){

b[p]

for (int i=0, i < p, i++){

 b[i] = PBKDF2(pw,salt,1,p·MFLen)

}

for (int I = 0, i < p, i++){

 b[i] = MF(b[i], N)

}

dk = PBKDF2(pw, b,1, dkLen)

}

**MF involves (HMAC-SHA-256, r)

Designed to defeat
FPGA attacks

Configurable

•  N =

•  memory footprint

•  CPU time

•  P = defense against
parallelism

22	

***Follow-on discussions revealed that positives of this approach were not
communicated. Update with explicit “benefits/limitations” material.	

Defender VS Attacker
Defender

CPU on App Server

4-16 processors / server

2-64 Application Servers

20M Users,

2M active / hr

Knows scheme, key

Attacker
Custom hardware GPU or FPGA

160+ GPUs / card, FPGA configurable

Scales with capabilities / crack value

May need only one (1) credential set

‘Unlimited time

Must discern scheme, steal key material

Cost for defender is greater than the cost for the attacker if
Adaptive Hash is the only conrol.	

>	

>	

>	

>	

>	

<	

	

onus

@tqbf points out this slide is misleading citing cost to verify vs. brute force the db. Both
verify, so that’s a not the issue. Point taken however: this slide is qualitative and misleading.
Next version of this presentation must replace this slide with a quantitative effort
comparison of Apples vs. Apples (e.g. costOfLogin vs. costOfSingleReverse)	

Requiring a Key
Gains Defense

In Depth

Adaptive Hashes At Best
Strengthen a Single
Control Point

We Can Do Better with
Defense In Depth

The Threat Model Revisited

Add a control that requires a key stored on the
App Server

Threats can exfiltrate the password table, but
now needs to also get the key

@tqb f po in t s ou t tha t i f
developers store keys in the DB,
as they may be prone to do,
compartmentalization falls apart. 	

Keyed transforms do differ from split digest
texts because they resist attacks differently
digests DB stolen (see slide #3 w/ leading
00000’s)	

hmac properties

extends	
 hash (inherits hash properties)

Adds key

Resists padding / length extension attacks

COMPAT/FIPS Solution

<versionscheme>||<saltuser>||<digest>	
 :=	
 HMAC(<keysite>,	
 <mixed	
 construct>)	

<mixed	
 construct>	
 	
 :=	
 <versionscheme>||<saltuser>||<pwuser>	

•  HMAC	
 	
 	
 	
 	
 :=	
 hmac-­‐sha256	

•  keysite :=	
 PSMKeyTool(SHA256()):32B;	
 	

•  saltuser :=	
 SHA1PRNG():32B	
 |	
 FIPS186-­‐2():32B;	
 	

•  pwuser :=	
 <governed	
 by	
 password	
 fitness>	

Optional:	

•  <mixed	
 construct>	
 	
 :=	
 <versionscheme>||<saltuser>||‘:’||<GUIDuser>||<pwuser>	

•  GUIDuser	
 	
 	
 	
 :=	
 NOT	
 username	
 or	
 available	
 to	
 untrusted	
 zones	

hmac Solution Properties
Attack Resistance

1.1 Resist chosen plain text attacks Yes, Scheme complexity based on (saltuser & pwuser) + keysite
1.2 Resist brute force attacks Yes, Keysite = 2256, saltuser = 2256

1.3 Resist D.o.S. of entropy/randomness exhaustion Yes, 32B on password generation or rotation

1.4 Prevent bulk exfiltration of credentials Implementation detail: <various>

1.5 Prevent identical <protected>(pw) creation Yes, provided by salt

1.6 Prevent <protected>(pw) w/ credentials Yes, provided by Keysite

1.7 Prevent exfiltration of ancillary secrets Implementation detail: store Keysite on application server

1.8 Prevent side-channel or timing attacks Implementation detail: use MessageDigest.equals()

1.9 Prevent extension, similar Yes, hmac() construction (i_pad, o_pad)

1.10 Prevent multiple encryption problems N/A (hmac() construction)

1.11 Prevent common key problems N/A (hmac() construction)

1.12 Prevent key material leakage through primitives Yes, hmac() construction (i_pad, o_pad)

Two people pointed out (I wholly agree) the timing attack vector does not apply to proposed
approaches. We listed it to record closing an issue brought up by an external reviewer.	

hmac Limitations
1.  Properly protecting key material challenges

developers

2.  Must enforce design to prevent T3

1.  compartmentalization and

2.  separation of privilege (app server & db)

3.  No support of rotation or password update

4.  Versioning adds complexity

29	

Reversible Solution
<versionscheme>||<ciphertext>	
 :=	
 ENC(<wrapper	
 keysite>,	
 <protected	
 pw>)	

	

<protected	
 pw> 	
 	
 :=	
 <versionscheme>||<saltuser>||<round	
 1>	

<round	
 1>	
 	
 	
 	
 :=	
 ONEWAY(<keysite>,	
 <mixed	
 construct>)	

<mixed	
 construct>	
 	
 :=	
 <versionscheme>||<saltuser>||<pwuser>	

	

ENC 	
 	
 	
 	
 :=	
 AES-­‐256	

ONEWAY 	
 	
 	
 :=	
 hmac-­‐sha-­‐512	
 |	
 scrypt	

	

<keysite> 	
 	
 	
 :=	
 PSMKeyTool(<saltsite>,	
 <pwsite>,	
 <c>,	
 DkL)	

<wrapper	
 keysite>	
 	
 :=	
 PSMKeyTool(<saltwrapper>,	
 <pwwrapper>,	
 <c>,	
 DkL)	

Versionscheme 	
 	
 :=	
 integer	
 (4B)	

PSMKeyTool	
 	
 	
 :=	
 PBKDF2(<saltsite>,	
 c=10000000,	
 DkL=32B):32B;	
 	

saltuser,site,wrapper	
 	
 :=	
 SHA1PRNG():32B;	
 	

pwuser	
 	
 	
 	
 	
 	
 	
 	
 :=	
 <governed	
 by	
 password	
 fitness>	

Slide as presented. However, internal (unpublished)
documentation reflects using an adaptive (rather than a
keyed) scheme on <mixed construct> to produce
<round 1> result. This slide needs wholesale re-work.	

Reversible Solution Properties
•  Inherits “compat” solution properties

•  Symmetric scheme supports

•  Versioning

•  Encryption policies (key rotation, etc.)

•  Stolen PW DB useless

•  Stolen PW DB + AES key still requires
reversing one-way function

Versioning / rotation features (requirements) designed to address incident response and
maintenance under attack. Without having explained this portion of the workflow/design, this
looks unnecessary. 	

Conclusions
•  Without considering specific threats, the solutions

misses key properties

•  Understanding operations drives a whole set of
hidden requirements

•  Many solutions resist attack equivalently

•  Adaptive hashes impose on defenders, affecting
scale

•  Leveraging design principles balances solution

•  Defense in depth

•  Separation of Privilege

•  Compartmentalization

Questions
Thank You for Your

Time

Select Source Material
Trade material

Password Storage Cheat Sheet

Cryptographic Storage Cheat Sheet

PKCS #5: RSA Password-Based Cryptography
Standard

Guide to Cryptography

Kevin Wall’s Signs of broken auth (& related posts)

John Steven’s Securing password digests

IETF RFC2898

Other work

Spring Security, Resin

jascrypt

Apache: HTDigest, HTTP Digest Specification, Shiro

Applicable Regulation, Audit, or Special Guidance

•  COBIT DS 5.18 - Cryptographic key management

•  Export Administration Regulations (”EAR”) 15 C.F.R.

•  NIST SP-800-90A

Future work:

•  Recommendations for key derivation NIST SP-800-132

•  Authenticated encryption of sensitive material:
NIST SP-800-38F (Draft)

34	

