
March	2017

Turning
Security	into	Code
with
Dynamic	Binary	Instrumentation

Jeff	Williams,	Co-founder	and	CTO
Contrast	Security
@planetlevel



We	are	failing…

SOFTWARE

SECURITY

2000 2010 2020

SASTDAST

WAF



You	can’t	scale	appsec without	highly	accurate tools
(both	true	positives	and	true	negatives)

Because	inaccuracies	require experts…

…and	experts	don’t	scale.



By	turning	security	into	code
-->	we	can	get	speed,	coverage,	and	accuracy
-->	which	allows	us	to	scale

Level 3: Management makes 
informed decisions with detailed 
security analytics

Level 1: Development and operations 
get fully automated security support

Level 2: Security experts 
deliver security as code

Continuous	Application	Security



How	do	we	turn	“security	into	code”?

Defend
Do	we	have	a	defense	

strategy	and	
implementation?

Assess
Do	we	automatically	verify	
defense	is	present,	correct,	

and	used	properly	
everywhere?

Protect
Do	we	automatically	

detect	and	block	anyone	
attempting	to	attack	this?	

Code Code Code



HTTP
Traffic

Code Frameworks
Libraries

Runtime	Data	
FlowRuntime	

Control	Flow

Backend	
Connections

App	
Configuration

Server	
ConfigurationPlatform	

Runtime

Software	
Architecture

manual

dynamic

WAF

static

config

SCA

passive

The	wrong	way	to	think	about	the	problem…

IDS

How	do	I	get	the
Information	I	need
to	assure	what
I	care	about?

A	better



Problem:	Clickjacking
Defend

Assess

Protect

Use	X-FRAME-OPTIONS	
header	to	prevent	frames

Check	HTTP	responses	to	
ensure	they	all	have
X-FRAME-OPTIONS	set.

Tough	– looks	like	expected	
traffic.

*	Image:	Igor	Abade



Problem:	Bypassing	Verb-Based	
Auth’n and	Auth’z (VBAAC)
<security-constraint>
<web-resource-collection>

<url-pattern>/admin/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>admin</role-name>
</auth-constraint>
</security-constraint>	

Defend

Assess

Protect

Ensure	no	unauthorized	
HTTP	verbs	can	be	used.	
GET	and	POST	only.

Use	a	tool	to	automatically	
analyze	the	logic	of	
authentication	and	access	
control	configurations.

Check	HTTP	to	detect	and	
block	use	of	unauthorized	
verbs.



Problem:	Insecure	Libraries
Defend

Assess

Protect

Patch	and	upgrade	quickly

Continuously	assess	
libraries	that	are	actually	
used	for	known	
vulnerabilities.

Deploy	virtual	patches	that	
prevent	vulnerability	from	
being	exploited.



Problem:	Weak	Crypto	Algorithm
Defend

Assess

Protect

Choose	a	strong	algorithm

Watch	cipher	construction	
at	runtime	to	ensure	no	
weak	algorithms	selected.

Watch	running	code	for	
exceptions	indicating	
padding	oracle	attacks,	for	
example.

‘MD5’	is	everywhere



Summary	so	far…

• Clickjacking	->	need	HTTP	headers
• Bypassable VBAAC	->	need	web	configuration,	HTTP	to	block
• Insecure	Libraries	->	need	libraries,	frameworks,	servers,	platform
• Weak	Encryption	->	need	code,	configuration,	exceptions
• …



HTTP
Traffic

Code Frameworks Libraries

Runtime	Data	
FlowRuntime	

Control	Flow

Backend	
Connections

App	
Configuration

Server	
ConfigurationPlatform	

Runtime

Software	
Architecture

Instrumentation

Great	– so	I	have	to	run	50	tools?		No.



Source	Instrumentation

Inject	simple	static	method	call



Binary Instrumentation

• Widely	used
• CPU	Performance
• Memory
• Logging
• Security
• …

• Lots	of	libraries
• ASM	(Java)
• BCEL (Java)
• Javassist (Java)
• MBEL	(.NET)
• RAIL (.NET)
• …



Dynamic	Binary	Instrumentation!

Runtime Environment

ClassClassClass

ClassClassClass

Agent

ClassClassClass

ClassClassClass

Binary code is 
enhanced as it loads:
• Fast
• Safe
• Proven

ClassClassClass

ClassClassClassOriginal
Binary Code

Command and
Control Dashboard

Instrumented
Binary Code



Problem:	Injection	(SQL,	XSS,	etc…)

• Attacker	sends	data	that	is	passed	to	an	
interpreter	(SQL,	LDAP,	EL,	…)

Defend

Assess

Protect

Use	escaping,	
parameterization	correctly	
everywhere.	Right.

Use	automated	data	flow	
analysis	to	track	untrusted	
data	to	any	queries.

Analyze	whether	untrusted	
data	flows	to	a	query	and	
modifies	its	meaning.

DB



Data	flow	analysis	(aka	clusterbomb)

HTTP	
Request

Header

Header

Cookie

URL	Parameter

URL	Parameter

Form	Parameter

Form	Parameter

…

chunk1

chunk2

chunk3

chunk4

chunk5

…

split(“,”)

chunk3<	

append(“<”)

chunk3&lt;

htmlEncode()

getParameter(”foo”)

append(chunk1)

chunk3&lt;chunk1

html-encoded

cross-site

safe?



Solution:	Instrumentation

Security	context

Developer
Tester
User

Attacker

Controller Validation Session Business
Logic Data	Layer SQL

API Database

HTTP	
Request

Validation	
Tags

Data	
Tracking

Data	
Parsing

Escaping	
Tags Query

Assess

Protect

✓
✓

✘

Sensors	infused	into	running	application



Cross-Site	Request	Forgery
Defend

Assess

Protect

Add	a	token	to	links	and	
forms.	Verify	token	is	
present	on	transactions.

Verify	non-XHR	requests	
have	token	on	non-
idempotent	transactions.

Application	should	detect	
and	block	use	of	
unauthorized	verbs.



Solution:	Instrumentation

Developer
Tester
User

Attacker

Controller Validation Session Business
Logic Data	Layer SQL

API Database

Attack✓ ✓

Sensors	infused	into	running	application

Vulnerability

• Add	CSRF	token	to	webpages
• Check	for	tokens	on	susceptible	pages

• Is	not	an	XHR	request?
• Token	check	fails
• Non-idempotent	transaction



RASP

RASP

RASP

WAF
GET 
/foo?name='%20or%20%
20'1'='1 HTTP/1.0

GET 
/foo?name='%20or%20%
20'1'='1 HTTP/1.0

WAF

RASP

Three problems:
1) Bottleneck
2) No context
3) Impedance

RASP

stmt.execute( "select * 
from table where id 
='1' or '1'='1'" );

APPLICATION DECISION POINT

PERIMETER DECISION POINT



OWASP	Benchmark	
– thousands	of	test	
cases	across	a	range	
of	true	and	false	
vulnerabilities

Free,	open,	
reproduceable

Instrumentation	
speed	and	accuracy	
dominates	SAST	and	

DAST

33%

100%

Sponsored by DHS

IAST-01

OWASP	Benchmark
is	table	stakes



DEV

Centralized Visibility and Control Continuous	Assessment	and	Protection

Internal

APIs ContainersPrivate

Public Cloud

OPS

Distributed	AppSec – In	Parallel



DEV

Vulnerability Alerts
& Guidance

SEC OPS

Centralized
Visibility	&	Control

Attack	Protection	&	
Threat	Intelligence

Making	DevSecOps Actually Work



Instrumentation	Powers	Continuous	AppSec

Continuous	Application	Security

Analytics across entire portfolio drive 
budget and priorities

Instant accurate notification of 
problems via existing tools

A platform for modeling policy to 
enforce across portfolio



WELCOME TO THE ERA OF SELF-PROTECTING SOFTWARE  | CONTRASTSECURITY.COM 26

LEADER



WELCOME TO THE ERA OF SELF-PROTECTING SOFTWARE  | CONTRASTSECURITY.COM 27

THANK YOU

Jeff Williams | jeff.williams@contrastsecurity.com


