
Cloud Catastrophes
and how to avoid them

Who?
Mike Haworth

 Nope

Works for: Insomnia Security

Bio: Extensive biographical information Extensive biographical information
Extensive biographical information Extensive biographical information Extensive
biographical information Extensive biographical information Extensive
biographical information Extensive biographical information Extensive
biographical information Extensive biographical information Extensive
biographical information Extensive biographical information Extensive
biographical information Extensive biographical information Extensive
biographical information Extensive biographical information Extensive
biographical information Extensive biographical information

It is a big topic

Cloud
Security

This talk

Theme
Many issues we see in Cloud environments are due to missing some of the
mindshift required to do things the ‘Cloudy’ way

1. Global pools of identifiers -> Hijacking of orphaned resources
2. Cloud APIs are public -> Cred disclosure can be catastrophic
3. Gaps in knowledge of cloud auth models -> Gaps in Auth

Resource Hijacking

img.blah.com

AWS accnt: blah.com

img.blah.com.s3.amazonaws.com

blah.com

AWS accnt: attacker

Resource Hijacking

img.blah.com

AWS accnt: blah.com

img.blah.com.s3.amazonaws.com

blah.com

AWS accnt: attacker

Resource Hijacking

img.blah.com

blahimages.s3.amazonaws.com

blah.com

AWS accnt: blah.com AWS accnt: attacker

img.blah.com.s3.amazonaws.com

Resource Hijacking
So removing a resource that you need is a basic error

But sometimes basic errors .. can lead to code exec

Unclaimed bucket -> code exec
Install script pulls binary from unclaimed S3 bucket

https://hackerone.com/reports/399166

Resource Hijacking
The namespace for many cloud resources is global

- If the identifier is user controlled AND
- Another party is able to register that name
- Then the attacker could serve their content to clients that visit that domain

Resource Hijacking

Source: https://github.com/EdOverflow/can-i-take-over-xyz

Service Hijackable?

AWS S3 Yes

AWS Cloudfront Edge case

Azure Webhosting Yes

Heroku Edge case

Google Cloud Storage No

Mitigating Hijacking
1. Keep DNS and Cloud resources in sync to prevent “dangling” resources
2. Automate a mechanism of tracking DNS and cloud assets

Enumeration of S3 Buckets
Don’t assume that because a bucket is behind a CDN that the name can’t be
discovered

1. Public buckets will serve a torrent file if you append “?torrent” (torrent file
contains the bucket name)

2. Errors may include the name

If the bucket name is discovered attacker can check for write access & dir listing

https://medium.com/@localh0t/unveiling-amazon-s3-bucket-names-e1420ceaf4fa

2. Credential Disclosure

One common way AWS credentials are disclosed is Server Side Request
Forgery (SSRF) against the AWS metadata service

Server Side Request Forgery (SSRF)
Attacker causes server to make an HTTP request

Its most useful when the result is displayed to the attacker

Webserver internal
boxclient

Application functionality where SSRF is common
Common sources of SSRF

- XML parsing (XXE)
- PDF / page conversion functionality
- Application proxying (e.g. API gateway)

Sometimes useful

- Image uploads (may accept inline file OR a URL)
- Web hooks

What is the Metadata Service
Cloud services need a mechanism to populate instances with configuration

 E.g SSH key

They use an internal service where instances can request this data

 E.g. AWS uses http://169.254.169.254/latest/meta-data

Other services have equivalent URLs

Listing: https://gist.github.com/BuffaloWill/fa96693af67e3a3dd3fb

Trivial Example
1. Attacker says: I want a PDF of this URL:

http://169.254.169.254/latest/meta-data/iam/security-credentials/instanceRole

2. EC2 instance fetches page and returns the result as a PDF

EC2
instance

Metadata
serviceAttacker

PDF Contains:

Attacker can import these credentials into the AWS CLI and perform actions with
the rights of the instanceRole

Trivial Example cont.
{

 "Code" : "Success",

 "LastUpdated" : "2019-04-26T09:00:42Z",

 "Type" : "AWS-HMAC",

 "AccessKeyId" : "ASIAIB[redacted]ZZ",

 "SecretAccessKey" : "22oRmA[redacted]F2IJJ",

 "Token" : "AAoDZZdzEOv//////[redacted]",

 "Expiration" : "2019-04-26T16:00:16Z"

}

Bypassing Anti-SSRF measures
An API gateway

1. Configuration step
- Setup backend API URL
- Setup frontend URL, so request is passed to backend URL

2. API Gateway is in service

- Request comes in, DNS lookup for domain in backend URL
- HTTP request to backend URL

Bypassing Anti-SSRF measures
In step one there’s a sanity check of the backend URL

169.254.169.254 is not permitted

Any host the resolves to 169.254.169.254 is also not permitted :(

Normal use 1

API Proxy

Metadata
service

Admin

Public User

API backend
1.1.1.1

Use a.com

All good!

IP for a.com? Its: 1.1.1.1

DNS server

Check that’s reachable

ok!

Normal use 2

API Proxy

Metadata
service

Admin

Public User

API backend
1.1.1.1

IP for a.com? Its: 1.1.1.1

DNS server

a.com / yay

yay

a.com / yay

yay

Attack attempt 1

API Proxy

Metadata
service

Admin

Public User

API backend

Use x.com

Hell no!

IP for x.com? Its: 169.254.169.254

Attacker’s
DNS server

Attack Attempt 2.

API Proxy

Metadata
service

Admin

Public User

API backend
1.1.1.1

Use x.com

All good!

IP for x.com? Its: 1.1.1.1

Attacker’s
DNS server

Check that’s reachable

ok!

Second DNS request returns metadata IP

API Proxy

Metadata
service

Admin

Public User

API backend
1.1.1.1

IP for x.com? Its: 169.254.169.254

Attacker’s
DNS server

x.com/latest

meta-data

Mitigating Impact of SSRF in Cloud
Options:

- Avoid putting API keys in /user-data scripts etc

[1] https://www.slideshare.net/AmazonWebServices/detecting-credential-compromise-in-aws-sec389-aws-reinvent-2018

Mitigating Impact of SSRF in Cloud
Options:

- Avoid putting API keys in /user-data scripts etc
- Implement an IAM policy where use of creds is IP restricted [1]

[1] https://www.slideshare.net/AmazonWebServices/detecting-credential-compromise-in-aws-sec389-aws-reinvent-2018

Mitigating Impact of SSRF in Cloud
Options:

- Avoid putting API keys in /user-data scripts etc
- Implement an IAM policy where use of creds is IP restricted [1]
- Implement a proxy that whitelists by user agent [1]

[1] https://www.slideshare.net/AmazonWebServices/detecting-credential-compromise-in-aws-sec389-aws-reinvent-2018

Mitigating Impact of SSRF in Cloud
Options:

- Avoid putting API keys in /user-data scripts etc
- Implement an IAM policy where use of creds is IP restricted [1]
- Implement a proxy that whitelists by user agent [1]
- Trigger alerts when creds used from unknown IPs [1]

[1] https://www.slideshare.net/AmazonWebServices/detecting-credential-compromise-in-aws-sec389-aws-reinvent-2018

3. Authentication and Trust Relationships

Authentication and Trust Relationships
Scenario:

My rad dev shop starts off with just me and Joe

We both have admin access in AWS coz, we have like 1 customer

..

4 years later

Things are a bit more hectic, 10 developers, lots of customers

So we enabled MFA on all developer accounts, good to go!

API Keys
Those developer API keys have full access to the environment

Developers need the access to troubleshoot, so can’t just segment per customer

What if a developer laptop is compromised or creds are accidentally disclosed?

API Keys
There are a lot of ways an API key could be exposed

API Keys
There are a lot of ways an API key could be exposed

You just don’t want it to be a “game over” event.

Using AssumeRole to enforce MFA
Admin starts in a “bastion” account with no rights

Then use AssumeRole to gain admin rights

Using AssumeRole to enforce MFA

IAM
Users

Group:
Can Elevate

Role:
Admin

Using AssumeRole to enforce MFA

IAM
Users

Group:
Can Elevate

Role:
Admin

Policy allowing AssumeRole applied to group

Using AssumeRole to enforce MFA

IAM
Users

Group:
Can Elevate

Role:
Admin

Policy allowing AssumeRole applied to group

Trust relationship requiring MFA applied to role

How to 2FA API access overview
1. Enable MFA in AWS console for admins

How to 2FA API access overview
1. Enable MFA in AWS console for admins
2. Create a group ‘can-elevate’, put your admins in this group

How to 2FA API access overview
1. Enable MFA in AWS console for admins
2. Create a group ‘can-elevate’, put your admins in this group
3. Grant ‘can-elevate’ the right to AssumeRole

How to 2FA API access overview
1. Enable MFA in AWS console for admins
2. Create a group ‘can-elevate’, put your admins in this group
3. Grant ‘can-elevate’ the right to AssumeRole
4. Create a role ‘admin’ that trusts members of ‘can-elevate’ and requires MFA

How to 2FA API access overview
1. Enable MFA in AWS console for admins
2. Create a group ‘can-elevate’, put your admins in this group
3. Grant ‘can-elevate’ the right to AssumeRole
4. Create a role ‘admin’ that trusts members of ‘can-elevate’ and requires MFA
5. Setup AWS CLI so it prompts for MFA code

Ref: https://blog.jayway.com/2017/11/22/aws-cli-mfa/

IAM
Users

Group:
Can Elevate

Role:
Admin

Policy allowing AssumeRole applied to group

Trust relationship requiring MFA applied to role

Configure CLI to prompt for MFA
In .aws/credentials theres a user mike-admin

In .aws/config we add

End result is we get a prompt for MFA code

IAM Policy is Very Flexible
Because IAM is very flexible there are many ways to segment trust

But there are also many ways to make mistakes

Choose the simplest model that fits with how you work

IAM = Identity and Access Management

Reviewing IAM Policies
Sometimes IAM policy is obviously too permissive

Example from a ScoutSuite[1] IAM audit finding

[1] https://github.com/nccgroup/ScoutSuite

IAM is complicated cont.
But it is not always that obvious

This policy was intended to grant access to all S3

functionality, except 2 delete perms

Source: https://medium.com/edge-security/abusing-aws-cross-account-relationships-3b36a111b494

IAM is complicated cont.
But it is not always that obvious

This policy is intended to grant access to all S3

functionality, except 2 delete perms

Actually it grants admin rights

Source: https://medium.com/edge-security/abusing-aws-cross-account-relationships-3b36a111b494

Auditing IAM policy
Doing this manually in a complex environment can be daunting

Cloudmapper’s web of trust feature can help visualise IAM trust relationships

https://github.com/duo-labs/cloudmapper

Summary
1. Global pools of identifiers -> Hijacking of orphaned resources

 Mitigation: monitor DNS for orphaned resources

2. Cloud APIs are public -> Cred disclosure can be catastrophic

 Mitigation: Proxy access to metadata services

3. Gaps in knowledge of cloud auth models -> Gaps in Auth

 Mitigation: MFA admin CLI users and leverage tools to analyse complex
policy

Stepping back
As mentioned there is a lot to cover and this talk was just a small part

Here’s a quick security todo list (Basic and boring but that’s where you start)

1. Leverage the built-in tools to review IAM security
- Use ‘credential report’ to find unused accounts and remove them
- Make that security status page happy!
- Use “access advisor” tab to sanity check access

Stepping back
2. Security groups and VPC ACLs

- Are there any ‘allow all’ rules e.g. for SSH or RDP?

3. S3 Buckets

- Do all the buckets marked ‘public’ need to be?

New policies lets you prevent public buckets at account or per bucket level

- Can you prevent public access account wide?
- Can you prevent public access on this bucket?

https://aws.amazon.com/blogs/aws/amazon-s3-block-public-access-another-layer-of-protection-for-your-a
ccounts-and-buckets/

Thanks
OWASP NZ

Everyone at Insomnia Security

