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Introduction

Information systems and data are being targeted relentlessly by skilled and motivated adversaries who 
are well resourced and have excellent tools.  The attackers may be backed by organized crime, 
governments or commercial enterprises, and attempt to access sensitive and secret data available to 
software applications by finding and exploiting vulnerabilities in the applications themselves.

In this article we discuss why conventional application defenses are not a solution to these types of 
advanced attack, and explain an initiative from the Open Web Application Security Project (OWASP)1 
which utilises self-defence to provide real-time detection and response.

Conventional Defensive Measures

A fundamental starting point for secure software applications is to build security in at all stages of the 
development life-cycle.  We need robust code designed, developed, configured and operated on 
hardened operating systems.  This does not mean the software is impregnable; unknown vulnerabilities 
almost certainly exist, new vulnerabilities are introduced with software code changes and attackers 
examine and probe applications to find theses.  Once they have identified one or more vulnerabilities, 
they need to discover ways to exploit them individually, or in combination.  It is very hard to detect 
these custom attacks using conventional defensive measures.  One reason is that conventional 
defenses either do not work at the application layer or they are designed with standard signatures to 
look for known common bad patterns.  This may detect generic attacks, but will almost certainly fail to 
detect a custom attack looking to exploit a weakness within the application.

This genericity of conventional defensive measures means they can be applied to numerous 
applications, often with little to no tuning, with obvious benefits (cost, time to deploy, etc.).  However, a 
significant challenge is a lack of context.  Context is what allows applications to have intimate 
knowledge of both data and the users accessing that data. 

Some techniques often thought to defend applications include using transport layer security (TLS/SSL), 
network firewalls, application gateways (e.g. web application firewalls, XML appliances, cross domain 
guards) and network/host intrusion detection and prevention systems (IDPS).

TLS is not a complete solution to the services required for a secure application.  In addition to 
confidentiality and availability, minimum security standards dictate some kind of data integrity, along 
with authentication and authorization.  TLS provides some degree of data confidentiality and integrity in 
transit and limited assurance in the identity of one or more of the parties depending upon how it has 
been configured.  Most deployments use a single certificate model as e-commerce applications often 
perform their identity checks at payment; this however subverts a very important design criteria of the 
TLS standard which derives it security strength from a dual certificate exchange.  However there is no 
inspection of the data itself — it simply passes on what was sent.  Attackers' payloads are sent to the 
server in the same way as normal traffic.  In the end, since TLS simply encrypts attackers' malicious 
data as it is sent to the server, it provides no protection to prevent an attacker from attacking the 
website.

Network firewalls are a vital component for network defense, but they allow or deny traffic using a 
particular port.  By necessity web applications need to allow traffic through specified ports (often TCP 
ports 80 or 443).  Attackers of course send their payloads using the same ports.  And it is for this very 
reason, that it is commonly believed that the perimeter defence model is dead.  Application gateways 
are generic solutions to typical problems.  For example, even with careful configuration and self-
learning, most web application firewalls are operated in detection-only mode, and they have no insight 
into business logic type of attacks.  Like network firewalls, IDPS has no real concept of good and bad 
application usage.

Additionally, some of these conventional defenses try to replicate part of the application logic, but they 
can, at best, only do this partially.  This external logic then needs to be verified, maintained, protected 
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and managed, adding another often significant overhead to operational costs.

In today's world, our applications are the gateways to our data and attackers are constantly probing to 
determine weaknesses in our systems.  This needs a different approach than these conventional 
defenses.

Application Defensive Measures

The right way to detect advanced attacks is within the applications themselves, by adding application-
specific security controls which detect malicious activity.

Consider the analogy of control instrumentation in an industrial production process.  Measurement 
points for temperature, pressure, mass, velocity and volumetric, etc are added to quantify the state of 
key aspects in real-time.  This information may be used in localised control (e.g. a float switch in a 
liquid storage vessel), but more often is integrated into an overall process control system, which 
aggregates signals from many sensors, and uses feed-back and feed-forward control mechanisms to 
react to changes and maintain a desired state.

Unfortunately, most current software applications are like industrial processes without this control 
instrumentation — there are no sensors and no intelligence about what is going on — they are blind to 
what is happening internally.  Yet applications have access to powerful processing and storage 
capabilities in their supporting hardware and software systems.

Software applications have full knowledge about the business logic and the roles & permissions of users 
— each application can make informed decisions about mis-use, and to identify and stop attackers with 
a very low false positive rate.  An additional benefit is that this context-aware analysis occurs in real-
time.  This is an application-specific approach, not a generic one, because the controls are related and 
integrated within the application, and can be selected based on an assessment of risks specific to the 
process and data.

Similar ideas already exist in some software, but these are usually implemented as isolated processes 
and some may be undertaken reactively to events, or performed largely in a manual way.  The concept 
described in this article focuses and formalizes this approach.  It is about implementing proactive 
measures to add instrumentation and controls directly into an application in advance so that all these 
events (and more) are centrally analysed and responded to.

Attack-Aware Detection

Once sensors have been deployed within the application code (and possibly external sensors), detection 
and response can take place.  The sensors themselves send any events they detect to the analysis 
engine.  The engine is then responsible for evaluation of individual events and determination of an 
attack.  Once an attack has been recognized, the analysis engine determines an appropriate response 
and executes that response.

Software applications then become attack-aware and thus it is possible to undertake proactive defense 
against currently unknown threats.  Applications are the appropriate place to detect many types of 
attacks given the wealth of information available to the application.  

Normal and Malicious Behavior

The approach relies on being able to differentiate between normal and malicious behavior.  That is one 
of the biggest hurdles when security controls (attack detection mechanisms) are added outside the 
application; it is difficult to distinguish user intent and this leads to a higher rate of false positives.  

The ability to differentiate between normal behavior, suspicious behavior and attacks (and to do it with 
a high degree of granularity) can also be an improvement in the usability of human interfaces of the 
software applications.  The application knows which inputs allow keyboard input, which have client-side 
validation, which should not be altered by a user and which are from trusted systems.  A conventional 
defense such as a gateway device applying a whitelist derived by auto-learning could block a password 
which has a trailing line feed character appended.  The application might consider this invalid, but not 
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consider it suspicious since the extra character could be the result of a straightforward copy & paste 
action.  Thus the application does not block normal usage unnecessarily.

Evasion and Unknown Attacks

A common attack technique is to use obfuscation to bypass black list inspection performed generic 
application defenses outside of the application.  Another benefit of integrating attack detection within 
the application is that all data has been fully canonicalised.  At this point it is much easier for the 
application to inspect the user submitted data and determine if the data is malicious.   

In addition, detection within the application allows insight into unknown attacks.  Many detection points 
are designed to capture activity that can only occur outside the normal flow of the application.  In other 
words, a user could never accidentally trigger the detection point (e.g. a web page receives a POST 
message but is only designed for GET).  In these scenarios, the detection points can provide alerts to 
odd behavior that could represent attackers probing for a new type of weakness within the application.

AppSensor Project

The concept described above was initially developed under the OWASP Season of Code 20082 by 
Michael Coates.  The output was a document defining the AppSensor3 conceptual framework, available 
as a printed book4 and free PDF download5.  Over the last two years a reference implementation in 
Java6, further guidance, demonstration pilot7, presentations and videos8 have been created to support 
the initiative.

Like in an industrial process control systems, a whole range of sensors can be considered for 
incorporation by the instrumentation engineer.  Most of the equivalent application sensors are located 
within the application code itself, but AppSensor also has the notion of inputs from other "external" 
devices.  As an example, the software could alter its security posture based on an external threat level 
rating such as the United States Armed Forces Defense Readiness Condition (DEFCON). 

AppSensor has defined over 50 detection points9 (Table 1) reflecting the aspect being monitored.  The 
detection points range from signature type detection points which typically look for particular events 
within a user's single request/response cycle, to behavioral type detection points which assess events 
over longer time periods (e.g. a single user session, a finite time period, the life of the application). 
The list is not definitive; but is a suggested starting point since custom applications will need to 
consider carefully adding detection points specific to the application at various points deemed important 
to the custom process logic within the application.

Table 1: AppSensor guidance lists over 50 example detection point definitions grouped into these 12 
categories; additional custom detection points are also often required.
Detection Point Type Code Name

Signature RE Request Exceptions

AE Authentication Exceptions

SE Session Exceptions

ACE Access Control Exceptions

IE Input Exceptions

EE Encoding Exceptions

CIE Command Injection Exceptions

FIO File IO Exceptions

HT Honey Trap

Behavioral UTE User Trend Exceptions

STE System Trend Exceptions

RP Reputation
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Although AppSensor works best within the authenticated portion of an application, where the user's 
identity is known and can be blocked if malicious, it is also possible to apply the principles to other 
areas.

Documentation has guidance on detection point considerations, determining the malicious intent, 
monitoring system trend events and implementation guidance.  However, the planning stages are 
probably the most time-consuming aspect of implementing AppSensor.  If threat modelling is already 
being used in your software development life-cycle, this may be a natural location to determine many 
of your application specific detection points but recently additional guidance10 has been created to 
assist with this stage.

Rich Responses

Once the detection points have been determined, thresholds are set for each detection point, or group 
of detection points, which then act like tripwires.  In OWASP AppSensor, an analysis engine monitors 
the detection events and determines when, and what, response is appropriate according to these 
specified event thresholds.

Conventional defenses offer binary response options such as allow/deny or log/block (Table 2).  They 
are often limited to a single dimension — the particular network connection contravening a rule.

Table 2: Conventional defensive measures may only offer a binary choice such as logging or blocking.
Response Type Examples

Allow Log events only

Deny Block IP address

The AppSensor concept describes a wide spectrum of possible responses11, and when combined with 
the very low false positive detection rate, defenses do not need to be configured in detection-only 
mode for fear of preventing valid traffic.  Inside the application provides a two-dimensional view, where 
responses may be directed not only against a single connection or a single user, but now also against a 
whole group (e.g. based on location, role, or behavior), or against all users.  Table 3 lists the most 
common responses, from those hidden from the user, to those which the user may be aware of and 
those which actually interfere with an action.

Table 3: AppSensor provides the ability to have a much richer range of responses; the guidance lists 
thirteen types of response.  Specific examples for each type show how the types can be customized for 
each application's context.
Response Type Examples

Logging Change Full stack trace of error messages logged
Record DNS data on user's IP address

Administrator Notification Visual indicator displayed on an application monitoring dashboard
Audible alarm in the control room

Other Notification Signal sent to upstream network firewall, application firewall (e.g. XML, web) or load balancer
Alert sent to fraud protection department

User Status Change Increase data validation strictness for all form submissions by this citizen
Reduce the number of failed authentication attempts allowed before the user's account is locked

Proxy Requests from the user invisibly (from the user's perspective) passed through to a hardened system 
Request are proxied to a special honeypot system which closely mimics or has identical user functionality

User Notification On-screen message about data validation issues
Message sent by email to the registered email address to inform them their password has been changed

Timing Change File upload process duration extended artificially 
Add fixed time delay into every response

Process Terminated Discard data, display message and force user to begin business process from start 
Redirection of an unauthenticated user to the log-in page 

Function Amended Limit on feature usage rate imposed
Additional validation requirements

Function Disabled Web service inactivated 
Content syndication stopped
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Account Logout Session terminated and user redirected to logged-out message page 
Session terminated only (no redirect)

Account Lockout User account locked permanently until an Administrator resets it 
One user's IP address range blocked

Application Disabled Website shut down and replaced with temporary static page 
Application taken offline

Collect Data from User Deploy a Java applet to collect remote IP address 
Deploy JavaScript to collect information about the user's network

When behavioral aspects over time (a request/response, a session, a time period) are included, the 
application becomes capable of rich three-dimensional responses.  The behavioral aspects can span 
beyond application restarts, upgrades and even the application life cycles from deployment to disposal, 
since data from other systems which pre-date the application may be incorporated.

Cross Integration

As mentioned above, AppSensor can potentially make better use of information from other systems and 
devices to contribute to its pool of information for attack detection, increasing the value of those other 
systems.  Other systems may be able to contribute to AppSensor's decision making processes.  For 
example behavioral information can be fed into stochastic systems for statistical analysis, which may be 
useful in identifying user error from malicious behavior.  Something that occurs very infrequently but 
causes an exception to be thrown may actually be down to human error, such as a typo, or other 
anomaly, whereas hundreds of the same event happening at once may indicate a malicious behavior. 
Hundreds of people are very unlikely to be making the very same error at the very same time. 
Additionally, this further reduces false positives since stochastic methods 'tune' the system for outliers.

As well as consuming data, AppSensor can pass back intelligence to other systems.  This might be used 
as part of the real-time response:

• locking a user's single-sign-on account

• removing some permissions for a user from a physical access control system

• setting a warning flag about a customer in a CRM

• blocking a session ID or IP address at a network firewall.

Equally, data can be federated to other systems such as SIEM, IDS and fraud monitoring systems.

Information Insight and Value

Applications contain considerable knowledge about users and their activities.  Without AppSensor so 
much intelligence is being wasted.  System owners are left with tools and devices which have to guess 
about what is going on.  AppSensor provides insight into whether, and how, attacks are occurring.

A pilot implementation has also demonstrated the value this approach has to containing the damage 
caused by application worms.  System trend detection points can be used to detect large changes in a 
function's usage, alert administrators and ultimately disable the function.  While this does not remove 
the infection, it stops the worm from spreading, limits the extent of data requiring clean-up, and may 
allow the remainder of the application to continue functioning, which may otherwise have had to be 
stopped.

And of course if this is a public-facing commercial application, some of these data would be valuable to 
those interested in understanding and improving operational objectives relating to metrics such as 
those for availability, usability, reducing drop-out rates, conversion ratios, etc.  Another key benefit, is 
that this give security useful metrics, currently in absentia.

Applicability

Software applications must be built securely in the first place.  If issues like authentication, session 
management, authorization, etc are broken already, it will not be possible to implement the approach. 
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Self-defense goes beyond the implementation of security services, but there does appear to be growing 
interest in this area.  For example, the U.S. Defense Department recently announced12 that it is 
planning to spend $500 million to research new cyber security technologies including "active defenses" 
- technologies that detect attacks and probes as they occur.

OWASP AppSensor is a comprehensive proactive approach, rather than reactive, which can be applied 
to applications in many situations.  It reduces the risk of unknown vulnerabilities being exploited by 
identifying and containing users conducting malicious activity that is often the precursor to an attack. 
It greatly increases the visibility of suspicious events and actual attacks.  This can provide additional 
information assurance benefits:

• reduced security risks to data and information systems

• improved compliance

• reduction in the consequences of data breaches.

In turn, these can provide improved service levels and resilience which have wide applicability.  Some 
types of organizations may also achieve competitive advantage.

Conclusions

All types of organizations have very powerful systems with access to mission critical data, but generally 
have no idea if, when or how applications are under attack.  This is the crux of the problem; critical 
data on critical systems and little to no visibility of the health of the overall environment.  This must 
change.  The concepts embodied by OWASP AppSensor present a solution to this issue.  

Proactively detecting attackers via attack-aware applications can significantly increase the assurance of 
our systems.  The AppSensor concept says that the application must also defend itself, as well as 
provide all of its own security services.  By creating applications that are attack-aware and able to 
respond appropriately, the assurance of our systems is increased.  In addition, there is better 
operational visibility of the applications that hold our most critical data.

Careful planning is needed to ensure the very low false positive detection rate is maintained, and that 
authenticated users are not prevented from undertaking valid tasks.  Although AppSensor provides a 
low-risk method for incorporating detection points and responses using the ESAPI library, adopters who 
develop their own implementations need to consider the usual risks of custom-developed software. 
AppSensor is a practical approach which has been implemented in live software applications.    The 
AppSensor team are considering ways to improve its analysis engine including the use of stochastic 
methods, integration with other systems such as SIEM and building the concepts into software 
frameworks and libraries so the overhead is reduced.  The team would also like to investigate how 
AppSensor could be applied in an Agile / Test Driven Development environment.

However, when combined with stochastic methods, we believe OWASP AppSensor can be the single 
most important pattern against unknown attacks to date.  This defense against the unknown attacks is 
a giant benefit that can not be achieved using anything else, anywhere, at any price.
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