
1

Mobile Security chess board -
Attacks & Defense

Who Am I?

• Hemil Shah – hemil@espheresecurity.net
• Past experience

– HBO, KPMG, IL&FS, Net Square
• Interest

– Application security research (Web & Mobile)
• Contribution

– One of the contributor for OWASP Mobile Top 10
• Global Speaker & Trainer

– HITB, OWASP – EU, OWASP – India, SyScan, DeepSec, BreakPoint, HackCon, NullCon
• Published research

– Articles / Papers – Packstroem, etc.
– Tools – iAppliScan, FSDroid, DumpDroid, wsScanner, scanweb2.0, AppMap,

AppCodeScan, AppPrint etc.

hemil@espheresecurity.net
http://www.espheresecurity.com
Tweet - @espheresecurity

Mobile Apps

Market Share

Mobile Top 10 - OWASP

• Weak Server Side Controls

• Insecure Data Storage

• Insufficient Transport Layer Protection

• Unintended Data Leakage

• Poor Authorization and Authentication

• Broken Cryptography

• Client Side Injection

• Security Decisions Via Untrusted Inputs

• Improper Session Handling

• Lack of Binary Protections Contributor : Nvisium Security, HP Fortify, Andreas

Athanasoulias & Syntax IT, eSphere Security, Godfrey

Nolan and RIIS (Research Into Internet Systems), Arxan

Technologies
Ref - https://www.owasp.org/index.php/Mobile_Top_Contributions

Enterprise Mobile Cases

mailto:shreeraj@blueinfy.net
mailto:hemil@espheresecurity.net
http://www.espheresecurity.com/

2

E-commerce

• Typical application making server side calls

• Security issues and hacks
– Credit card and Private data storage with poor crypto

– SQLite hacks

– SQL injection over JSON

– Ajax driven XSS

– Several XSS with Blog component

– Several information leaks through JSON fuzzing

• Server side scan with tools/products failed

Banking Application

• Scanning application for vulnerabilities

• Typical banking running with middleware

• Vulnerabilities – Mobile interface
– Poor encoding to store SSN and PII information

locally

– Very sensitive transaction information stored
locally

– Default OS Behavior leaking information

– Credentials submitted in GET request

– Keys/session stored in keychain file

Social Application

• Social Application on multiple platforms
– Application leverages browser component as part

of the mobile

– Common code base for all platforms

– Vulnerable
• Bypass Profile validation (Logical) and unique device

installation

• Screenshot revealing sensitive information

• Default OS Behavior leaking information

• Presentation layer (XSS and CSRF)

• Unencrypted Communication channel

Postmortem

• One pattern in all the reviews - SOME
INFORMATION WAS STORED LOCALLY

• More than 99% of the application review has
the LOCAL STORAGE issue as we saw in stats.

• Server side and logical issues are still hard to
find but have biggest impact.

Mobile Threats and Risk

Attacks on Mobile
• No JailBreak Required

• Ease of attack -

Airports/Public places

3

Why should I worry?

• We have MDM in place

• We do not allow any JailBreak or rooted
device in our environment with MDM

• We have strict policy enforced and all our
devices are forced to have password lock

• May or may not have BYOD

• OS provides encryption

Mobile Attacks

• So What attacks are we talking about?

• Privacy becomes important along with the
Security in mobile space

• It is MOBILE so chances of loosing device or
someone getting physical access to it is
MUCH MUCH higher than the other devices

Exploitation

• Physical Theft

• Temporary physical access

• Malware

• Malicious Applications

• Lack of standardize security review process

• JailBreak/Rooted devices

• Information found in local storage with
default OS behavior –

• Changing OS behavior -

• Server side exploitation –

• XSS in Mobile Hybrid application –

What can be done???

 Technology Trends

Mobile Infrastructure

www mail

intranet
router

DMZ

Internet

VPN

Dial-up

Other

Office

s

Exchange

firewall

Database
RAS

../../Training/Mobile-Demos/LocalStorage_Cachedb/LocalStorage_Cachedb.htm
../../Training/Mobile-Demos/Server side IOS SQL injection/Server side IOS SQL injection.htm
../../Training/Mobile-Demos/XSS in IOS HTLM5 Application/XSS in IOS HTLM5 Application.htm
../../Training/Mobile-Demos/HiddenProxy App/HiddenProxy.htm
../../Training/Mobile-Demos/HTML5_XSS_Exploit/HTML5_XSS_Exploit.htm
../../Training/Mobile-Demos/SQLInjection Mobile/SQLInjection Mobile.htm

4

Mobile App Environment

Web

Server
Static pages only

(HTML,HTM, etc.)
Web

Client

Scripted

Web

Engine
Dynamic pages

(ASP,DHTML, PHP,

CGI, etc.)

ASP.NET on

.Net Framework,

J2EE App Server,

Web Services,

etc.

Application

Servers

And

Integrated

Framework

Internet DMZ Trusted

W

E

B

S

E

R

V

I

C

E

S

Mobile

SOAP/JSON etc.

DB

X

Internal/Corporate

Mobile Architecture

Presentation Layer

Business Layer

Data Access Layer
Authentication

Communication etc.

Runtime, Platform, Operating System Components

Server side

Components

Client side

Components

(Browser)

• HTML 5

• DOM

• XHR

• WebSocket

• Storage
• WebSQL

• Flash

• Flex

• AMF

• Silverlight • WCF

• XAML

• NET

• Storage

• JS

• Android

• iPhone/Pad

• Other

 Mobile

Game is complex – Chess

Challenges

Challenges

• Different code base

• Achieve things with single click

• Vendor review process - Not transparent –
Can we rely on it???

• Decrease transaction time

• Competition

• Rapid business requirement results in high
frequency of updates

Frequency of updates

• Very High compare to Web Applications

• Usually, 4-5 updates in a year for web
applications or even less at times

• Usually, 10-12 updates in mobile applications
or even more in some cases

• We all have accepted that application needs
to be reviewed before going to production –
DID WE???

5

Frequency of Updates

Application Name

Number of

Releases in

iOS

Number of

Releases in

Android

Facebook 19 34

Twitter 22 25

Chase Bank 9 2

eBay 9 4

Amazon 10 3

Temple Run 2 12 10

FB Messenger 12 10

Whatsapp 4 154

skype 8 6

Mobile Attacks

• So What attacks are we talking about?

• Privacy becomes important along with the
Security in mobile space

• It is MOBILE so chances of loosing device or
someone getting physical access to it is
MUCH MUCH higher than the other devices

Mobile Top 10 - OWASP

• Weak Server Side Controls

• Insecure Data Storage

• Insufficient Transport Layer Protection

• Unintended Data Leakage

• Poor Authorization and Authentication

• Broken Cryptography

• Client Side Injection

• Security Decisions Via Untrusted Inputs

• Improper Session Handling

• Lack of Binary Protections Contributor : Nvisium Security, HP Fortify, Andreas

Athanasoulias & Syntax IT, eSphere Security, Godfrey

Nolan and RIIS (Research Into Internet Systems), Arxan

Technologies
Ref - https://www.owasp.org/index.php/Mobile_Top_Contributions

• From the stats of eSphere data -

Top 5 vulnerability

0 10 20 30 40 50 60 70 80 90 100

Local Storage

Sensitive Information stored in
Logs/Default OS Behaviour

Copy/Paste enabled in sensitive fields -
Privacy issue

Cross Site Scripting

SQL Injection over JSON or other
streams

Mobile Attacks Weak Server Side Controls

6

Server Side Issues

• Most Application makes server side calls to
either web services or some other
component. Security of server side
component is equally important as client side

• Controls to be tested on the server side –
Security Control Categories for Server Side
Application– Authentication, Access
Controls/Authorization, API misuse, Path
traversal, Sensitive information leakage,

Server Side Issues

• Error handling, Session management,
Protocol abuse, Input validations, XSS, CSRF,
Logic bypass, Insecure crypto, DoS, Malicious
Code Injection, SQL injection, XPATH and
LDAP injections, OS command injection,
Parameter manipulations, BruteForce, Buffer
Overflow, HTTP response splitting, HTTP
replay, XML injection, Canonicalization,
Logging and auditing.

Insecure Data Storage

Insecure Storage

• How attacker can gain access

• Wifi

• Default password after jail breaking (alpine)

• Adb over wifi

• Physical Theft

• Temporary access to device

What

• What information

– Authentication Credentials

– Authorization tokens

– Financial Statements

– Credit card numbers

– Owner’s Information – Physical Address, Name,
Phone number

– Social Engineering Sites profile/habbits

– SQL Queries

Insufficient Transport Layer
Protection

7

Insecure Network Channel

• Easy to perform MiM attacks as Mobile
devices uses untrusted network i.e
open/Public WiFi, HotSpot, Carrier’s Network

• Application deals with sensitive data i.e.

• Authentication credentials

• Authorization token

• PII Information (Privacy Violation) (Owner Name,
Phone number, UDID)

Insecure Network Channel

• Can sniff the traffic to get an access to
sensitive data

• SSL is the best way to secure communication
channel

• Common Issues

• Does not deprecate HTTP requests

• Allowing invalid certificates

• Sensitive information in GET requests

Session token

Unintended Data Leakage

Unintended Data Leakage

• Platform issues – sandboxing or disable
controls

• Cache

• Logs, Keystrokes, screenshots etc.

• Temp files

• 3rd Party libs (AD networks and analytics)

Data Leakage

• Default OS behavior after iOS 4.0 to cache all
the URLS (Request/Response) in the local
storage in file named cache.db file

• Cache.db file is not encrypted

• By default, application takes last screenshot
and saves it in to file system when user
presses home button

8

Poor Authorization and
Authentication

Authorization & Authentication

• No password complexity specially on mobile

• Hidden/No Logout button

• Long session time out

• No account lock out

• Authorization flags or based on the local
storage

Broken Cryptography

Cryptography

• Broken implementation

• Hash/Encoding used in place of encryption

• Client side script in place of SSL

Client Side Injection

SQL Injection in Local database

• Most Mobile platforms uses SQLite as
database to store information on the device

• Using any SQLite Database Browser, it is
possible to access database logs which has
queries and other sensitive database
information

• In case application is not filtering input, SQL
Injection on local database is possible

9

Security Decisions Via Untrusted
Inputs

Untrusted Source

• Any input from client side which can be
modified

• Mainly authentication and authorization
decisions based on the untrusted input

• Easiest way for developer to solve complex
issues/functionality

• Attacker can get this information by either
reverse engineering application or by
checking local storage

 KeyChain Dumper

• Easy as running a command

• Upload on to server in /var directory

• Give execute permission

• Chmod +x /var/keychain_dumper

• Get all the keys
• ./keychain_dumper

Improper Session Handling

Improper Session

• Session is key for any application for
authorization

• Session is stored in binary format but can be
easily reversible

• Application is sending sensitive information
in GET request (Be it on HTTP or HTTPS)

Lack of Binary protection

10

Lack of Binary Protection

• Apple signs and encrypts all the binaries

• Still strings can be retrieved from the binary

• Storing Encryption and Decryption keys in
the client side is still a problem

Automation in Application
Reviews

Manual Review

• Looking for information in local storage
manually is really –

– Time Consuming

– Tedious

– Prone to be false negatives (how accurately you
can check files more than once in an hour and file
formats are different)

Manual Review - iOS

What do we need

• Automation!!!

• Automation!!!

• Automation!!!

• Automation!!!

• Automation!!!

• Unfortunately no complete automation is
available today BUT some of the tools which
can be handy are -

Snoop-it

• The only tool today to automate iOS
application reviews

• Very handy and gives perfect pointer where
to look for

• A long way to go for automation like web

../../Training/Mobile-Demos/IOS_Manual_Review/IOS_Manual_Review.htm

11

Snoop-it (Cont…)

• Snoop-it helps you monitor –

– File system access

– Keychain access

– HTTP(S) connections

– Access to sensitive API

– Debug outputs

– Tracing App internals

Snoop-it (Cont…)

• Along with Monitoring, snoop-it allows to -

– Fake hardware identifier

– Fake location/GPS data

– Explore and force display of
available ViewController

– List custom URL schemes

– List available Objective-C classes, objects and
methods

– Bypass basic jailbreak detection mechanisms

Snoop-it iAppliScan

• iAppliScan allows you to automate iOS
application review.

• Interesting features –

– Look for sensitive information in files/directories

– Find whether particular file exist or not

– Download file for further analysis

– Run external command

iAppliScan

Review without JailBreak

../../Training/Mobile-Demos/Snoop-it/Snoop-it.htm
../../Training/Mobile-Demos/iAppliScan/All_Functionality/iAppliScan.htm

12

Reviewing without jailbreaking

• Is it really possible to review application with
out jailbreaking ?

• “YES”

• “YES”

• “YES”

• “YES”

Reviewing without jailbreaking

• Plenty of tools available (Specially for
Forensic) to brows the application directory
without jailbreaking.

• iFunBox allows to view files on the device
without jailbreak

• Displays application’s permissions

• Browse the installed application directory

Reviewing without jailbreaking

• Copy the entire application directory multiple
times

• Look for sensitive information in the files

• Use Proxy on non-jailbreak device to check all
server side attacks.

Reviewing with iFunbox

Automation in Android

Manual Review - Android

../../Training/Mobile-Demos/iFunBox/iFunBox.htm
../../Training/Mobile-Demos/Android_Manual_Review/Android_Manual_Review.htm

13

FSDroid

• Leverages SDK Class – No hacks in here!!!

• FSDroid can –

– Monitor file system

– Can write filter to monitor particular directory

– Can save last 5 reports for future use

– Does not need mobile device – can run on
Emulator smoothly

– Easy to run (As easy as giving directory name and
pressing start button)

File System Monitoring Demo

Looking in to Code

Static Code Analysis

• Introduce in Mac OS X v10.6, XCode 3.2,

Clang analyzer merged into XCode.

• Memory leakage warning

• Run from Build->Analyze

• Innovative shows you complete flow of

object start to end

• Configure as a automatic analysis

during build process

Static Code Analysis

Potential Memory Leak

Static Code Analysis

Dead store – variable never used

../../Training/Mobile-Demos/FS Droid_New/FS_Droid_New.htm

14

Code Analysis with AppCodeScan

• Semi automated tool

• Ability to expand with custom rules

• Simple tracing utility to verify and track
vulnerabilities

• Simple HTML reporting which can be
converted to PDF

AppCodeScan

• Sophisticated tool consist of two components

• Code Scanning

• Code Tracer

• Allows you to trace back the variable

• AppCodeScan is not complete automated
static code analyzer.

• It only relies on regex and lets you find
SOURCE of the SINK

Rules in AppCodeScan

• Writing rules is very straight forward

• In an XML file which is loaded at run time

• This release has rules for iOS and Android for
- Local Storage, Unsafe APIs, SQL Injection,
Network Connection, SSL Certificate Handling,
Client Side Exploitation, URL Handlers,
Logging, Credential Management and
Accessing PII.

Sample Rules - Android

Android DEMO Sample Rules - iOS

../../Training/Mobile-Demos/AppCodeScan Android Code/AppCodeScan_with_AndroidCode.htm

15

iOS DEMO Debuggable flag in Android
• One of the key attribute in android manifest

file

• Under “application” section

• Describes debugging in enabled

• If “Debuggable”attribute is set o true, the
application will try to connect to a local unix
socket “@jdwp-control”

• Using JDWP, It is possible to gain full access to
the Java process and execute arbitrary code
in the context of the debugable application

CheckDebuggable Script

• Checks in APK whether debuggable is enabled

• Script can be found at –
http://www.espheresecurity.com/resourcest
ools.html

• Paper can be found at -
http://www.espheresecurity.com/CheckDebu
ggable.pdf

DEMO

eSphere Security Solutions pvt Ltd
Tel: +91 99790 55100, +1 201 203 7008

Email – contact@espheresecurity.net

Web – http://espheresecurity.com

Thank you

../../Training/Mobile-Demos/AppCodeScan IOS Code/AppCodeScan IOS Code.htm
../../Training/Mobile-Demos/Check Debug/check debug.htm
mailto:contact@espheresecurity.net
http://espheresecurity.com/

