Bt —n-
Managing DDoS Attacks

Kevin Nassery

Managing Consultant, Cigital
Faculty, IANS Research

kevin@nassery.org | knassery@cigital.com
twitter: @knassery

me

Former VP, Assessment Services @ US Bank where |
acted as technical lead for the DDoS response efforts

Disclosure: This presentation is independent from my efforts at US Bank, and will not have any detail regarding the bank’s
response efforts or DDoS defenses

Currently Managing Consultant at Cigital & IANS Faculty
Member

Background in performance engineering, systems
administration, network engineering, network security,
security architecture, penetration testing, app sec...

Based in Minneapolis

talk

Resource depravation attacks aimed at overwhelming a
service from multiple sources

Focus on public web services using HTTP/HTTPS

Network layer attacks like SYN Flooding, UDP flooding
against DNS, and others are still happening too

Mechanics of both attacking and defending

The unique challenge of the service exposure being the
vulnerability itself, you MUST live in a state of

vulnerability.

arms race / life-cycles

Automate Detect
Attack Attack

R 7

Attack to Generate Stop Analyze

Remain Traffic Attack Attack
Effective

Offense Life-cycle Defense Life-cycle

attacker perspective

Adapt Attack

» Source Rotation
« Change “signature”

* Make look more
like real transactions

Measure Impact

- Site
responsiveness

» Transaction
capability

High-level Target
Selection

Generate Traffic

* Overwhelm and
Impact Target

Detailed analysis
to identify a
transaction cost

Automate
transaction tool

« Distributed control

* Make individual
transactions look
like real transaction
base

Best attack against interactive web site
would be infinite number of human
users using the site as intended

Making the automated tool indiscernible
from legitimate transactions is the
hardest piece for the attacker

Good attackers iterate, adapt, and
persist

Relatively equal footing between offense
and defense

Attacker goal is impact, not
sophistication

The mechanical advantage an attacker
has is a disproportionate client
computing power

defender perspective

Develop
Control
Maturity

Baseline In order to discriminate attack tra_ffic you
Adapt P have to know what your real traffic looks
Sl Traffic like
» Capacity is not an effective control
« Control capability must be mature in the
following ways:
« protocol visibility

Imol Identify » flexibility to filter patterns
t Gontrol Impact as + limited perf It
ontrol DDoS imited performance penalty
« generally as close to the attacker
as possible

* You must be creative with your ability to
adapt controls
* Use your calm times wisely
Develop a Measure « Don’t assume attacker sophistications
Soio! Irigee when you don’t know where you are in
' Analyze the cycle.
Traffic

Character
istics

Characterize Find the pattern to Test pattern

response analysis

Develop

Anomaly offending distinguish against
transaction good vs bad baseline
traffic

. Rinse &
repeat

The goal is to identify a pattern, for which you can implement a filter, that best differentiates
attack traffic from legitimate traffic.

A baseline of “normal” is almost essential.

Network engineers who are most familiar with sniffers, tend to lean towards network layer
analysis (bandwidth, connections/second)

« This can be just wrong (most effective app attacks drop total bandwidth)
« HTTP pipelining, and tunneling can hurt correlation of connects: requests
« Think application level, http.requests/second vs connections

If you have good protocol visibility (SSL), a good capture architecture (quickly go from edge to
analyst’s workstation), and good people (understand traffic and controls) this is pretty clear.

Experience helps long term control strategy.

Response Analysis Examples, what are my top User-Agents?

“tshark -c 100 -R 'http.request.method==
| sort -nr’

RPRRPRPRRPRPRPRRPRPRPRPRPREPRPREPREPRPREREPNNNNNNNNWUIUVIO OO N O™

sort |

Mozilla/5.
Mozilla/5.
Mozilla/5.
Mozilla/5.
Mozilla/5.
Mozilla/4.
Mozilla/5.
Mozilla/4.
Mozilla/4.
Mozilla/5.
Mozilla/5.
Mozilla/5.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.

Mozilla/5.
Mozilla/5.
Mozilla/5.
Mozilla/5.

Mozilla/5.
Mozilla/5.
Mozilla/5.
Mozilla/5.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.
Mozilla/4.

uniq -c

@ (Windows NT

@ (Windows NT 6.1; WOWo4;

@ (Macintosh;

@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;

@ (compatible;
@ (compatible;

@ (Windows NT
@ (Macintosh;

@ (Linux; Android 4.
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;
@ (compatible;

5.1;

Intel
MSIE
MSIE
MSIE
MSIE
MSIE
MSIE
MSIE

5.1;
Intel

MSIE
MSIE
MSIE
MSIE
MSIE
MSIE
MSIE
MSIE
MSIE
MSIE
MSIE

H

"GET"' -Tfields -e http.user_agent -r file

rv:15.0) Gecko/20100101 Firefox/15.0.1

rv:15.0) Gecko/20100101 Firefox/15.0.1

@ (Macintosh; U; Intel Mac 0S X 10_5_7; en-us) AppleWebKit/530.17 (KHTML, 1like Gecko) Version/4.0 Safari/530.17
@ (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)

@ (Macintosh; Intel Mac 0S X 10_7_4) AppleWebKit/534.57.2 (KHTML, 1like Gecko) Version/5.1.7 Safari/534.57.2

@ (compatible; MSIE 8.0; Windows
@ (compatible; MSIE 9.0; Windows
@ (compatible; MSIE 8.0; Windows
@ (compatible; MSIE 8.0; Windows
@ (compatible; MSIE 9.0; Windows
@ (Windows NT 5.1) AppleWebKit/537.1 (KHTML, 1like Gecko) Chrome/21.0.1180.89 Safari/537.1

Mac 0S X 10_5_8) AppleWebKit/534.50.2 (KHTML, like Gecko) Version/5.0.6 Safari/533.22.3

8.0;

LO\I\IOOOO
®®®®®

’
b
)
b
’

9 0;

.4

-

-

NN N 0000000000000 0SS
(SRS RIS NSRS RO N

e we e we we Wewe we W

Windows
Windows
Windows
Windows
Windows
Windows
Windows

Windows
Windows
Windows
Windows
Windows
Windows
Windows

NT 5.1;
NT 6.1;
NT 5.1;
NT 6.1;
NT 6.1;

NT
NT
NT
NT
NT
NT
NT

NT
NT
NT
NT
NT
NT
NT

6.
5
5
6.
6.
6.
6.

mmmmmmm

®HHHI—‘I—‘

1; Trident/4.0; SLCCZ;

HH®®®HH

’

b
’
’
)

Trident/4.0; Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) ;
WOW64; Trident/5.0; FunWebProducts; BOIE9;ENUSMSNIP)

Trident/4.0; GTB7.4; .NET CLR 1.0.3705; .NET CLR 1.1.4322; Media Center PC 4
WOW64; Trident/4.0; SLCCZ2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
Trident/5.0)

NET

.NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.307
Trident/4.0; GTB7. 4 .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.
Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152;
WOWo4; Trident/S.O; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
WOW64; Trident/5.0; ie9rrdl)

; Tr1dent/5 @; BOIE9;ENUSSEM)

@ (Windows NT 6.1; WOW64) AppleWebK1t/537 4 (KHTML, 11ke Gecko) Chrome/22.0.1229.79 Safari/537.4

@ (Windows NT 6. 0) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0.1229.79 Safari/537.4

@ (Windows NT 6.0) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1

rv:10.0.2) Gecko/20100101 Firefox/10.0.2

Mac 0S X 10_8_1) AppleWebKit/536.25 (KHTML, 1ike Gecko) Version/6.0 Safari/536.25

LG-MS770 Bu11d/IMM76I) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Sa

’

b

)
’
’
’

Windows NT 5.1;

; Trident/4.0;
AOL 9.7; AOLBu11d 4343 .27, Wlndows NT 6.1; WOW64 Trident/4.0; SLCCZ
Windows NT 6.0; SLCC1;

Windows NT 5.1; GTB7.4;

WOW64; Trident/4.0; GTB7.4,; SLCCZ .NET CLR 2.0.50727; .NET CLR 3.5.30729; .
Tr1dent/4 @; SLCC2; .NET CLR 2.0. 5@727, .NET CLR 3.5. 30729 .NET CLR 3.0. 307
Wowe4; Trident/4.®; GTB7.4; SLCC1; .NET CLR 2.0.50727, Media Center PC 5.0;

Trident/4.0; SLCC1; .NET CLR 2.0.50727; MS-RTC LM 8; .NET CLR 3.5.30729; .NE
GomezAgent 3.0)

Trident/4.0; GTB7.4; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.450
NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.4506.2152;
.NET CLR 2.0.50727; .N
NET CLR 2.0.50727; Media Center PC 5. 0 .NET CLR 3.5.30729; .NET CLR
.NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET

.NET CLR 2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.0.4506.2152; .NET CLR 3.5.

Response Analysis Examples, what are my top requested objects?

“tshark -c 5000 -R 'http.request.method=="GET"' -Tfields -e http.request.uri -r
file.cap | sort | uniq -c | sort -nr¢

159 /
156
118
104
101
100
100
97
97
96
96
94
93
91
91
91 /foresee

tshark -c 5000 -R "http.request.method=="GET"' -Tfields -e http.referer -r
file.cap | sort | uniq -c | sort -nr

Extracting TCP Payload for additional analysis:

“tshark -c 1 -R "tcp.reassembled.data contains "gif"' -Tfields -e ip.src -e
tcp.reassembled.data -r file.cap”

Want to use your favorite XML/Xpath tools? Say hello to PDML:

“tshark -c 1 -Tpdml -r file.cap”

<?xml version="1.0"7>
<?xml-stylesheet type="text/xsl" href="pdmlZhtml.xs1"?>
<!-- You can find pdmlZhtml.xsl in /Applications/Wireshark.app/Contents/Resources/share/wireshark or at http://
anonsvn.wireshark.org/trunk/wireshark/pdml2html.xsl. -->
<pdml version="0" creator="wireshark/1.9.0-SVN-45942" time="Tue Apr 15 23:00:24 2014" capture_file="">
Capturing on en0
<packet>
<proto name="geninfo" pos="0" showname="General information" size="66">
<field name="num" pos="0" show="1" showname="Number" value="1" size="66"/>
<field name="1en" pos="0" show="66" showname="Frame Length" value="42" size="66"/>
<field name="caplen" pos="0" show="66" showname="Captured Length" value="42" size="66"/>
<field name="timestamp" pos="0" show="Apr 15, 2014 23:00:24.982234000 CDT" showname="Captured Time"
value="1397620824.982234000" size="66"/>
</proto>
<proto name="frame" showname="Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0"
size="66" pos="0">
<field name="frame.interface_id" showname="Interface id: 0" size="0" pos="0" show="0"/>
<field name="frame.encap_type" showname="Encapsulation type: Ethernet (1)" size="0" pos="0" show="1"/>

</field>
</field>
</proto>
</packet>

B
attacking pitfalls

- Automation errors
« Errors in protocol compliance
- Bad whitespace
+ spelling
 capitalization of headers/request
* not calculating calculated fields (request length/etc)
« Uncommon request parameters
* user-agent, consistent request sizes, rare or exotic presence of headers
« Oddly consistent or missing “referrer”
« Human vs Machine

- It's very difficult to make request timings look human and remain effective, and it's rarely done.
(Humans don’t run 500 searches per minute)

- It's also more complex for attacker tools to replicate the business logic (humans load the main
page before they run a career search)

- Insufficient confidentiality of control mechanisms

- Often times the resource pool is infiltrated or a compromised system is analyzed and the control
mechanism is discovered.

- Depending on the circumstances defenders often know the specific attacks before they’re being
launched.

- Insufficient Source Rotation

- Contrary to some contentions, source filtering is only ineffective in transaction based systems IF
the attacker reserves sources to rotate.

- Up against effective threat intelligence (sometimes)

B
defending pitfalls

Making assumptions about attacker
- Attack only needs to be complex enough to cause impact
« Successful attackers start simple, and get complex causing the maximum lifecycle of impact

- We generally have very little reliable information on threats, but sometimes because it's the only
information we have prior to attack it can unbalance our defense strategy

Lack of organization capability to coordinate response

- To defend the system, and develop controls you need comprehensive understanding of network,
app, and system architecture

- Once a pattern is recognized you need people who can think creatively about how to implement a
control in the best space based on that pattern

Limited control maturity
Lack of protocol visibility (SSL) at network layer means coordinating a server level response
< Not in position to quickly sample and analyze traffic
« Lack of in-band pattern filtering mechanisms
Bad causal analysis
+ Does bandwidth go up or down during an application layer DDoS?

- Is the web server slow because it’'s serving more concurrent connections, or is it serving more
concurrent connections because it’'s slow?

Bad knowledge of normal

- If you don’t understand the business as usual traffic mechanics of your environment, response is
much harder

- The need for an up to date non-attack baseline traffic sample can be underemphasized
Get wrapped around “detection.”

evolving defense

Defensive programming around heavy transactions:

Captcha’s, Tokens (ala CSRF), Business Logic enforcement, moving heavy operations
behind authentication

Be aware of security control DoS attacks like account lock-out, IPS
filtering based on unauthenticated src-ip (land attack, syn flood)

Strong in-band filtering solutions, the closer to the source the better

Robust network and infrastructure layer protection for common attacks
(DNS, UDP, Syn/Connect Flooding) to force the ARMS race into that app

space

Be prepared to quickly get real world data samples into hands of analysts
(Data Access Networks, fast sample availability, good bandwidth to end
users).

Buffer solution with excess capacity, but don’t try to scale up to DDoS

Be creative, this is very much a problem solving battle having the right
people responding is more important than owning the right products

Understand the cost of unavailability, and budget defenses accordingly.

Table-top exercises regularly, and real world attack/defense in a
scheduled window with isolation between teams.

