
kevin@nassery.org | knassery@cigital.com
twitter: @knassery

Managing DDoS Attacks

Kevin Nassery

Managing Consultant, Cigital
Faculty, IANS Research

me
•  Former VP, Assessment Services @ US Bank where I

acted as technical lead for the DDoS response efforts
•  Disclosure: This presentation is independent from my efforts at US Bank, and will not have any detail regarding the bank’s

response efforts or DDoS defenses

• Currently Managing Consultant at Cigital & IANS Faculty
Member

• Background in performance engineering, systems
administration, network engineering, network security,
security architecture, penetration testing, app sec...

• Based in Minneapolis

talk
• Resource depravation attacks aimed at overwhelming a

service from multiple sources
•  Focus on public web services using HTTP/HTTPS
• Network layer attacks like SYN Flooding, UDP flooding

against DNS, and others are still happening too
• Mechanics of both attacking and defending
•  The unique challenge of the service exposure being the

vulnerability itself, you MUST live in a state of
vulnerability.

arms race / life-cycles

Automate
Attack

Generate
Traffic

Adapt
Attack to
Remain
Effective

Detect
Attack

Analyze
Attack

Stop
Attack

VS

Offense Life-cycle Defense Life-cycle

attacker perspective

High-level Target
Selection

Detailed analysis
to identify a

transaction cost

Automate
transaction tool
• Distributed control
• Make individual

transactions look
like real transaction
base

Generate Traffic
•  Overwhelm and

Impact Target

Measure Impact
•  Site

responsiveness
•  Transaction

capability

Adapt Attack
•  Source Rotation
•  Change “signature”
•  Make look more

like real transactions

•  Best attack against interactive web site
would be infinite number of human
users using the site as intended

•  Making the automated tool indiscernible
from legitimate transactions is the
hardest piece for the attacker

•  Good attackers iterate, adapt, and
persist

•  Relatively equal footing between offense
and defense

•  Attacker goal is impact, not
sophistication

•  The mechanical advantage an attacker
has is a disproportionate client
computing power

defender perspective

Develop
Control
Maturity

Baseline
Normal
Traffic

Identify
Impact as

DDoS

Measure
Impact

Analyze
Traffic

Character
istics

Develop a
Control

Implemen
t Control

Adapt
Control

•  In order to discriminate attack traffic you
have to know what your real traffic looks
like

•  Capacity is not an effective control
•  Control capability must be mature in the

following ways:
•  protocol visibility
•  flexibility to filter patterns
•  limited performance penalty
•  generally as close to the attacker

as possible
•  You must be creative with your ability to

adapt controls
•  Use your calm times wisely
•  Don’t assume attacker sophistications

when you don’t know where you are in
the cycle.

response analysis

•  The goal is to identify a pattern, for which you can implement a filter, that best differentiates
attack traffic from legitimate traffic.
•  A baseline of “normal” is almost essential.

•  Network engineers who are most familiar with sniffers, tend to lean towards network layer
analysis (bandwidth, connections/second)
•  This can be just wrong (most effective app attacks drop total bandwidth)
•  HTTP pipelining, and tunneling can hurt correlation of connects: requests
•  Think application level, http.requests/second vs connections

•  If you have good protocol visibility (SSL), a good capture architecture (quickly go from edge to
analyst’s workstation), and good people (understand traffic and controls) this is pretty clear.

•  Experience helps long term control strategy.

Characterize
Anomaly

Find the
offending

transaction

Develop
pattern to
distinguish

good vs bad
traffic

Test pattern
against
baseline

Rinse &
repeat

Response Analysis Examples, what are my top User-Agents?	
	
“tshark -c 100 -R 'http.request.method=="GET"' -Tfields -e http.user_agent -r file	
 | sort | uniq -c | sort –nr”	
	
 18 Mozilla/5.0 (Windows NT 5.1; rv:15.0) Gecko/20100101 Firefox/15.0.1	
 9 Mozilla/5.0 (Windows NT 6.1; WOW64; rv:15.0) Gecko/20100101 Firefox/15.0.1	
 7 Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_7; en-us) AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Safari/530.17	
 6 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)	
 6 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/534.57.2 (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2	
 6 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) ; .NET CLR 1.1.	
 5 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; FunWebProducts; BOIE9;ENUSMSNIP)	
 5 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.4; .NET CLR 1.0.3705; .NET CLR 1.1.4322; Media Center PC 4.0; .NET	
 3 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.3072	
 2 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)	
 2 Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1	
 2 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_5_8) AppleWebKit/534.50.2 (KHTML, like Gecko) Version/5.0.6 Safari/533.22.3	
 2 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET	
 2 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.4; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022;	
 2 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR	
 2 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.3072	
 2 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.3072	
 1 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; ie9rrdl)	
 1 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0; Trident/5.0; BOIE9;ENUSSEM)	
 1 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0.1229.79 Safari/537.4	
 1 Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0.1229.79 Safari/537.4	
 1 Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1	
 1 Mozilla/5.0 (Windows NT 5.1; rv:10.0.2) Gecko/20100101 Firefox/10.0.2	
 1 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_1) AppleWebKit/536.25 (KHTML, like Gecko) Version/6.0 Safari/536.25	
 1 Mozilla/5.0 (Linux; Android 4.0.4; LG-MS770 Build/IMM76I) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Safari/535	
 1 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; GTB7.4; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR	
 1 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Medi	
 1 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; WOW64; Trident/4.0; GTB7.4; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR	
 1 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727; MS-RTC LM 8; .NET CLR 3.5.30729; .NET CLR 3.	
 1 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; GomezAgent 3.0)	
 1 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.4; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152;	
 1 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.4506.2152; InfoPat	
 1 Mozilla/4.0 (compatible; MSIE 8.0; AOL 9.7; AOLBuild 4343.27; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3	
 1 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.5.30729; .NET CLR 3.0.306	
 1 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; GTB7.4; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.	
 1 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729) 	
 	

Response Analysis Examples, what are my top requested objects?	
	
“tshark -c 5000 -R 'http.request.method=="GET"' -Tfields -e http.request.uri -r
file.cap | sort | uniq -c | sort –nr“	

Response Analysis Examples, what are my typical referers?	
	
tshark -c 5000 -R 'http.request.method=="GET"' -Tfields -e http.referer -r
file.cap | sort | uniq -c | sort –nr 	
	
	
Extracting TCP Payload for additional analysis:	
“tshark -c 1 -R 'tcp.reassembled.data contains "gif"' -Tfields -e ip.src -e
tcp.reassembled.data -r file.cap”	
	
	

Want to use your favorite XML/Xpath tools? Say hello to PDML: 	
	
“tshark –c 1 –Tpdml –r file.cap”	
	
<?xml version="1.0"?>	
<?xml-stylesheet type="text/xsl" href="pdml2html.xsl"?>	
<!-- You can find pdml2html.xsl in /Applications/Wireshark.app/Contents/Resources/share/wireshark or at http://
anonsvn.wireshark.org/trunk/wireshark/pdml2html.xsl. -->	
<pdml version="0" creator="wireshark/1.9.0-SVN-45942" time="Tue Apr 15 23:00:24 2014" capture_file="">	
Capturing on en0	
<packet>	
 <proto name="geninfo" pos="0" showname="General information" size="66">	
 <field name="num" pos="0" show="1" showname="Number" value="1" size="66"/>	
 <field name="len" pos="0" show="66" showname="Frame Length" value="42" size="66"/>	
 <field name="caplen" pos="0" show="66" showname="Captured Length" value="42" size="66"/>	
 <field name="timestamp" pos="0" show="Apr 15, 2014 23:00:24.982234000 CDT" showname="Captured Time"
value="1397620824.982234000" size="66"/>	
 </proto>	
 <proto name="frame" showname="Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0"
size="66" pos="0">	
 <field name="frame.interface_id" showname="Interface id: 0" size="0" pos="0" show="0"/>	
 <field name="frame.encap_type" showname="Encapsulation type: Ethernet (1)" size="0" pos="0" show="1"/>	
 …	
…	
	
 </field>	
 </field>	
 </proto>	
</packet>	
	

attacking pitfalls
•  Automation errors

•  Errors in protocol compliance
•  Bad whitespace
•  spelling
•  capitalization of headers/request
•  not calculating calculated fields (request length/etc)

•  Uncommon request parameters
•  user-agent, consistent request sizes, rare or exotic presence of headers
•  Oddly consistent or missing “referrer”

•  Human vs Machine
•  It’s very difficult to make request timings look human and remain effective, and it’s rarely done.

(Humans don’t run 500 searches per minute)
•  It’s also more complex for attacker tools to replicate the business logic (humans load the main

page before they run a career search)
•  Insufficient confidentiality of control mechanisms

•  Often times the resource pool is infiltrated or a compromised system is analyzed and the control
mechanism is discovered.

•  Depending on the circumstances defenders often know the specific attacks before they’re being
launched.

•  Insufficient Source Rotation
•  Contrary to some contentions, source filtering is only ineffective in transaction based systems IF

the attacker reserves sources to rotate.
•  Up against effective threat intelligence (sometimes)

defending pitfalls
•  Making assumptions about attacker

•  Attack only needs to be complex enough to cause impact
•  Successful attackers start simple, and get complex causing the maximum lifecycle of impact
•  We generally have very little reliable information on threats, but sometimes because it’s the only

information we have prior to attack it can unbalance our defense strategy
•  Lack of organization capability to coordinate response

•  To defend the system, and develop controls you need comprehensive understanding of network,
app, and system architecture

•  Once a pattern is recognized you need people who can think creatively about how to implement a
control in the best space based on that pattern

•  Limited control maturity
•  Lack of protocol visibility (SSL) at network layer means coordinating a server level response
•  Not in position to quickly sample and analyze traffic
•  Lack of in-band pattern filtering mechanisms

•  Bad causal analysis
•  Does bandwidth go up or down during an application layer DDoS?
•  Is the web server slow because it’s serving more concurrent connections, or is it serving more

concurrent connections because it’s slow?
•  Bad knowledge of normal

•  If you don’t understand the business as usual traffic mechanics of your environment, response is
much harder

•  The need for an up to date non-attack baseline traffic sample can be underemphasized
•  Get wrapped around “detection.”

evolving defense
•  Defensive programming around heavy transactions:

•  Captcha’s, Tokens (ala CSRF), Business Logic enforcement, moving heavy operations
behind authentication

•  Be aware of security control DoS attacks like account lock-out, IPS
filtering based on unauthenticated src-ip (land attack, syn flood)

•  Strong in-band filtering solutions, the closer to the source the better
•  Robust network and infrastructure layer protection for common attacks

(DNS, UDP, Syn/Connect Flooding) to force the ARMS race into that app
space

•  Be prepared to quickly get real world data samples into hands of analysts
(Data Access Networks, fast sample availability, good bandwidth to end
users).

•  Buffer solution with excess capacity, but don’t try to scale up to DDoS
•  Be creative, this is very much a problem solving battle having the right

people responding is more important than owning the right products
•  Understand the cost of unavailability, and budget defenses accordingly.
•  Table-top exercises regularly, and real world attack/defense in a

scheduled window with isolation between teams.

