
Web Application Frameworks

Denis Andzakovic – OWASP Day 2012

~# whoami

 My name is Denis Andžakovič

 Pen-Tester @ Security-Assessment.com

 A sweeping generalization:

 Developers should strive to make my life as difficult as possible.

OWASP

 The Top Ten

 I am going to assume that we are familiar with this list.

 The recurring theme from previous Web Sec talks has

always been ‘Do not roll your own!’

Don’t roll your own!

 Frameworks – <3

 They simplify the development process

 There’s less code to write

 Code is easily re-used

 Code is robust, often heavily tested and integrated with the rest of your

framework

 They make secure implementations easy (*cough*)

 Frameworks make it harder to make mistakes.

Frameworks and Pen-Testers

 Makin’ my life difficult.

 Secure, robust core code

 Often meticulously reviewed and nit-picked

 Security guidelines offered for the less sec-savvy developer

 Also makin’ my life rather simple :-D

 Easier recon

 Readily available exploit code (on occasion....)

 Implementation errors

 Security misconfigurations

Example Framework 1

Google Web Toolkit

 Java based

 Compiles Java code into obfuscated JavaScript

 Provides a robust RPC implementation for server <->

client communication

How its strung together…

GWT - Overview

GWT JavaScript

Example RPC request

7|0|7|http://127.0.0.1:8888/owasp_gwt_demo/|9DE0BA7FEFC

7237BEE17C6F7D23512E7|

com.example.owaspdemo.client.GreetingService|greetServ

er|java.lang.String/2004016611|

String1|String2|1|2|3|4|2|5|5|6|7|

 This implementation helps ward off CSRF attacks and helps us

defend against XSS attacks. Awesome.

Common Mistakes

 Unauthenticated access to RPC endpoints.

 UI feature and functionality restriction done on the client

side.

 Additional Non-GWT functionality compromising XSS and

CSRF protections

GWT DEMO

Unauthenticated access and client side UI restrictions

How to avoid this?

 Understand how the specific framework operates (client side versus

server side code)

 Ron Gutierrez has a very helpful talk titled ‘Attacking Google Web Toolkit’,

which details some common ways to unlock client-side functionality.

 Implement stringent access controls

 Validate, validate and validate some more.

 Do not rely on Security-Through-Obscurity

 GDS have provided a set of tools for RPC endpoint enumeration and de-

obfuscation of GWT code. (http://blog.gdssecurity.com/labs/tag/gwt)

 Google’s GWT Security Recommendations were followed

 http://developers.google.com/ provide a very useful article titled ‘Security for
GWT Applications’, which includes some easy-to-implement solutions for

these issues.

http://developers.google.com/

To summarize...

 Client Side. Server Side. These are not the same thing!

 Users are evil, never trust them. Validate all input.

Zend Framework

 “A powerful high-quality open-source framework focused on developing modern Web

Applications and Web Services”

 Usually uses a MVC design with a dispatcher

 Without a Dispatcher, every implemented script must embed or implement

authentication – Classic approach prone to human error

 Anti-Cross-Site-Scripting Escaping Magic disabled by default

 This will change in version 2.0, According to Zend Framework project lead Matthew

Weier O'Phinney

The Model View Controller

More on MVC

Common bugs

 SQL Injection

 Zend offers several classes for DB access, yet for some reason no one

uses them?

 Cross Site Scripting issues

 Remember how Zend doesn’t have auto anti-XSS magic enabled?

 Framework specific vulnerabilities

 Specific versions of Zend are vulnerable to certain bugs in the core

framework.

 Practically the rest of the Top Ten as well...

 It’s up to the developer to not do something ridiculous.

Who’s been pwned?

 XOOPS – Built on Zend... A quick look on exploit DB

shows 68 Bugs...

 The majority of these are SQLi and XSS bugs...

 Digitalus CMS – Also built on Zend...

 A brief search turned up an arbitrary file upload bug, wonderful.

 Information disclosure bug in Zend itself

 Recently, a vulnerability was discovered in Zends XMLRPC package.

X-Oops

 SQL Injection

X-Oops 2

 XSS – Our POC.

 The culprit code.

Digitalus Fail

 ‘An attacker can exploit this vulnerability via browser by

following this link: http://<vulnerable

site>/scripts/fckeditor/editor/filemanager/connectors/test.html ’

 Hold on... FCKEditor?

 3rd Party Features stuck onto the app... Great...

 Exploitable code, probably not even written by you, has gone and

compromised the integrity of your entire application.

XXE Bug in Zend XMLRPC

What should have been done.

 Zend comes with classes for database access and escaping.

 Zend_Db. Zend_Db_Statement. Zend_Db_Table ect

 Zend_Db_Select exists to create dynamic SELECT queries, leverages

prepared statements internally as often as possible

 Ye-Oldie XXS scrubbing is not your friend.

 Leverage Zend_View_Helper

 Centralize your validation

 Work with the controller

 Zend provide a useful webinar detailing some common issues and

ways to deal with them

 http://static.zend.com/topics/Webinar-Zend-Secure-Application-Development-

with-the-Zend-Framework.pdf

More on Centralised validation

Microsoft .NET Framework

 .NET is basically one giant framework, this thing is huge.

 Many popular sites written in .NET

 First released in 2002

 Suffers the same issue as the previous frameworks...

Devs.

Frameworks built on frameworks

 EG: DotNetNuke and Spring.Net

 Yet another layer for error

1. Errors with the core framework

 Padding Oracle attack...

2. Errors with the framework built on the core framework

 DNN Arbitrary file upload bug...

3. Top framework implementing core framework functions incorrectly

 DNN-2011-9-C Authorization Bypass

4. Developers implementing Framework itself incorrectly

 This one is kind of self explanatory...

Vulns :D

Doing it wrong.

 As you probably know, GitHub was hacked by a miffed

Russian gentleman in June...

 This was done via a mass assignment bug.

 Yea, okay, technically that was ruby on rails, but the same concepts

apply to .NET MVC.

 Umbraco (a .NET based CMS) Remote command

execution bug (another one from our friends at GDS)

Mass Assignment

Umbraco RCE

 A specially crafted SOAP call results in unauthenticated

file upload.

 Because calls to this guy are not validated...

Doing it right.

 Pay special attention to Model interactions

 What can a user change?

 MSDN – use it

 Colossal amount of documentation, including a fair few helpful tips and

tricks under ‘Writing Secure Code’

 Following MSDNs ‘Web Service Security’ guidelines could have

avoided the Umbraco issue.

 Webcasts and Whitepapers on secure development offer a wealth of

knowledge

 A good starting point – Security in the .NET Framework

 http://msdn.microsoft.com/en-us/library/fkytk30f.aspx

Vulnerabilities IN the framework

 So you’ve written a web app based around a framework...

 The code has been peer reviewed

 The application has been tested by a third party

 Everything is happy days

 Now keep an eye on the intertoobz.

 Vulnerabilities within the framework itself can

compromise the integrity of your application

 Example: Zend XXE bug

Misconfiguration

 Information disclosure is bad for you.

 While it might not be a vulnerability as such...

 It shows the attacker where to swing the hammer...

 Remember to lock down your production

 Implementations!

 Example: Don’t forget to turn off debug...

A quick recap – Dos and Don’ts

 Do think things through, understand what your code and

framework of choice is doing.

 Embrace your framework

 Use the available filtering and security routines where available.

OWASP ESAPI is a good choice where said routines are not available,

or a different framework entirely...

 Implement secure coding practices

 Do -NOT- include 3rd party code and plugins

 Less code, less problems. It’s as simple as that.

 Have your code peer-reviewed

 Have your application pen-tested

Try to avoid horrible software.

What to look for in a framework:

 Is it fit for purpose?

 Security Features

 Good documentation

 Bonus points for brilliant documentation

 Secure development guidelines

 If there were bugs released, how did the vendor respond?

 Eg – Zend’s prompt patching of the XXE bug.

Remain Vigilant and Be Pedantic

To design, deliver and operate a web application securely,

it’s key to:

 Be pedantic about your implementations

 Double check all configs before going into prod

 Probably a good idea to remove README, INSTALL, LICENSE etc. as

well...

 Be vigilant when writing new code

 Think ‘who could potentially mess with this’ and go from there...

 Kick your rookies until they understand.

 Feed and Water – you have ops guys for a reason

 Keep things up to date.

 Have a penetration test done by a reputable company

Fin.

 Questions? Comments?

 Denis Andzakovic – denis.andzakovic@security-assessment.com

Security-Assessment.com are looking for Pen-Testers. Got skills?

Give us a call.

