[image: image32.png][image: image33.png]

OWASP SASAP Spring 2007

OWASP Scholasic Application security assessment project (OWASP SASAP)
Spring of code 2007
review: Open WebMail
eric sheridan

goran trajkovski

© 2002-2007 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 2.5 license

Table of Contents

2Table of Contents

3Introduction

5Executive Summary

9Review Methodology

12Security Critical Areas

13Broken Access Control

15Broken Authentication and Session Management

18Cross Site Scripting

22Malicious File Execution

23Insecure Configuration Management

25Conclusion

28ACKNOWLEDGEMENTS

29APPENDIX 1: COURSE SYLLABUS

32APPENDIX 2: Post-project questionnaire for student-participants

41References

Introduction

Welcome to the first report generated by the OWASP Scholastic Application Security Assessment Project! This document contains the finalized report of the recent application security assessment for the OWASP Spring of Code 2007
abstract
One of the major goals of the Open Web Application Security Project is to educate developers in the field of application software security. Understanding the risks and threats associated with web application software is pivotal in building a mature application security process. While OWASP has made a significant impact in the professional industry, more time and energy should be focused towards the academic community. It is an unfortunate fact that most universities do not require a stringent software security course for their computer science students. Consequently, most young developers do not have the ability to assess and mitigate the risks and threats for their own applications. It is for this reason that we believe the Open Web Application Security Project should fund an initiative to encourage the adaptation of application software security methodologies in the academic course curriculum.

The Scholastic Application Security Project is intended to be the first step towards integrating security requirements in academic course curriculums. The primary goal of the project is to give students hands-on experience performing application security assessments using the tools and documentation found at http:///www.owasp.org. The assessment, lead by an application security professional, will demonstrate to students how the information and tools found at OWASP can be used to assess and ultimately increase the overall security posture of a web application.

This project contributes towards bridging the gap between academia and industry, by equipping students with hands-on ready-for-the-job-market skills in the application software securing industry.
participants

The Scholastic Application Security Assessment Project requires that college level students, lead by an application security professional, perform a security audit on an open source web application using the tools and information available at OWASP

Application Security Professional – Eric Sheridan (Aspect Security)

Towson University (TU) Partner – Dr. Goran Trajkovski, Towson University (Towson University)

Students – Students of TU’s Application Software Security Course (COSC 458), nominated by TU Partner

Web Application – The Open Webmail Project (http://www.openwebmail.org)

OWASp utilization
The Scholastic Application Security Assessment Project requires heavy utilization of existing OWASP tools and utilities. Through this requirement, the project will illustrate the fact that existing OWASP resources can be used and heavily relied upon in a professional security audit. The following is a list of notable OWASP resources whose use will be documented throughout the assessment:

OWASP Top Ten 2004/2007 – The security critical areas that the students will assess in the review

OWASP Testing Guide v2 – The primary resource building penetration test cases

OWASP Guide – The primary resource for technical details pertaining to a technology and/or vulnerability

OWASP WebScarab – The primary proxy utility used throughout the assessment
Acknowledgements

First and foremost, we would like to thank the OWASP community for their tireless efforts to improve the overall status of software security. Without the countless hours of work donated by hundreds of outstanding individuals, it is unlikely that projects like this would exist.

On behalf of all of the participants of the project, I would like to thank OWASP for their ‘Spring of Code 2007’ donation towards this project.

Project Leads:
Eric Sheridan and Goran Trajkovski
Students:
Towson University COSC 458 Undergraduate students majoring in Computer Science, enrolled in the Computer Security track
We’d like to thank our reviewers:
· Ryan Knell, Aspect Security

· Victoria Jones, Clifton Gunderson, LPP - Baltimore
Executive Summary

Overview of effort

The participants of the “OWASP Scholastic Application Security Assessment Project” performed an application security assessment of the Open WebMail application using a combination of manual code review analysis as well as manual penetration testing. Given the narrow time frame and the steep learning curve associated with the participation of the project, the team was able to analyze several of the security mechanisms implemented by the application. The purpose of this report is to present the results of the application code review and penetration tests. Several of the tests performed by the team resulted in the discovery of a security finding.
Overall, the participants of the project felt that the Open WebMail application was relatively secure from most external attacks. With exception to a few cross-site scripting attack vectors, the participants of the project felt that the application responded appropriately to malicious traffic. The majority of the findings deemed “high” during this review require than an attacker have remote access to the server running Open WebMail. As a result, several of the findings only affect certain Open WebMail deployments. Specifically, all Open WebMail deployments that utilize the UNIX authentication module and whose server grant remote access are vulnerable to the more severe findings documented in this report.
how to read our findings

For each security critical area within the scope of this review, we have included a series of Findings, or security relevant discoveries. Each finding is detailed in a similar and easy-to-digest pattern. For each finding, we have detailed the following:

· The location of the security-relevant find, whether it be a URL or a source code file

· A description of the risk – to include the likelihood and impact
· A recommended solution for the particular find
· Any notable references
Each finding has an associated severity calculation. The severity calculation will aid the software development team in prioritizing what order the issues should be addressed.
summary of findings
[image: image1.jpg]
A summary of the findings for the OWASP SASAP Open WebMail Assessment
Key
Cross-Site Scripting

Authentication and Session Management

Malicious File Execution

Broken Access Control

Insecure Configuration Management

risk determination

The “OWASP Scholastic Application Security Assessment Project” utilizes a standard approach set forth by OWASP in determining the risk associated with our findings. The overall severity of each finding is an evaluation of likelihood and system and or business impact, which is then used to calculate the severity level as follows:
SEVERITY = LIKELIHOOD * IMPACT
Likelihood

The likelihood of a finding is the probability that the find will be discovered and exploited by a threat agent.
Threat agent factors

· SKILL LEVEL – What is the technical level required exploiting the vulnerability?
· MOTIVE - How motivated is this group of attackers to find and exploit this vulnerability?
· OPPORTUNITY - What resources and opportunities are required for this group of attackers to find and exploit this vulnerability?
· SIZE - How large is this group of attackers?
vulnerability factors

· EASE OF DISCOVERABILITY - How easy is it for this group of attackers to discover this vulnerability?
· EASE OF EXPLOIT - How easy is it for this group of attackers to actually exploit this vulnerability?
· AWARENESS - How well known is this vulnerability to this group of attackers?
· INTRUSION DETECTION - How likely is an exploit to be detected?
impact

The impact of a finding is the assessment of negative consequence on the system and the business.
System impact factors
· LOSS OF CONFIDENTIALITY - How much data could be disclosed and how sensitive is it?
· LOSS OF INTEGRITY - How much data could be corrupted and how damaged is it?
· LOSS OF AVAILABILITY - How much service could be lost and how vital is it?
· LOSS OF ACCOUNTABILITY - Are the attackers' actions traceable to an individual?
business impact factors

· FINANCIAL DAMAGE - How much financial damage will result from an exploit?
· REPUTATION DAMAGE - Would an exploit result in reputation damage that would harm the business?
· NON-COMPLIANCE - How much exposure does non-compliance introduce?
· PRIVACY VIOLATION - How much personally identifiable information could be disclosed?
The Open WebMail Application

Open WebMail, a webmail system based on the Neomail version 1.14 from Ernie Miller, is designed to manage very large mail folder files in a memory efficient way. It also provides a range of features to help users migrate smoothly from Microsoft Outlook to Open WebMail (http://www.openwebmail.org).

Open WebMail is a Perl based web application that supports various modules. Such modules include an LDAP authentication module, a SQL authentication module, a spell check module, a spam check module, etc.

The scope of this review was based on a vanilla installation of the Open WebMail 2.51 application using the auth_unix.pl authentication module.
Review Methodology

As noted in the abstract, the primary goal of the project is to give students hands-on experience performing real-world application security assessments. To achieve this goal, we have broken down the assessment into three distinct phases: preparation, execution, and finalization. Each of the phases presented in this project offer a unique experience related to web application security.

preparation

The first phase of this project is the preparation phase. The primary purpose of this phase is to educate college students on the fundamental concepts of the basic security critical areas presented in the OWASP Top Ten. This goal was achieved over three class days using many tools and documentations found at http://www.owasp.org
day 1 – introduction
The first day of preparation encompassed a general overview of OWASP and the many tools and documentation that would be utilized throughout the assessment. Specifically, students were introduced to the following tools and sources of documentation:

owasp top ten 2004/2007

The OWASP Top Ten (2004/2007) provided students with a solid overview of the security critical areas that would be assessed during the review. In an attempt to narrow the scope of the security assessment, the participants of the project divided into seven groups, each group selecting their own security critical area. For the remainder of the assessment, each group was considered a subject manner expert in their security critical area. After reviewing the OWASP Top Ten, the groups selected the following security critical areas for review:
1. ACCESS CONTROL
2. AUTHENTICATION AND SESSION MANAGEMENT
3. CROSS-SITE SCRIPTING
4. MALICIOUS FILE EXECUTION
5. CONFIGURATION MANAGEMENT
owasp guide

The OWASP Guide provided students with a strong resource for all details pertaining to particular technologies and vulnerabilities. While the OWASP Top Ten gave the students a broad overview of each security critical area, the Guide offered students a more in-depth source of information for a group’s security critical area. Regardless of the group’s security critical area, the students were instructed to review the complete OWASP Guide. Furthermore, the students were required to thoroughly read the OWASP Guide sections relating to their security critical area.
owasp testing guide v2

The OWASP Testing Guide v2 is a product of the first ‘OWASP Fall of Code 2006’ and is considered the primary resource for building penetration test cases for this assessment. The students were instructed to skim over the complete OWASP Testing Guide in order to get a basic understanding of the document layout. Throughout the assessment, the student’s referred to particular sections of this document for building penetration test cases.
owasp webscarab

The OWASP WebScarab proxy was the primary proxy utility used throughout the assessment. The WebScarab proxy gave the participants the ability to modify requests before they were sent to the server. Students were instructed to read the WebScarab tutorials and manuals available at http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project.
owasp webgoat

The OWASP WebGoat web application was the primary learning utility used throughout the preparation phase. The application gave students hands-on exercises with many of the common vulnerabilities associated with each security critical area. Students were instructed to download and install the WebGoat application.
day 2 – training exercises

The primary focus on the second day of preparation was the introduction of several web application security topics using the OWASP WebGoat testing application. One of the major goals of the day was to demonstrate the integration of OWASP WebScarab into an application security review. To illustrate the power and effectiveness of OWASP WebScarab in testing web applications, the students were required to complete the following Unvalidated Parameters lessons: How to Exploit Hidden Fields, How to Bypass Client Side JavaScript Validation, and How to Exploit Unchecked Email. The completion of these lessons gave students an understanding of the façade of “client side security.” Specifically, the students demonstrated the ability to bypass presentation layer access control as well as JavaScript validation measures.

After completing the aforementioned lessons, the participants of the project were given two homework assignments. The first assignment required the students to complete the “How to Bypass a Path Based Access Control Scheme” – a lesson that clearly illustrates the direct object reference problem. Secondly, regardless of the groups selected security critical area, all participants of the class were required to review the cross-site scripting sections found under the OWASP Top Ten, OWASP Guide, and OWASP Testing Guide documents. Due to the overwhelming number of cross-site scripting attack vectors, the leads of the OWASP SASAP project felt that all students must walk away from the project with a clear understanding of the problem and solution.

day 3 – cross-site scripting and how to write a finding

By the third day of preparation, the students had demonstrated a clear understanding of common application flaws and how to leverage OWASP WebScarab in their exploitation. At this point, the students were ready to begin identifying and testing potential cross-site scripting flaws in a web application. The majority of the day was spent completing the following OWASP WebGoat exercises: How to Perform Stored Cross-Site Scripting, How to Perform Reflected Cross-Site Scripting, and HTTPOnly Test. Once the students demonstrated a clear understanding of the basic XSS problem, they were instructed to find a cross-site scripting problem in a lesson under the Unvalidated Parameters section. Within a relatively short time period, several students came across several cross-site scripting attack vectors in the “How to Bypass Client Side JavaScript Validation” lesson. The students clearly demonstrated to the OWASP SASAP project leads that they were ready to begin testing for several basic web application security vulnerabilities.
The last day of preparation concluded with instructions on how to write a security finding. If the students find an issue in the Open WebMail application, they must understand what information is necessary to write a meaningful security finding. For each finding, the participants were required to include the location of the find, a description of the risk, a calculation of the likelihood, impact, and severity, a recommended solution, and any OWASP references that lead to the discovery of the flaw. It is the responsibility of the students to convince the lead security engineer of the issue and its likelihood, impact, and severity calculations.
execution

The execution phases encompassed the actual source code assessment and penetration testing of the Open WebMail application. All penetration testing was performed against a pre-built VM-Ware image. The image, running Ubuntu Linux, allowed the students to test against a fully deployed Open WebMail test environment.

Throughout the assessment, the participating security engineer will analyze the application along-side the students. When the lead security engineer of the SASAP project finds an issue with the application, it is their responsibility to help the students discover the same issue. By working together, the students will understand the common patterns an application security engineer looks for within an application.
The execution phase further requires that the application security engineer provides students with several Q&A Sessions. These sessions gave the students an opportunity to ask for guidance on particular issues relating to the project and assessment.
finalization

The final phase of the course required the participants of the project to write up a report detailing all application security tests performed and their results. For each finding, the students are required to follow the OWASP risk rating model, as noted in the Risk Determination section of the Executive Summary. After receiving all of the reports, the application security engineer and the participating professor assembled all of the findings into a single report. The report outlining the assessment process and results will be delivered to both the Open WebMail developers as well as OWASP. This report is the final delivery of the project.

After the students submitted their final reports, they were required to fill out an “OWASP SASAP” questionnaire. This questionnaire gave the students an opportunity to provide feedback on their experience in the project. Select questionnaire responses have been included in the appendix of the final report.
Security Critical Areas

The findings contained within this report are grouped according to their security critical area. The application security team at Towson University performed a security analysis on the following security critical areas as noted in the OWASP Top Ten 2004 & 2007:

1. ACCESS CONTROL
2. AUTHENTICATION AND SESSION MANAGEMENT
3. CROSS-SITE SCRIPTING
4. MALICIOUS FILE EXECUTION
5. CONFIGURATION MANAGEMENT
For each security critical area, we begin with a brief description of the area as well as a basic recommendation to address that area. After the security critical area overview, we then introduce each of the specific security findings found during the application review. For each finding, we discuss both the likelihood and impact used to calculate its overall severity. Furthermore, our findings include a more detailed and application specific solution.
Broken Access Control

Access control, sometimes called authorization, is how a web application grants access to content and functions to only a particular set of users. These checks are performed after authentication, and govern what ‘authorized’ users are allowed to access. Access control sounds like a simple threat to mitigate, but is insidiously difficult to implement correctly. A web application’s access control model is closely tied to the content and functions that the site provides. In addition, the users may fall into a number of groups or roles with different abilities or privileges.

At a minimum, an application’s access control implementation must consider the following three layers: environment layer access control, business layer access control, and data layer access control. Environment layer access control deals with securing the infrastructure of the deployed application and all of its external resources. Business layer access control ensures that business functions are only invoked by authorized users. Data layer access control ensures that the business functions only return data that the invoking user is authorized to access. Failure to properly implement access control at any layer will affect an applications ability to ensure one or more of the following: confidentiality, integrity, and accountability.
· Source: OWASP Top Ten 2004/2007

	[image: image2.png]
	1.1 – Authenticated Users with Remote Access Can Delete Logs

	RESOURCE(S)
	/cgi-bin/openwebmail/etc/users

	DESCRIPTION
[image: image3.png]
[image: image4.png]

	The application stores all user-specific preferences in a directory that is denoted by the ow_usersdir configuration directive. Within this folder is a subfolder for each user of the web application. The names of these subfolders are the actual usernames of Open WebMail. Within each subfolder is a file called “history.log” which contains all of the security relevant log entries for that particular user. An authenticated user with remote access to the server running Open WebMail can modify and or delete their log file. Such an attack destroys all accountability implemented by the application.

	RECOMMENDED SOLUTION
	Create the history.log file with strict permissions to ensure that someone with remote access cannot modify and or delete it.

	REFERENCE(S)
	NONE

	[image: image5.png]
	1.2 – Authenticated Users Can Spoof Arbitrary Email Addresses

	RESOURCE(S)
	https://server/openwebmail/cgi-bin/openwebmail/openwebmail-send.pl

	DESCRIPTION
[image: image6.png]
[image: image7.png]

	The application allows the end-user to specify the “from” address for every email that is sent out. An attacker can spoof arbitrary email addresses by changing the user-supplied “from” parameter. When the victim receives the email, it will appear to come from the email address supplied by the attacker in the “from” parameter. Such a capability can increase the likelihood of a successful phishing attack.

It must be noted, however, that this appears to be the intended functionality of the application. A valid end-user can browse to the preferences page and add arbitrary sender email addresses. When sending an email, the user can then select from these email addresses stored in their user preferences. Furthermore, the original sender’s email address is still accessible by the receiver. Regardless of what was placed in the “from” parameter, the receiver can hover the mouse over the attacker-supplied sender email address to reveal the original sender’s email address. For example, if esheri3 sent a spoofed email from rknell1 to commel1, then the mail in commel1’s inbox will appear to come from rknell1. However, commel1 can hover their mouse over the “from” field, rknell1, to reveal the original sender, esheri3.

	RECOMMENDED SOLUTION
	We recommend offering the ability to prevent a user from entering an arbitrary email address in their “sender” user preferences. Furthermore, consider offering the ability to restrict the ability to add user email addresses to authorized administrative personnel. In addition, we recommend the application validate that the sender address specified in the “from” address exists within the “sender” user preferences setting.

	REFERENCE(S)
	http://www.owasp.org/index.php/Web_Parameter_Tampering

.
Broken Authentication and Session Management

Authentication and session management includes all aspects of handling user authentication and managing active sessions. Authentication is a critical aspect of this process, but even solid authentication mechanisms can be undermined by flawed credential management functions, including password change, forgot my password, remember my password, account update, and other related functions.
User authentication on the web typically involves the use of a username and password. A wide array of account and session management flaws can result in the compromise of user or system administration accounts. Development teams frequently underestimate the complexity of designing an authentication and session management scheme that adequately protects credentials in all aspects of the site.

Web applications must establish sessions to keep track of the stream of requests from each user. HTTP does not provide this capability, so web applications must create it themselves. Frequently, the web application environment provides a session capability, but many developers prefer to create their own session tokens. In either case, if the session tokens are not properly protected, an attacker can hijack an active session and assume the identity of a user. Creating a scheme to create strong session tokens and protect them throughout their lifecycle has proven elusive for many developers.

Unless all authentication credentials and session identifiers are protected with SSL at all times and protected against disclosure from other flaws, such as cross site scripting, an attacker can hijack a user’s session and assume their identity.

· Source: OWASP Top Ten 2004/2007

	[image: image8.png]
	2.1 – Authenticated Users with Remote Access Can Hijack Any Account

	RESOURCE(S)
	https://server/openwebmail/cgi-bin/openwebmail/openwebmail.pl

	DESCRIPTION
[image: image9.png]
[image: image10.png]

	The application implements a home-grown session management scheme. When a user authenticates with Open WebMail, a “session file” is created for that particular user. For each subsequent request, the application verifies that the values found in particular cookies and parameters exist what is found in the session file. An attacker with local access to the server running Open WebMail can forge the values stored in the session file to authenticate as any valid user of the application.
The following proof-of-concept allows the user crommel1 to authenticate as rknell1:

1. Login to Open WebMail using the crommel1 account. Leave the browser open.
2. Login to the server hosting the Open WebMail application using the same set of credentials.

3. Browse to the directory containing all of the current session files. The location of this directory can be found in the ow_sessionsdir directive of the openwebmail.conf file
4. Search for and note the location of your session file. The following UNIX command was used to locate the session file of crommel1: “ls –l | grep crommel1”. Note that the first half of the filename is the username and the second half of the filename is the value of the “sessionid” HTTP parameter sent with each request via a hidden field value.
5. Make a copy of your current session file but change the first half of the filename to contain the username of the victim. The following UNIX command makes a copy of crommel1’s session file but changes the first half of the name from crommel1 to rknell1: “cp crommel1*-session-0.939104701009121 rknell1*-session-0.939104701009121”
6. Open the newly created session file for edit. Note that the values within the file reflect that of the user crommel1. Substitute your username, real name, UID, GID, and home directory with that of your target (rknell1). This information can be obtained from the /etc/password file as follows: “cat /etc/passwd | grep rknell1”.

7. Save the newly edited file and ensure that the file is readable by Open WebMail: “chmod +rx ./rknell1*-session-0.939104701009121”

8. Go back to the browser that you used to authenticate as crommel1. Set WebScarab to intercept requests and click the Inbox button in Open WebMail. Change all instance’s of crommel1 in the cookie header with that of rknell1. Next, append the parameter session_noupdate=1 in the URL and click Accept Changes
9. Note that you are now viewing the inbox of rknell1.

	RECOMMENDED SOLUTION
	Ensure that the session file on disk is owned by the currently authenticated user. Verifying that the authenticated user has ownership of the session file would successfully thwart this attack. Furthermore, consider including documentation that describes how to restrict local server access to the session files.

	REFERENCE(S)
	http://www.owasp.org/index.php/Session_Management

	[image: image11.png]
	2.2 – Users with Local Access Can Perform Username Harvesting

	RESOURCE(S)
	See the ow_usersdir directive in the Open WebMail.conf file

	DESCRIPTION
[image: image12.png]
[image: image13.png]

	The application stores all user-specific preferences in a directory that is denoted by the ow_usersdir configuration directive. Within this folder is a subfolder for each user of the web application. The names of these subfolders are the actual usernames of Open WebMail. An attacker that can list out the contents of this directory will be able to enumerate all of the users of the application.

	RECOMMENDED SOLUTION
	Ensure strict file permissions on the ow_usersdir folder. Prevent unauthorized users from listing its contents.

	REFERENCE(S)
	NONE

	[image: image14.png]
	2.3 – Cookies Missing ‘‘secure” Attribute

	RESOURCE(S)
	Throughout the application

	DESCRIPTION
[image: image15.png]
[image: image16.png]

	The web application creates several custom cookies throughout the session life-cycle. Several of these cookies are unique to the end user and are important to session management. One such cookie is the ow-sessionkey cookie. This cookie uniquely identifies the end-user after authentication. If an attacker were able to compromise this cookie as well as the session-id HTTP parameter, then the attacker will be able to perform session hijacking.

When creating HTTP cookies, there are two attributes that have an impact on security. One such attribute, known as secure, instructs the browser to only send the cookie over an SSL channel. Failure to mark sensitive cookies with the secure flag increases the likelihood that the cookie will be disclosed over a non-SSL connection. If an attacker can trick an authenticated end-user into submitting a request over non-SSL, then the browser will include the sensitive cookie. An attacker can then sniff that session identifier and replay it along with the session-id parameter to perform a session hijacking attack.

	RECOMMENDED SOLUTION
	Add the secure attribute to each custom cookie implemented by the web application.

	REFERENCE(S)
	http://webmaster.info.aol.com/aboutcookies.html

Cross Site Scripting

Cross-site scripting (frequently referred to as XSS) vulnerabilities occur when an attacker uses a web application to execute malicious code, generally in the form of a script, to a different end user. These flaws are quite widespread and will occur anywhere a web application utilizes user-supplied data in an HTML response without proper input validation or output encoding.

An attacker can use a cross-site scripting vulnerability to execute malicious script in an unsuspecting user’s web browser. In the context of the browser, the script will appear to be no different than any other script received from the vulnerable web application. As a result, the malicious script will have the ability to access any cookies, session tokens, or other sensitive information retained within the browser. The most common XSS attack is the injection of script that will steal the existing session identifier and store it on a remote site controlled by the attacker. If successful, the attacker will replay the stolen session identifier in an attempt to complete a session hijacking attack.

Cross-site scripting attacks generally fall into one of two categories: stored or reflected. Stored attacks are those where the injected code is permanently stored in a back-end data store, such as a database. Common locations for stored cross-site scripting attacks include message forums, visitor logs, emails, or any other mechanism that stores and displays malformed user-supplied data. Reflected attacks, however, are those where the injected code is reflected off the web application and executed immediately by the victim’s browser. Common locations for reflected cross-site scripting attacks include error messages, search result fields, or any other response that includes some or all of the user-supplied data sent as a part of the request.

The consequence of an XSS attack is the same regardless of whether or it stored or reflected. However, the likelihood of the attack varies tremendously. Reflected attacks require the victim to click a malicious link or submit a specially crafted form where the injected code from the HTTP request is reflected in the body of the HTML response. Carrying out an attack requires a touch of guile in that the victim must be induced into performing some action. Since the malicious script is not persisted in a web application data store, a reflected cross-site scripting attack is a more targeted attack. However, stored cross-site scripting attacks are considered land mines in that the attack is persisted across all user sessions. In order for a stored attack to be executed, unsuspecting victims need only to request the tainted data from the web application. Consequently, stored cross-site scripting attacks have a higher likelihood of successful exploitation than their reflected counterparts.
Attackers frequently utilize a variety of methods to obfuscate the malicious payload, such as Unicode, in an attempt to make the request less suspicious looking to a user and to bypass many negative (or black listing) validation schemes. There are hundreds of variants of this attack, including versions that do not require the < and > symbols. It is for this reason that most, if not all, negative validation implementations fail to prevent all attacks. Instead, we recommend a two-fold approach for dealing with the cross-site scripting vulnerability. First, all untrusted data should be validated against a rigorous positive specification of what is expected. Second, the application must ensure a clear separation between command elements and data elements to prevent interpretation and execution of malicious code by the browser. This can be achieved by HTML entity encoding all data elements on the way out of the application. If all potentially tainted data elements are encoded before they are placed in the HTML response, the application will have significantly decreased the likelihood of an attacker carrying out a successful cross-site scripting attack.

· Source: OWASP Top Ten 2004/2007

	[image: image17.png]
	3.1 – Application Vulnerable to Stored Cross Site Scripting in Email Message

	RESOURCE(S)
	https://server/openwebmail/cgi-bin/openwebmail/openwebmail-send.pl

	DESCRIPTION
[image: image18.png]
[image: image19.png]

	The application gives the end-user the ability to send HTML formatted emails to other users of the application. To prevent against certain cross-site scripting attacks, the application attempts to filter out all characters or sequences of characters deemed dangerous. However, there are a few attack vectors that were not considered in the black-list validation performed by the application. As a result, the application contains a stored cross-site scripting vulnerability in the body of an email message.

The following proof-of-concept examples can be placed in the body of an HTML enabled email message to carry out an attack. In order to bypass any client-side JavaScript manipulation, the attack should be carried out using the WebScarab HTTP Proxy. Note that these simple examples require the end-user to view the email and click a link for the attack to fire. A real-world attack would be more devious and not require end-user interaction to carry out the attack.

Example #1: The following link will display an alert dialog containing the text ‘xss2’
Affected Browsers: Internet Explorer Only
Attack: ATTACK
Example #2: The following link will display an alert dialog containing the text ‘xss’
Affected Browsers: Internet Explorer and FireFox
Attack: a

	RECOMMENDED SOLUTION
	Allowing the submission of HTML enabled email while preventing cross-site scripting attacks is an extremely difficult task. The typical ‘output encoding’ solution is insufficient for this particular problem because it will break the rich HTML content contained in the email.

There are two possible solutions that will help address this problem. The first solution is the preferred solution but is substantially difficult to implement. The second solution is a temporary fix that can be used to address the specific proof-of-concept examples provided.

The preferred solution is the implementation of an input validation mechanism that strictly defines what HTML elements and attributes are considered acceptable. If a user attempts to supply an HTML element that is not in our allowed list of HTML elements, or if a user attempts to supply an attribute to a valid HTML element that is not within our allowed list of HTML element attributes, then the application should not send the email and notify the user accordingly. If the user supplies valid HTML elements and attributes, then our input validation mechanism should then verify that the values of each user-supplied HTML element and attribute meet some strict set of criteria. If we receive an invalid character for even a single attribute of a single HTML element, then we should not send the email and notify the user that their message body contains invalid characters. This approach is currently being implemented in the OWASP Anti-Sammy Library (http://www.owasp.org/index.php/SpoC_007_-_OWASP_The_Anti-Samy_Project).

The short-term quick-fix would be to simply restrict the inclusion of the ‘style’ attribute in HTML elements. By preventing the inclusion of the style attribute, we significantly decrease the number of possible attack vectors. Note, however, that this filter based solution does not take into consideration the many other attribute-based cross-site scripting attack vectors that may currently exist

	REFERENCE(S)
	http://www.owasp.org/index.php/SpoC_007_-_OWASP_The_Anti-Samy_Project
http://www.owasp.org/index.php/Cross_Site_Scripting

	[image: image20.png]
	3.2 – Application Contains Reflected Cross Site Scripting in Error Message

	RESOURCE(S)
	https://server/openwebmail/cgi-bin/openwebmail/security-openwebmail-main.pl

	DESCRIPTION
[image: image21.png]
[image: image22.png]

	The application can be configured to display stack traces to the end user if an error occurs. One such error is when an incorrect session identifier is supplied in the sessionid parameter. If the application receives an invalid session identifier parameter, then the application takes the user-supplied value and includes it in an error message. As a result, the application contains a reflected cross-site scripting vulnerability in the sessionid parameter on the security-Open WebMail-main.pl page. Note that the attack will only work if the victim is currently authenticated.

The following proof-of-concept will simply display an alert box containing the currently authenticated user’s cookies:

https://server/openwebmail2/cgi-bin/openwebmail/security-openwebmailmain.pl?sessionid=<script>alert(document.cookie)</script>

	RECOMMENDED SOLUTION
	There are two possible solutions that will sufficiently address the aforementioned problem. The first short-term solution is to perform HTML entity encoding on the sessionid parameter before placing in the HTML response. The second, long-term solution is to implement a positive and centralized input validation mechanism.

	REFERENCE(S)
	http://www.owasp.org/index.php/SpoC_007_-_OWASP_The_Anti-Samy_Project
http://www.owasp.org/index.php/Cross_Site_Scripting

	[image: image23.png]
	3.3 – Cookies Missing ‘‘HTTPOnly” Attribute

	RESOURCE(S)
	Throughout the application

	DESCRIPTION
[image: image24.png]
[image: image25.png]

	The web application creates several custom cookies throughout the session life-cycle. Several of these cookies are unique to the end user and are important to session management. One such cookie is the ow-sessionkey cookie. This cookie uniquely identifies the end-user after authentication. If an attacker were able to compromise this cookie as well as the session-id HTTP parameter, then the attacker will be able to perform session hijacking.

When creating HTTP cookies, there are two attributes that have an impact on security. One such attribute, known as HttpOnly, instructs the browser to disallow client-side script access to the cookie. If an attacker is able to find and exploit a cross-site scripting vulnerability, their malicious attack will not be able to access the cookie if this attribute were set.

	RECOMMENDED SOLUTION
	Add the HTTPOnly attribute to each custom cookie implemented by the web application.

	REFERENCE(S)
	http://www.owasp.org/index.php/HTTPOnly

Malicious File Execution
Malicious file execution vulnerabilities are found in many applications. Developers will often directly use or concatenate potentially hostile input with file or stream functions, or improperly trust user-supplied input files. On many platforms, frameworks allow the use of external object references, such as URLs or file system references. When the data is insufficiently checked, this can lead to arbitrary remote and hostile content being included, processed or invoked by the web server. If an attacker is able to supply a file that is interpreted or executed at runtime, then the attacker can execute arbitrary code with the privileges of the running process. A web application is vulnerable to malicious file execution if it implicitly trusts and executes a file supplied by an end-user.

Preventing malicious file execution takes careful planning at the architectural and design phases. In general, a well-written application will not interpret or execute user-supplied input. If this functionality must exist, ensure the application enforces strict and proper access control checks.
· Source: OWASP Top Ten 2004/2007

	[image: image26.png]
	4.1 – Authenticated Users with Remote Access Can Execute Arbitrary Code

	RESOURCE(S)
	/cgi-bin/openwebmail/etc/users

	DESCRIPTION
[image: image27.png]
[image: image28.png]

	The application uses the directory “./cgi-bin/openwebmail/etc/users” to store all user-specific information, including preferences and history. There exists a subfolder under the “users” directory for each user of the application. The Open WebMail users have read and write privileges to their respective folders under the “users” directory. An Open WebMail user with remote access to the system can write a Perl script under their “./etc/users/${username}” folder, browse to that file, and execute arbitrary code with the privileges of the HTTP server.

	RECOMMENDED SOLUTION
	Move the folders outside of the “./cgi-bin” directory to prevent Perl script interpretation by the HTTP server.

	REFERENCE(S)
	http://www.owasp.org/index.php/Top_10_2007-A3

Insecure Configuration Management
Modern web applications are frequently driven by external configuration files. These configuration files often play a key role in determining the overall application’s security posture. Failure to properly configure a deployed application can lead to a wide variety of security problems, such as the following:
· Unpatched security flaws in the server software

· Server software flaws or misconfigurations that permit directory listing and directory traversal attacks

· Unnecessary default, backup, or sample files, including scripts, applications, configuration files, and web pages

· Improper file and directory permissions

· Overly informative error messages (more details in the error handling section)
Securing an application’s deployment configuration is an exercise left to the administrator. During the course of this review, however, we noticed an interesting configuration directive that Open WebMail administrators disable. While configuration management issues are not a direct impact to the implementation of the application, they can greatly affect the security of a deployed application. As such, all findings discussed in this section are to be utilized by the administrators of the application rather than the developers of the application.

· Source: OWASP Top Ten 2004/2007

	[image: image29.png]
	5.1 – Application Reveals Stack Traces to End User

	RESOURCE(S)
	https://server/openwebmail/cgi-bin/openwebmail/security-openwebmailmain.pl
openwebmail.conf

	DESCRIPTION
[image: image30.png]
[image: image31.png]

	The Open WebMail application contains a directive called “error_with_debuginfo” that displays detailed error messages when an exception occurs. These error messages contain the script name, the current line number, the real user id, the effective user id, and a message pertaining to the exception. Such details provide the attacker with a significant amount of information to aide in crafting an attack. One such example noted during the course of this assessment was with the “Broken Authentication and Session Management: Authenticated Users with Remote Access Can Hijack Any Account” find. While attempting to perform the attack, we failed to include the “session_update=0” parameter. Without the parameter, the application displayed a detailed error message indicating that it was unable to update the session file. As a result of this error message, we attempted to submit the attack with the “session_update” parameter equal to “1” allowing the attack to succeed.
Note, however, that the application provides a configuration directive to enable or disable this feature. As such, this issue affects the deployment of the application rather than its implementation.

	RECOMMENDED SOLUTION
	Ensure that the “error_with_debuginfo” configuration directive is disabled in a production environment.

	REFERENCE(S)
	http://www.owasp.org/index.php/Insecure_Configuration_Management

Conclusion
SASAP has been an invaluable experience for all parties involved in the project. In this section we summarize the major past, present and possible future benefits of this project to its participants and the larger community.

In this concluding section we briefly comment on the benefits of this project to the following seven categories of computing professionals or professionals to-be:

Students
A mere glance through the student responses post the SASAP experience (see Appendix 2) in the Application Software Security class reveals that this merger of theory and hands-on experience in an autopoietic classroom has been well received by the students for several reasons. They perceived that with the hands-on experiences they have learned more, and that the format of this class took them out of the lecturoholic classroom. They were exposed to the application software industry first-handedly, and started building a professional network via Eric Sheridan, and OWASP. Immediately after this class, students sent their résumés to Aspect Security, and two of them are now working there as interns.
Principal investigators
Eric Sheridan was given the opportunity to apply his vast training experience to a new audience – students, as opposed to professionals. Goran Trajkovski experimented with observations and data collection from this class for educational studies, especially in the area of curriculum improvement for Computer Security programs.
The University
Via this OWASP project Towson University received an additional PR venue. Goran Trajkovski and Eric Sheridan have been a PR vehicle for the Computer Security program in the past. Eric Sheridan, while in Trajkovski’s class happened to discover a vulnerability in the SUN Solaris Operating System. This vulnerability was documented and communicated to SUN Systems, and a patch was distributed afterwards, for which Eric Sheridan was credited. With the move of Dr. Trajkovski to South University, this University will also profit from this project. Moreover, as Dr. Trajkovski is building a new emphasis in the IT program that he is chairing, OWASP tools and SASAP-alike projects are being included into the new curriculum. Dr. Trajkovski will be nominating the South University IT Program for inclusion into the NSA Centers of Excellence in Information Assurance program in the next cycle (deadline December 2007).
The Industry Partner
Via OWASP and word of mouth, Aspect Security gained a great exposure to the students in the Towson University security programs. This company is now employing a significant number of Towson University-graduated Computer Security students with bachelor and masters degrees.
The OWASP Community
By sharing this report with the OWASP community we hope not to only advocate for our accomplishments, vulnerabilities, and fixes in Open WebMail, but to encourage individuals, companies, and universities to join forces together in collaboration. The word of OWASP should be spread as early as possible in the community, and spreading it in an academic setting would build a strong supporter and membership body to the OWASP organization.
Open WebMail Community
We will share this report with the Open WebMail development and user community in order to advocate for a more secure application.
The instructors in the Computing field
The SASAP with the upcoming planned exposure of the SASAP project at conferences in Computer Science teaching scholarship, instructors teaching related (and unrelated) computing courses across the States will have an example of an experiment that is implementable in their classrooms. This document itself gives a plan of execution of our project as implemented in the classroom.
UPCOMING (POST-PROJECT) ACTIVITIES
Participation on National and International ConferenceS

Conferences that will primarily be targeted to report on the results from this research are the SIGCSE (ACM Special Interest Group in Computer Science Education) and the CCSC (Consortium for Computing Sciences in Colleges), that holds 6 regional conferences a year with teaching practitioners, multiple others in pedagogy and college teaching in general, as well as in computer security.

On the basis of conferences and online discussions with other researchers, the PIs will propose advanced panels and seminars teaching with OWASP at suitable conferences. Papers from SASAP and subsequent collaborations are also expected to be published. Finally, results from SASAP will be used in the planning and implementation of South University's online education programs by shifting emphasis away from content to dynamic interactions. These models for online learning will likewise be disseminated at conferences and in journals for online education.
Relevant Referred Journals
We plan to disseminate our findings and results in journals relevant to the domain of the SASAP project.
Book Chapters, Other Publications and Dissemination

We have been working with a variety of editors on reporting our present results in the form of book chapters and even edited volumes. We will continue these present efforts. We are also very interested in applying for further grant funding for putting up a training conference in teaching with OWASP tools.
ACKNOWLEDGEMENTS

The SASAP principal investigators want to thank the OWASP organization for enabling this project within the frames of its Spring of Code program, and the student-participants in this project for their enthusiasm, and willingness to learn.

APPENDIX 1: COURSE SYLLABUS

	COURSE
	COSC 458 Application Software Security

	
	

	CLASS COMMUNICATION
	Syllabus and course-related materials and announcements will be posted at:

http://pages.towson.edu/gtrajkov, under the Courses link on the top menu.

In addition to the traditional in-class communication, an eGroup will be maintained by the instructor to serve the purpose of a help desk for the class.

	TEXTBOOK
	Hoglund and McGraw: Exploiting Software: How to Break Code, Addison-Wesley, 2004

Supplementary resources

Viega and McGraw: Building Secure Software: How to avoid Security Problems the Right Way, Addison Wesley, 2002.

--: Maximum Security, third edition, SAMS, 2001.

Garfinkel, Gene Spafford, Debby Russel: Web Security, Privacy and Commerce, O’Rielly, 2002.

Scambray and Shema: Hacking Exposed, Web Application, McGraw Hill, 2002.

Whittaker: How to Break Software, Addison Wesley, 2003.

ACM & IEEE Publications

WWW

	COURSE CONTENT
	A study of security concepts in developing software applications. This course discusses design principles for secure software development, and some of the security issues in current programming and scripting languages, database systems and web servers.

	COURSE OBJECTIVES
	To introduce students to software development security issues and problems, existing solutions and technology.

	COURSE PREREQUISITE
	COSC 455 Programming Languages: Design and Implementation

The instructor insists that the students have taken the prerequisite for this course, and will be reinforcing this requirement.

	COURSE REPETITION
	Students may not repeat the course more than once without the prior permission of the Academic Standards Committee.

	COURSE FORMAT
	Active learning techniques, Lectures, discussion sessions (in–class and on-line), presentations, and programming projects. Students will be expected to read the textbook, and find and use current content on the subject(s) by means of library and Internet resources. Some assignments will require group-structured learning, while others will require individual research and presentation.

	METHOD OF EVALUATION
	10% In-class activities

10% Homework assignments

10% Literature review

30% Term Paper Projects & Presentation

30% Tests

10% Quizzes

	GRADING POLICY
	The +/- system will be used in this course. The percentage intervals are as given in the table below.

 A: 93.5-100
A-: 90-93.49

B+: 86.5 - 89.9
B: 83.5-86.49
B-: 80-83.49

C+: 75.0 - 79.9
C: 70.0-74.99

D+: 66.5 - 69.9
D: 63.5-66.49
D-: 60-63.49

 F: Below 60

IN-CLASS ACTIVITIES

Throughout the semester, the students will be expected to engage in numerous in-class exercises, designed to synthesize previously covered topics with new concepts being covered during a particular class meeting. On-line discussions and activities will also be graded under this category.

HOMEWORK ASSIGNMENTS/PROJECTS

There will be several written and programming assignments. All assignments are due at the beginning of the class on the due date. All the work should be backed up before submission of the assignment. The submission of all assignments should be well documented, and credit should be given to respective parties with proper citation of the sources of information. Due to the wide range and foci of the exercises, each assignment/project will have its own grading schema and deadline, announced when the assignment/project is given.

LITERATURE REVIEW
Articles from ACM & IEEE journals relevant to the topics covered in this course are assigned bi-weekly. Students are expected to write a short review and to be prepared to discuss the article in class.

TERM PAPER AND PRESENTATION

Students are also expected to write and present a research paper (10 pages min, 10 pts Times New Roman, single interline spacing, 1in margins everywhere) on a topic closely related to material covered in class, and will publish the finished document on the World Wide Web. The student should provide the instructor with a half-page proposal on the research paper, commenting how the topic relates to the course, tentative contents of the paper, and a list of kick-off literature to be used in the process of writing (5 items or more). Written materials will be judged with respect to writing quality as well as technical accuracy. Papers are expected to meet or exceed accepted undergraduate English and scholarship standards. Students are encouraged to acquire and use a citation guide (APA, MLA) during the course, which is available in the library, and to cite properly. Also note, all written work should be prepared with a word processor and run through a spell checker.

Each student is expected to develop a resource web page on the area of the research paper. The details will be disseminated in class or via e-mail at the time when such topics are being covered, and the kick-off pointers will be given.

TESTS

Three tests will be administered in this course. The maximum number of points on each test will be 100. Make-up tests can only be given in extenuating and documented circumstances and must be arranged in advance. Some of the tests may be take-home, in which case the students are required to sign a statement of honesty. The goal of these exams is not to encourage you to memorize pages of material and facts that will not be useful in the student’s work or field of study. They are written to help focus student’s expertise on the most important information in the enormous and growing field of information systems.

QUIZZES
Several unannounced quizzes will be administered during the semester. The quizzes will vary in the maximum number of points, and thus may weigh differently in the 10% of the final grade (that the total of all quizzes carries). Quizzes cannot be made up under any circumstances.

* * *

ATTENDANCE POLICY

The study of Computer Science and is cumulative (i.e., an understanding of earlier material is necessary to grasp later covered concepts.) This holds for the problems that will be given to students during the on-ground and on-line, and homework activities. Past experience has shown a high relationship between absences and low grades. Furthermore, students with excessive absences tend to want to use class time to ask "catch-up" questions which is unfair to other students. It is very important that the student makes every effort to attend every class, and to participate in the online activities related to this class.

It is the policy of the University excuse absences of students for the following reasons: illness or injury when the student is unable to attend class; religious observance where the nature of the observance prevents the student from attending class; participation in university activities at the request of the university authorities; compelling verifiable circumstances beyond the control of the student. Students are responsible for all work assigned and all ideas discussed in class. The instructor will allow students with documented excused absences to make up missed work or assignments when this is feasible. Students must understand that final course grades can be adversely affected by a record of excessive absences. A record of absences that totals attendance on 2 weeks of class or more ((4 class meetings) throughout the semester will automatically result in a final grade “F”, regardless of the reasons.

ACADEMIC HONESTY
All acts of academic dishonesty (plagiarism, cheating, facilitating academic dishonesty, fabrication, etc.) will result in at least a reduced grade (including “F” or zero) for the graded item (assignment, project etc.), and may result in a grade “F” for the entire course. For complete text of the TU policy, refer to the Academic Integrity Policy in the Student Handbook.

MISC POLICIES

The use of cell phones in the classroom is discouraged. If the cell phone of the student is on, it is expected to be in silent mode. The students are expected to honor the rules posted in the classrooms and the lab of the Department of Computer and Information Sciences. There is a no food and no drink policy in effect in the classroom at all times.

ACADEMIC SUPPORT

Limited learning support services are available at the Tutorial Services Center. Please contact the Center at 410-704-2291 (Administration Building 235) for details. Students are, however, encouraged to see the instructor during his office hours (or arrange special sessions with the instructor) for additional support in the domain of the course.

SOCIAL JUSTICE STATEMENT

Towson University is committed to social justice. The instructor concurs with that commitment and expects to maintain a positive learning environment based upon open communication, mutual respect, and non-discrimination. Towson University does not discriminate on the basis of race, sex, age, disability, veteran status, religion, sexual orientation, color, or national origin. Any suggestions as to how further such a positive and open environment in this class will be appreciated and given serious consideration.

Any student who may need an accommodation due to a disability, please make an appointment to see the instructor during his office hours. A memo from the Disability Support Services authorizing student’s accommodations will be needed. Students are encouraged to make appropriate arrangements with the said services as early as possible.

CONCLUDING REMARKS

The instructor encourages the use of the Internet resources for communication outside the classroom, such as e-mail and messaging software (AIM, ICQ etc. on your own machines at home). The use of these will insure prompt and timely response to students’ needs. The use of some of the applications may not be permitted in the labs. Students are solely responsible to comply to the lab rules when attempting to use any software.

Students are required to check for new postings on the course web site at least twice a week.

The instructor cannot discuss your grade or progress in class with other persons, or using other media than confidential face-to-face conversation, unless the student signs a Release form entitling the instructor to do otherwise. This includes discussing grades and/or progress in class via e-mail. The instructor will include a Release form whenever necessary, especially in cases when the students prefer to know their grade on a particular test/project via e-mail. In case of any problems with the progress in the class, the lectures, the reading assignments, and/or the instructor, the students are expected to discuss it first with the instructor as soon as they become aware of the potential problem.

For all the questions that might not be covered in this syllabus, the student is encouraged to refer to the Towson University Undergraduate Catalog, The Student Handbook; contact the instructor and/or his/her academic advisor.

APPENDIX 2: Post-project questionnaire for student-participants
As a part of the OWASP experience, the students in COSC 458 Application Software Security were asked to fill out an 18 question form, in addition to the class evaluation form. The evaluations forms, which are individually kept confident, revealed an aggregated score of 4.8 on a 5.0 score for the overall experience in the class, which ranks this particular class at the very top of the courses offered at Towson University during the Spring 2007 semester.

The data from this questionnaire were collected on May 21, 2007. The questions are in bold, and the answers collected are underneath the question, and are presented verbatim as stated by the students. Any interventions in the answers are in italic and they serve the purpose of clarifying the answers to an outside reader.

I. GENERAL POST-ASSESSMENT FOR the COURSE
1. Summarize your impressions of the course.

· The class format took a bit of adjusting to, but I ended up enjoying the freedom to work on the security projects in a way that I am comfortable with. It allowed for more room to experimentation and hands on experience.

· I was very impressed with the opportunity to learn various aspects of web application security. In specific, I enjoyed the opportunity to find vulnerabilities within Open WebMail.

· It was a great class to get hands on experience.

· This course was very interesting since it was focused so much more around code when compared to my other classes. I’m excited that I was able to spend so much time learning and working with code instead of just reading it out of a bland book.

· I was very impressed with the material in COSC 458. What I found to be most interesting was the topic on web application software security. Furthermore, I enjoyed analyzing the source code for Open WebMail in an attempt to discover vulnerabilities.

· I enjoyed the class. We learned about a variety of different things, and had a chance to use different skills. It is likely that things that I learned in this class will be used in my career in the future.

· COSC 458 was a very interesting class for me. I’m a CIS (Computer Information Systems) major, so the first day walking in here was quite intimidating. Taking a security class with the security track guys was very brave. They have gone through these classes together and have a very tightly knit group. Being a CIS major I haven’t had all of the background that the others had and I felt very worried in the beginning. However, I actually started to get much more comfortable with the course and learned quite a bit about the application software security. I have a job starting this summer doing Systems and Process Assurance and feel much more comfortable with the security topics that revolve around applications rather than just network security. Overall, I took away a lot of information from this course and feel that I have come out of the class with a greater understanding than when I first walked in the classroom.

· This was one of the few classes we have had in Towson where we actually got to do something hands on. While the amount of time we actually had for this was limited, it was still one of the more interesting things I was able to do at Towson.

2. Did this class meet your expectations?

· It did not meet my expectation in that I was anticipating a certain type of a class, but exceeded my expectation in what the actual class content ended up being.

· Yes, I was very satisfied with this course and it met all my expectations.

· Yes, I am eager to learn more about many of the things we studied.

· Yes it did, it went above and beyond with the term projects of the OWASP project and the EXPO event. These are things that I can say that I did that I can be truly proud of. Hands-on experience is so much better than just taking exams and memorizing information. It is important to get this hands on experience so that when you start out in the real world you are confident in what you know and confident that you can learn what you don’t know.

· I felt this class adequately met my expectations, however, I would have liked to learn more about buffer overflows. In specific, creating a program that contained a flaw, and then exploiting it.

· The class met and exceeded my expectations. We worked with plenty of code and real life situations that made me more than content and pretty confident in my understanding of code vulnerabilities.
· I was expecting more of a “Here’s how you do this; Here’s how to do that” – type of a class. Instead it was a lot more experimentation and research. It also exposed us to a lot of new resources such as OWASP.

· My expectations were fairly limited. Most classes I have had at Towson have been extremely subpar and not taught me much of anything so the fact that we were able to do at least some hands on was an excellent change of pace.

· At the very beginning of the course, I expected us to learn about specifically about program exploitation such as developing buffer overflows to spawn a root shell on a system or something along that nature. Although we briefly covered the topic of buffer overflows, I would say my expectations were met due to the fact we were assigned to analyze the source code of Open WebMail. This gave me a good feel of how both white hat and black hat individuals think when attempting to discover vulnerabilities. Finally, I was very satisfied when working with Eric Sheridan on the Open WebMail project and plan to discover many more vulnerabilities in software.

· General expectation: I think it was to learn to program secure software, or learn to create tools that enhanced security in some way. The book, exam, and OWASP project were geared toward the first statement, and I learned a lot. The second statement was covered briefly with the spam article. In all, I liked the material we covered.

· Learning about application security – It was definitely met. I felt that with the hands on experience it was truly learned rather than memorized information to be forgotten at a later date.

· Feeling more comfortable around my COSC (Computer Science majors) security peers – I feel a lot more comfortable around these guys at this point. I feel that even though I have a CIS background I have something to offer to the groups and I feel that they are willing to work with me and help me understand the concepts that I haven’t learned with them.

· My expectation of this course was to learn how to exploit buffer overflows in order to gain root access. Although we discussed buffer overflows, I would have enjoyed seeing the programming aspect. However, I still feel this class met my expectations on various levels.

· Understanding all application security topics at a high-level, and understanding the most important ones at a low-level too. The text was good and it was completely covered. Even more time was then spent on the important topics, which met my expectations.

· My expectations were to learn more about the vulnerabilities that come with network based applications. This class taught me the many ways that systems were able to be manipulated into revealing information that should not otherwise given to unregistered users.

3. What do you think on the hands-on, minimum lecturing style that was applied in this classroom?

· I think that it is a great approach so long as the lecturing is relevant to the work. Eric did a great job to add his perspective in the lectures to our own research and was more than willing to answer at length any questions we had.

· I think that the hands-on portion of the course was great! Personally, as a student, it is very beneficial when you learn hands-on style rather than reading a text book on the theory of the topics. Dr. Trajkovski did a great job in providing this ability to COSC 458.

· I enjoyed the hands-on experience very much compared to lecturing. Hands-on experience is the best way to gain a better understanding of a particular concept.

· I learned a lot. It was a lot of independent work. A very different atmosphere.
· I loved that type of learning. I felt that I learned more that way. As I said it is important for me to DO something rather than to just hear it. Doing something helps you understand more of what is going on than just memorizing information and not understanding how it fully works. It also makes the class more fun and helps to keep our attention.

· I was a fan of the style of this class. I think a minimal amount of additional structure would have been ideal. We were right around the border though, and too much more would have ruined the experience.
· It’s the best way to learn the material in this course.
II. THE OWASP EXPERIENCE

4. Describe your overall experience using the resources at OWASP.

· I am impressed at the amount of content there is on the site. It’s a very conclusive web security resource.

· I really enjoyed using all resources of OWASP. In particular, using WebGoat to understand particular flaws as well as using WebScarab to intercept HTTP requests.

· The resources at OWASP very beneficial in learning the OWASP top ten as well as learning all the features of WebScarab.

· I actually liked the OWASP resources. Using web scarab in combination with web goat was one of the most interesting things I have had a chance to do, and I went ahead and worked with it outside of class as well in order to gain additional experience with it.

· The overall experience was mixed. Some programs were more useful than others, but the ones that I took a liken to definitely made up for the others.

· OWASP was very informative. The Top 10 list was quick, to the point, and very beneficial. WebScarab is a very good tool—almost shocking. It is possible I will be using it and other OWASP tools in the future.

· I felt that the resources at OWASP helped me understand application security at a deeper level. It was important to utilize these tools in order understand how use reference materials. I believe that these references tools helped me understand the topics of the specific vulnerabilities and how they work.

5. What was the most useful resource/tool in your OWASP experience? Why?

· WebScarab, it’s very easy to use – install – and understand. Intercepting http requests is a very powerful tool against web pages.

· I feel WebScarab was the most useful tool in my OWASP experience because I was able to find vulnerabilities in several websites in regards to hidden fields in other features within WebScarab.

· I would say the web goat project was the most useful thing because it was able to give us a taste of many different angles. The tool which went along with it, web scarab, was extremely helpful to me as well in many different cases.

· The most useful tool in my OWASP experience was the WebScarab, because it was the easiest to use and produced the most useful information.

· I feel that the most useful tool in my OWASP experience was OWASP’s WebScarab. This tool allowed me to further understand web application security such as the topics involving authentication and session management in addition to input validation.

· WebScarab opened my eyes to the weaknesses of the web applications that are being used today. WebScarab.

· The WebGoat tool was very useful in the fact that it helped me understand how WebScarab worked with the browser and also provided information on how to exploit the vulnerabilities. Without this tool I wouldn’t have known where to even start.

· Web Scarab because it provided a way to see things step by step and customize input. Similar to the way a debugger is useful in a programming environment.

6. Elaborate on the learning curve of this tool.

· The learning curve of WebScarab was essentially nonexistent. It just works.

· I feel that learning to use WebScarab is easy for any individual. Once you are able to intercept HTTP requests and modify them with your own parameters, you can easily discover new attack techniques.

· Being that my experience in this type of environment was very limited before I got to this class the learning curve was rather large. Once I was able to get into it however things started to come together, and I really enjoyed working with the tool.

· Very easy to use, but requires the knowledge that is gained from other resources like the OWASP site and WebGoat to be effective.

· The overall learning curve for this tool was actually pretty low. I wish there was a built in help function that would provide a bit more info than making me run through an indexed table of contents. A quick start file disguised as an html page is always a good way to go.

· When we first used the tool Eric was in the classroom so he helped us by giving us hints about things to try and do. That helped the learning curve quite a bit. Otherwise once he wasn’t around the tool provides hints to help us through the exercises. Now, I’m not the best qualified in the class because of the lack of security classes in the CIS program, so I’m sure I had a much higher learning curve than most in the class. But, I still feel that having the hands on tutorial helped!

· Although there is a huge learning curve of WebScarab initially, after using this tool frequently, you will begin to understand how the program works.

· It was something I had never heard of. I felt like I was using the latest and greatest in terms of its use.

7. What other tools did you use or consider using? Why were they abandoned?

· I am not aware of many other tools that I would use for this purpose.

· No other tools.

· Speaking with Tufail (a teaching assistant) there were a number of programs that came up. A couple whose names escape me that I was able to take a quick look at, but I was not able to dive deeply into.
· I didn’t use others.

· I had so much fun with WebGoat that I actually started using it out of school.
· I also considered using a packet sniffer to monitor the HTTP requests in which I was modifying, but chose to abandon the tool because WebScarab provided all I needed.

· I also used the WIKI quite a bit in order to read up and learn more about the topic that I had chosen to research. WebScarab definitely came in handy because it was the way to intercept the input that was being passed through requests.

· I would have liked to utilize the fuzzer more effectively; however, I decided to abandon this tool because of the complexity and the inability to test this feature.

8. Tell us at least one thing you learned while researching at OWASP.

· I learned that entire JavaScript commands can be inserted into variables in the address bar of a page in certain circumstances.

· I was able to realize just how vulnerable some of the applications out in the open really are. I almost could not believe just how many holes we, who had no prior formal training, were able to discover with only minimal help.
· One thing that I learned while researching OWASP related material is no application software is above testing phases for security measures. In order to even think of considering a tool to be secure, you have to test the living hell out of it with a plethora of tools and methodologies that attacks it from every angle.
· I learned more in-depth how broken authentication and session management works. At first, I was unaware that an application such as Open WebMail creates a session for each time you login to Open WebMail. Now, I am fully aware of how authentication and session management works in regards to Open WebMail.

· I learned that using tools you can learn lots of things about the information passed on a page.
· One aspect I learned while researching was the ability to use hidden fields in order to change prices within WebScarab.

· Perl. I have not had experience with programs as big as Open WebMail that use this much Perl.

· Almost the entire Top 10 list in an informative format

9. Describe one or more notable tests that you carried out against Open WebMail.

· JavaScript to reveal session information in an invalidated user input field.

· One of the more notable tests my group member and I had performed while working on the Open WebMail project was that we were able to cause a DoS by injecting our own specially crafted sessions with a Perl script.
· One of the tests I chose to carry out against Open WebMail was an attack on broken authentication and session management. After discovering where the session identifiers of each user on server was stored, I created a copy of my own session ID file and added another user’s information to this file. Next, I did a chmod 666 newSesssionID of the file and was able to modify the request in WebScarab to impose of the user resulting in being able to view their e-mail in addition to viewing their files on web disk. Another notable test our group discovered was to spoof e-mail via WebScarab which I found to be very interesting.

· Working with Ryan we tried to do a number of things. We were able to lock any users account, but web mail had an easy method for dealing with and resolving that issue. One that I did not discover on my own but through the help of another classmate was how to not only send email as another user, but also how to gain access to all of their emails and files.

· One of the tests carried out against Open WebMail was the ability to spoof e-mail. Not only could you define a “real name” and e-mail address within your user preferences, but you could intercept the request and spoof your e-mail. The final test carried out against Open WebMail was the ability to access anyone’s inbox, read their e-mail, and access their web disk. In order to achieve this attack, you must SSH into server, create a session for the target, modify the file, change the permissions, and intercept the request as you login to Open WebMail, substituting your account information with the targets. Finally, you must append “&session_noupdate=1” to the end of the URL in the GET field.

· Broken Access Control - forced browsing, path traversal

· With the help of teammates Ryan Knell and Chris Rommell, I learned that there is a way to intercept the information that you input to log into Webmail so that you can login as anyone and have access to their email accounts including the files on their web disk.

10. What OWASP resource led you to this/these test(s)?

· The OWASP v2 testing tool.

· The OWASP resource that led me to these tests was the information on owasp.org regarding broken authentication and session management as well as input validation. Furthermore, Eric Sheridan was a huge help in the process as well. Thanks Eric!

· The OWASP resource that led me to these tests was WebScarab

· Top Ten list

· Using WebScarab it was easy to intercept the information that the login page was passing to the database and to know what information to change in order to login as someone else.

· Web scarab was the main resource, but thanks to web goat, and the instructions found on the OWASP page a couple of the exploits were able to be carried out without the use of any tools at all.

· The resource that led me to that particular region was the “Detecting Denial of Service” tutorial on your page.

11. What was the outcome of the test(s)?

· Nothing came out of it, since the project has taken care of some issues.. But the testing was an interesting experience.

· The outcomes of these tests were successful. I was able to spoof e-mail using two different methods as well as obtaining the ability to access anyone’s inbox, read their e-mail, and access their web disk.
· We were able to spoof e-mail via WebScarab and Open WebMail. In addition, in regards to broken authentication and session management, we were able to login as anyone via Open WebMail, read their e-mail, and view their files on web disk. Fun stuff!
· We were able to successfully lock someone out of the application by the use of our script.
· The outcome was that a vulnerability was found in the Open Webmail application. Ryan and Chris wrote up this vulnerability since they found it.

· The outcome of the tests was that Open Web Mail is not nearly as secure as they would like us to believe, and as it turns out I have little doubt that even after we point out these vulnerabilities Towson will do little to resolve them aside from update their files if open web mail decides to put out a new version.
III. SUMMATIVE OWASP QUESTIONS
12. Was this project beneficial to your study of Application Software Security?

· Yes.

· The OWASP project was very beneficial to my study of Application Software Security. In specific, this project provided the ability to modify requests on the fly in order to escalate privileges and leverage numerous attacks.

· Yes, this project was the perfect supplement to the material we learned in class. I would go so far as to say that this class would have not been as fruitful if we had not experienced this during our time here.

· This project assisted greatly in my study of application software security. It was a great opportunity to investigate the source code of Open WebMail and utilize WebScarab to modify HTTP requests on the fly.

· This project was very beneficial because it provided hands-on experience. It was much easier to understand the topical information.

· Not only was this beneficial, but it was the most useful thing that we have done.

13. What did you learn about OWASP from this project?

· SQL injection and XSS.

· It is a largely supported project. After hearing about some other peoples finds, I also learned of its importance

· They have a number of useful tools, but a lot of their instructions are fairly hard to follow.

· I learned that OWASP is all about Application Security and likes to do what it can to help the troubled programmer out there. I also learned that OWASP can only outreach so much and that the programmer himself must seek OWASP’s help.

· I learned that OWASP is an organization dedicated to discovering flaws in software to fight the battle of insecure software. OWASP provides a great deal of useful information to aid any individual in discovering vulnerabilities in software. Finally, I found OWASP to be a very useful resource in my research of discovering vulnerabilities in Open WebMail.

· After completing this project, I have learned several aspects about OWASP: The software provided (WebGoat, Hands-on learning assignments, WebScarab), How to intercept and modify requests, In-depth resources, WebScarab Tutorial
· I learned that they are committed to informing computer professionals and businesses about the vulnerabilities that are out there and where they exist. They are committed to a more well informed public and making the web a safer place to be. It is important to know the most vulnerable parts of a web application and how to guard against them.

14. Would you consider integrating yourself in the OWASP community and contributing to it in near future? If yes, in what capacity?

· Yes, I would consider integrating myself into the OWASP community and contributing to it in the near future. I would enjoy discovering vulnerabilities in software in addition to developing an exploit for the vulnerability and a patch for remediation.

· Yes, if I had the time. It is a really interesting project, and getting paid to do it like employees of OWASP members do would be cool.

· If my abilities ever grew to where they would be helpful, I would definitely consider help writing articles and programming for the community.

· If I have the time, I would like to participate in generating new lessons within WebGoat for other interested individuals in web application security.
· Yes, the capacity depends on my career, a job in a related field would mean more of a contribution

· Yes, my job will be in the computer security field so as I start my career I feel that it is important to share this information with other professionals as to the most likely attacks. I will also be referring to the OWASP community to keep up with current trends and to learn more about the current top vulnerabilities.

· I have every intention of turning in an application to Aspect Security. They seem to do a lot of work with the company, and if I am able to get a job working with them hopefully I will have a chance to do just that.

15. What are you going to take away from this project?

· An invaluable resource.

· What I take away from this project is an in-depth understanding of the OWASP top ten and how to effectively use WebScarab to conduct web-based attacks.
· I am going to take away a grade of an ‘A’ from this class and also a lot of proper programming habits that would have taken much longer to have learned on my own.

· After completing this project, I will be taking away fundamental concepts of how web applications may be exploiting by analyzing HTTP requests within WebScarab. In addition, I will also take away fundamental concepts from the lessons provided within WebGoat such as XSS, hidden fields, and forced browsing.
· Perl knowledge.

· A new awareness for security, and lot of knowledge about the subject

· I’m going to take away hands-on experience from the project. I think that it is important for students to know what tools are available to them and to learn to utilize these tools. In the real world it’s not book learning or memorization that is going to help you with a project. It’s the references and the hands–on experience that you are going to refer to.

16. Would you recommend this project to other students?

· Definitely.

· I would highly recommend this project to any student interested in application software security. No question!

· I would highly recommend this project to other students that are interested in learning more about web application software security. I think it was a great experience and something that you aren’t going to gain from reading a book.

· Yes, as I said this is one of the few hands on projects I was able to participate in, and I would definitely recommend it to anyone interested in the field.

· I would highly recommend this project to other students. With enough time and the right resources, the possibilities are endless.
· I actually have already mentioned this project to a couple of friends and hope that they follow through with participating like I have.

17. Would you advertise the OWASP tools for use in other computer security classes, and if so, which ones?

· Yes, Case Studies.

· Yes, I would advertise OWASP WebGoat and WebScarab in other computer security classes so they could get a feel of web application security as well as a good understanding of the OWASP top ten.

· I would definitely recommend the two tools I mentioned beforehand because any and every tool can teach you something new about security.

· Yes, Case Studies, Operating Systems Security, Network Security.

· Yes, Web Scarab.

· I think that the WebGoat tutorial and the WebScarab tools are essential for understanding the workings. I also think that the WIKI that OWASP provides gives lots of information on the different vulnerabilities and what to watch for.

· I feel the OWASP tools would also be very helpful within Case Studies (COSC 481). With the proper knowledge, you could use these tools in order to gain access to other team’s network which would result in a higher grade on each report within the course.
18. Where do you see the most significant contribution/justification for the existence of the OWASP community?

· WebScarab and the Top Ten list.

· I see the most significant contribution for the OWASP community is to aid individuals in discovering vulnerabilities in software in an attempt to fight insecure software.

· Bringing an awareness to the problems that exist for web applications

· I think computer security professionals and students will utilize these tools more often than not. I think that it is important to keep up with the current trends and to know what you are up against. It’s important to have the tools in order to test against websites to make sure that they are fully safe. I as a consumer would MUCH rather a professional use these tools before releasing a new site to the public.

· The OWASP community seems very useful to companies attempting to get into the web application industry.

· Easy – teaching programmers how to avoid making it easier for hackers to cause mayhem in the Internet community.

· The most significant contribution for the existence of the OWASP community would have to be in WebGoat followed by WebScarab. WebGoat is a great way to understand application software security. After understanding these concepts, you could utilize WebScarab to compromise machines. As a result, you could take this knowledge with you to the work force and impress your peers by finding vulnerabilities within your servers!

· Information Security is an important issue, and this project helps solve security problems in applications using information.

References
The Open Web Application Security Project – http://www.owasp.org
The Open WebMail Project – http://www.openwebmail.org
The OWASP Top Ten Project - http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
The OWASP Guide - http://www.owasp.org/index.php/Category:OWASP_Guide_Project
The OWASP Testing Guide - http://www.owasp.org/index.php/Category:OWASP_Testing_Project
The OWASP WebScarab Project - http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
The OWASP WebGoat Project - http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
How to Value Real Risk - http://www.owasp.org/index.php/How_to_value_the_real_risk
20

21

