



# How to Create a Business Case for Software Security Initiatives

Marco Morana  
OWASP Lead  
TISO Citigroup



**OWASP - Italy Day IV**  
"Secure Software Initiatives"

6<sup>th</sup> NOVEMBER 2009, MILAN

Copyright © 2009 - The OWASP Foundation  
Permission is granted to copy, distribute and/or modify this document  
under the terms of the GNU Free Documentation License.

**The OWASP Foundation**  
<http://www.owasp.org>

# Status Quo of Software Security Spending

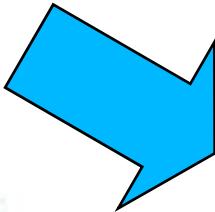
- **“Security software budgets are expected to grow by approximately 4 % in 2010 despite overall IT budgets are shrinking ”** – Gartner

*...but*
- **“..Security managers should continue to look for ways to maintain **the same level of security for less money** until the economy improves”** - *CIO MidMarket*

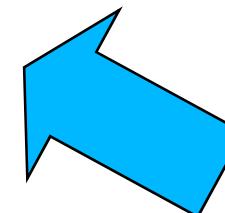
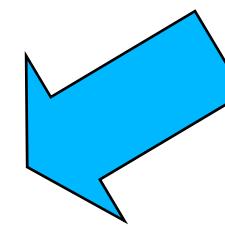
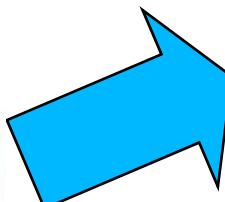
*and*
- **“Organizations that have suffered a public data breach spend more on security in the development process than those that have not”** – *OWASP*



# Making the Business Cases: Essentials


## ■ Secure Software Engineering Awareness

► *“Security involves making sure things work, not in the presence of random faults, but in the face of an intelligent and malicious adversary trying **to ensure that things will fail in the worst possible way at the worst possible time... again and again**”*




## ■ Prepare for Executive Management FAQs:

- Why I spend money on software security?
- How much I should spend ?
- What my competitors are doing?
- How I am doing at my vulnerabilities?
- How I get the most bang for the buck ?

# Main Factors Driving Software Security Adoption



```
End Sub
On Error Resume Next
timTimer.Enabled = True
Select Case Button.Key
Case "Back"
    brwWebBrowser.GoBack()
Case "Forward"
    brwWebBrowser.GoForward()
Case "Refresh"
    brwWebBrowser.Refresh()
Case "Home"
    brwWebBrowser.GoHome()
```



# Lessons From the Court Room

Albert Gonzalez - Wikipedia, the free encyclopedia - Mozilla Firefox

File Edit View History Bookmarks Tools Help

W http://en.wikipedia.org/wiki/Albert\_Gonzalez

Help us improve Wikipedia by [supporting it financially](#).

Try Beta Log in / create account

article discussion edit this page history

Software update

170 million card and ATM numbers

Albert Gonzalez

From Wikipedia, the free encyclopedia

**Albert Gonzalez** (born 1981) is a [computer hacker](#) and [computer criminal](#) who is accused of masterminding the combined [credit card theft](#) and subsequent reselling of more than 170 million card and [ATM numbers](#) from 2005 through 2007—the biggest such fraud in history. Gonzalez and his accomplices used [sql injection](#) and [packet sniffer](#) malware software to create [backdoors](#) to several corporate systems in order to steal computer data.

During his spree he was said to have to throw away \$100 bills because he complained about having to count \$340,000 by hand. Gonzalez stayed at lavish hotels but his expenses were paid for by his accomplices.

Gonzalez is currently awaiting the outcome of three trials:

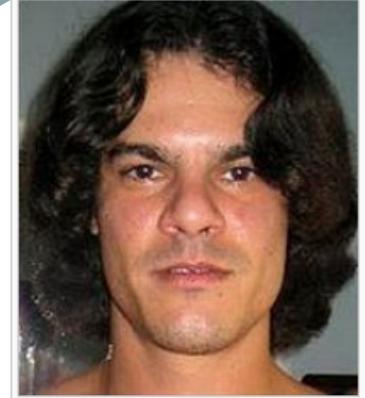
- May 2008 in [New York](#) for the [Dave & Buster's](#) case
- May 2008 in [Massachusetts](#) for the [TJ Maxx](#) case (trial scheduled early 2010)
- August 2009 in [New Jersey](#) in connection with the [Heartland Payment](#) case.

used **sql injection** and **packet sniffers**

Photo of Albert Gonzalez by U.S. Secret Service

navigation

- Main page
- Contents
- Featured content
- Current events
- Random article


search

Go Search

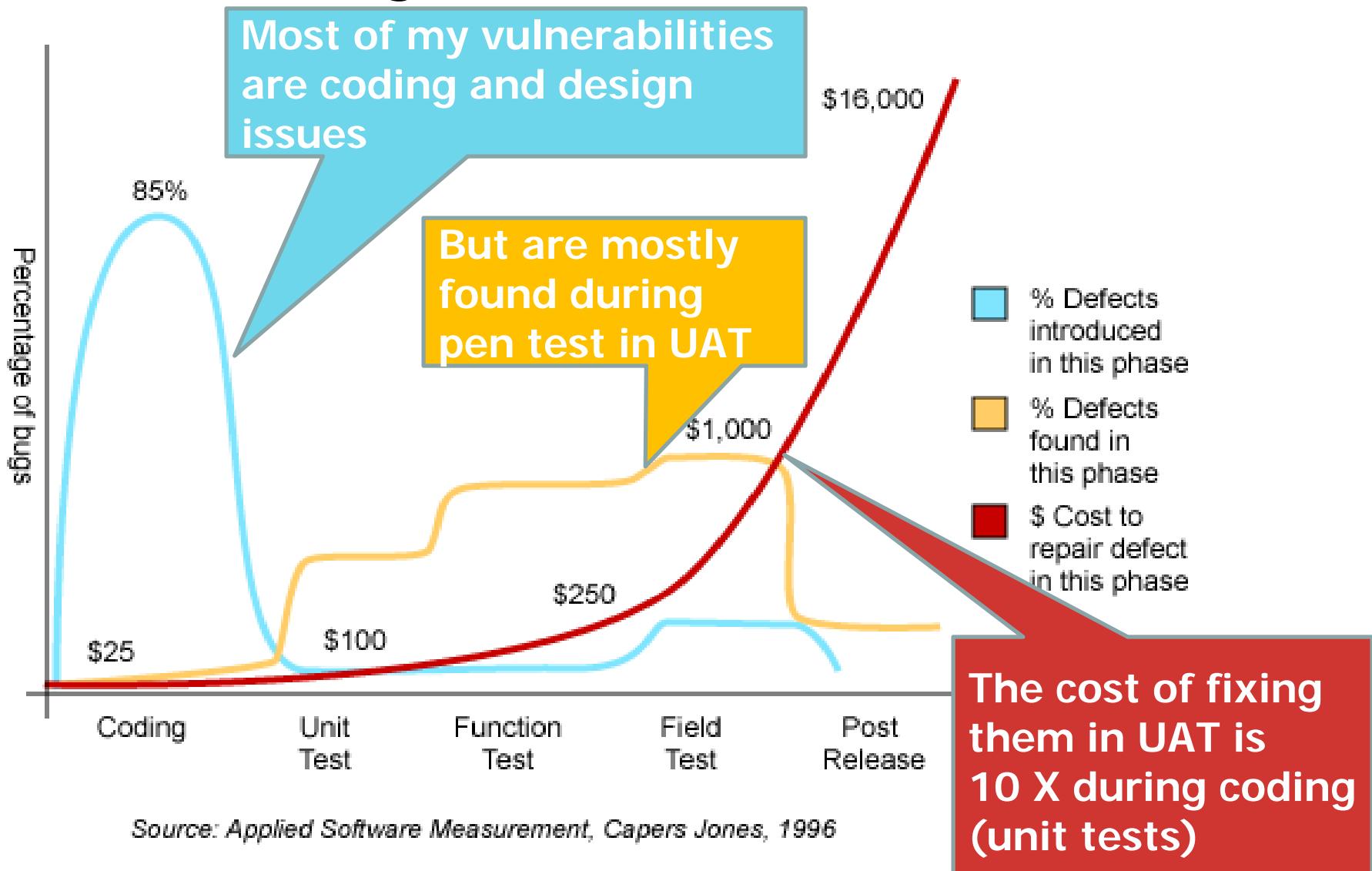
interaction

- About Wikipedia
- Community portal

Done



# Lessons From Law Enforcement (FBI)


## THREAT INTELLIGENCE:

Attack “xp\_cmdshell on MSQL server to upload sniffers to capture CC transactions and ATM PINs from DB, HSM

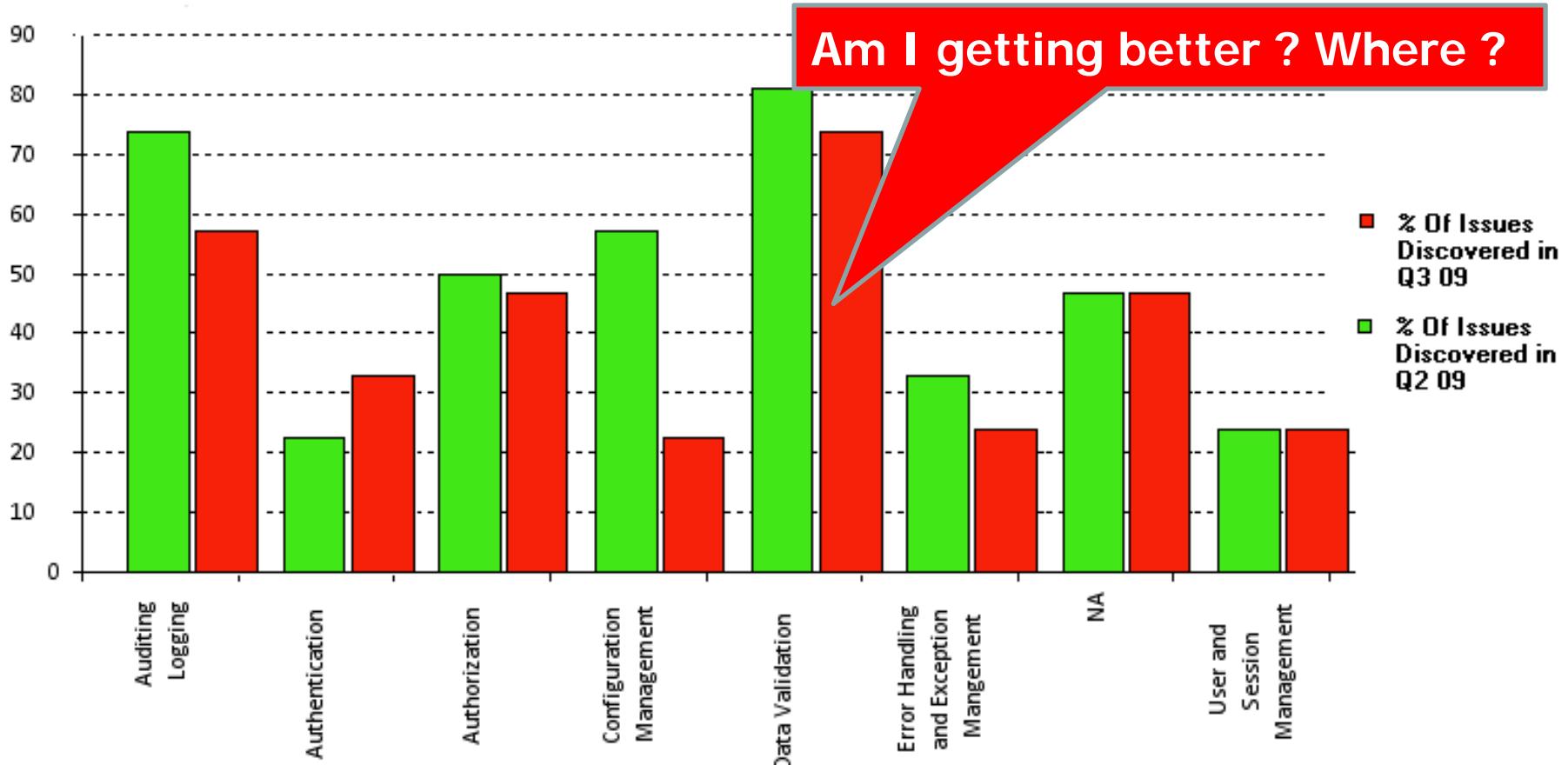
## RECOMMENDATIONS:

1. Disable xp\_cmdshell,
2. Deny extended URL,
3. escape special characters such as "",
4. Use store procedures,
5. Run SQL Server and IIS under non-privilege,
6. Do not use “sa” hardcoded,
7. Lock account on mainframes against brute force
8. Use minimum privileges on AD/SQL server, restrict access
9. Use proxy server for internet access,
10. Implement firewall rules
11. Ensure HSM do not take commands with PIN in the clear

# Defect Management/Costs Measurements



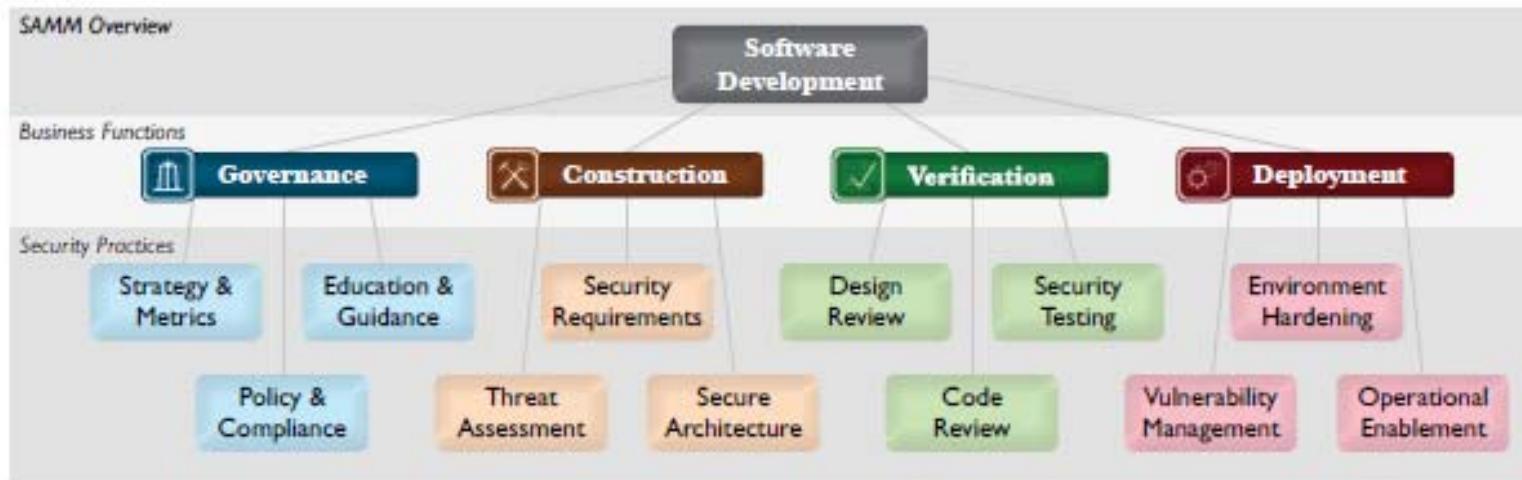
# Analysts/Researchers Opinions


- **“75% of security breaches happen at the application layer”- *Gartner***
- **“Over 70 % of security vulnerabilities exist at the application layer, not the network layer” – *Gartner***
- **“If only 50 percent of software vulnerabilities were removed prior to production ... costs would be reduced by 75 percent” - *Gartner***
- **“Correction of security flaws at the requirement level is up to 100 times less the cost of correction of security flaws in fielded software” – *Fortify***

# Why Using Metrics And Maturity Models?

- **Use vulnerability metrics to articulate software security needs/opportunities**
  - ▶ Point to software security root causes
  - ▶ Identify vulnerability trends
  - ▶ Analyze needs for improvements
- **Use maturity models to provide visibility on the organization's security capabilities**
  - ▶ Assess organization capability levels
  - ▶ Set goals and needs to reach the goals
  - ▶ Provide the roadmap




# Vulnerability Taxonomies and Trends



# Software Security Metrics Business Cases

- **Business Managers:** shows that projects **are on schedule and moving on target** and testing cycles for vulnerabilities are shorter translating in cost savings
- **Information Security Officers:** show that we are getting **better on reporting compliance** and manage risk reduction
- **Developer Leads:** show that **developers are getting better to write secure software** when provided with secure coding training and tools

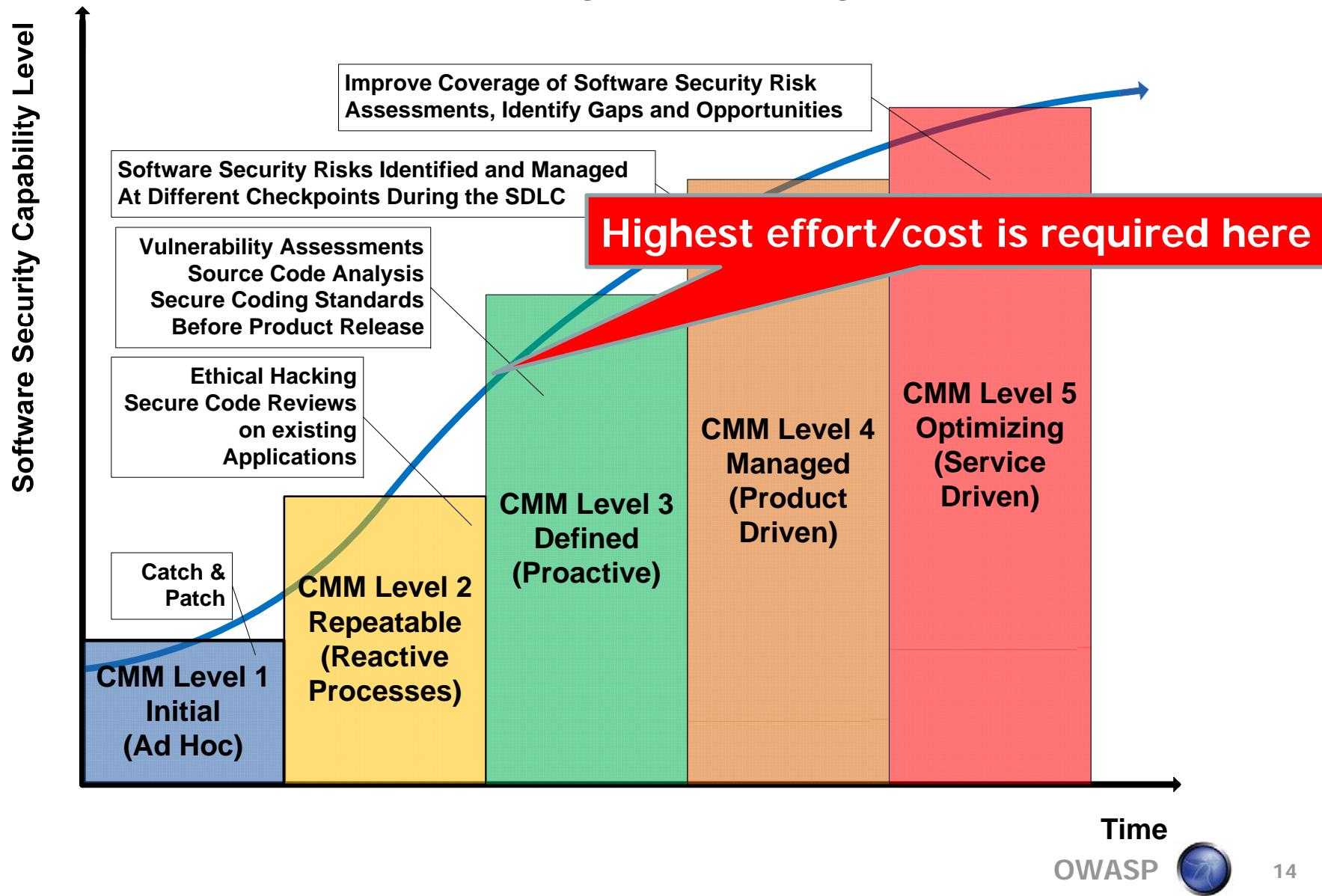
# Software Security Maturity Models: SAMM, BSIMM



Source SAMM : <http://www.opensamm.org/>

| The Software Security Framework (SSF) |                              |                       |                                                       |
|---------------------------------------|------------------------------|-----------------------|-------------------------------------------------------|
| Governance                            | Intelligence                 | SSDL Touchpoints      | Deployment                                            |
| Strategy and Metrics                  | Attack Models                | Architecture Analysis | Penetration Testing                                   |
| Compliance and Policy                 | Security Features and Design | Code Review           | Software Environment                                  |
| Training                              | Standards and Requirements   | Security Testing      | Configuration Management and Vulnerability Management |

Source <http://www.bsi-mm.com/ssf/>


# Activities, Objectives and Capability Levels

| SSDL TOUCHPOINTS: CODE REVIEW                                                                                                                    |                                                       |                                                            |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------|
| Use of code review tools, development of customized rules, profiles for tool use by different roles, manual analysis, ranking/measuring results. |                                                       |                                                            |       |
|                                                                                                                                                  | Objective                                             | Activity                                                   | Level |
| CR1.1                                                                                                                                            | know which bugs matter to you                         | create top N bugs list (real data preferred) (T: training) | 1     |
| CR1.2                                                                                                                                            | review high-risk applications opportunistically       | have SSG perform ad hoc review                             |       |
| CR1.3                                                                                                                                            | spread software security around without any process   | establish coding labs or office hours focused on review    |       |
| CR2.1                                                                                                                                            | drive efficiency/consistency with automation          | use automated tools along with manual review               | 2     |
| CR2.2                                                                                                                                            | drive behavior objectively                            | enforce coding standards                                   |       |
| CR2.3                                                                                                                                            | find bugs earlier                                     | make code review mandatory for all projects                |       |
| CR2.4                                                                                                                                            | know which bugs matter (for training)                 | use centralized reporting (T: training) (T: strategy)      |       |
| CR2.5                                                                                                                                            | make most efficient use of tools                      | assign tool mentors                                        |       |
| CR3.1                                                                                                                                            | drive efficiency/reduce false positives               | use automated tools                                        |       |
| CR3.2                                                                                                                                            | combine assessment techniques                         | build a factory                                            |       |
| CR3.3                                                                                                                                            | handle new bug classes in an already scanned codebase | build capability for entire codebase                       |       |

Use this as a yardstick to compare software security practices with other organizations

Source BSIMM <http://www.bsi-mm.com/ssf/>

# The Software Security Maturity Curve (CMM)



# Cost vs. Benefit Analysis (CBA)

- ▶ Purpose is to **weight the cost of software security initiative vs. the benefits**

$$\text{CBRatio} = \frac{\text{COST of initiative}}{\text{BENEFIT of initiative}}$$

- ▶ Need to **cost quantify factors and compare them** (to compare apples with apples) for example:

- ▶ **COSTs:**

- ▶ **Secure software engineering costs** for training, new processes and tools

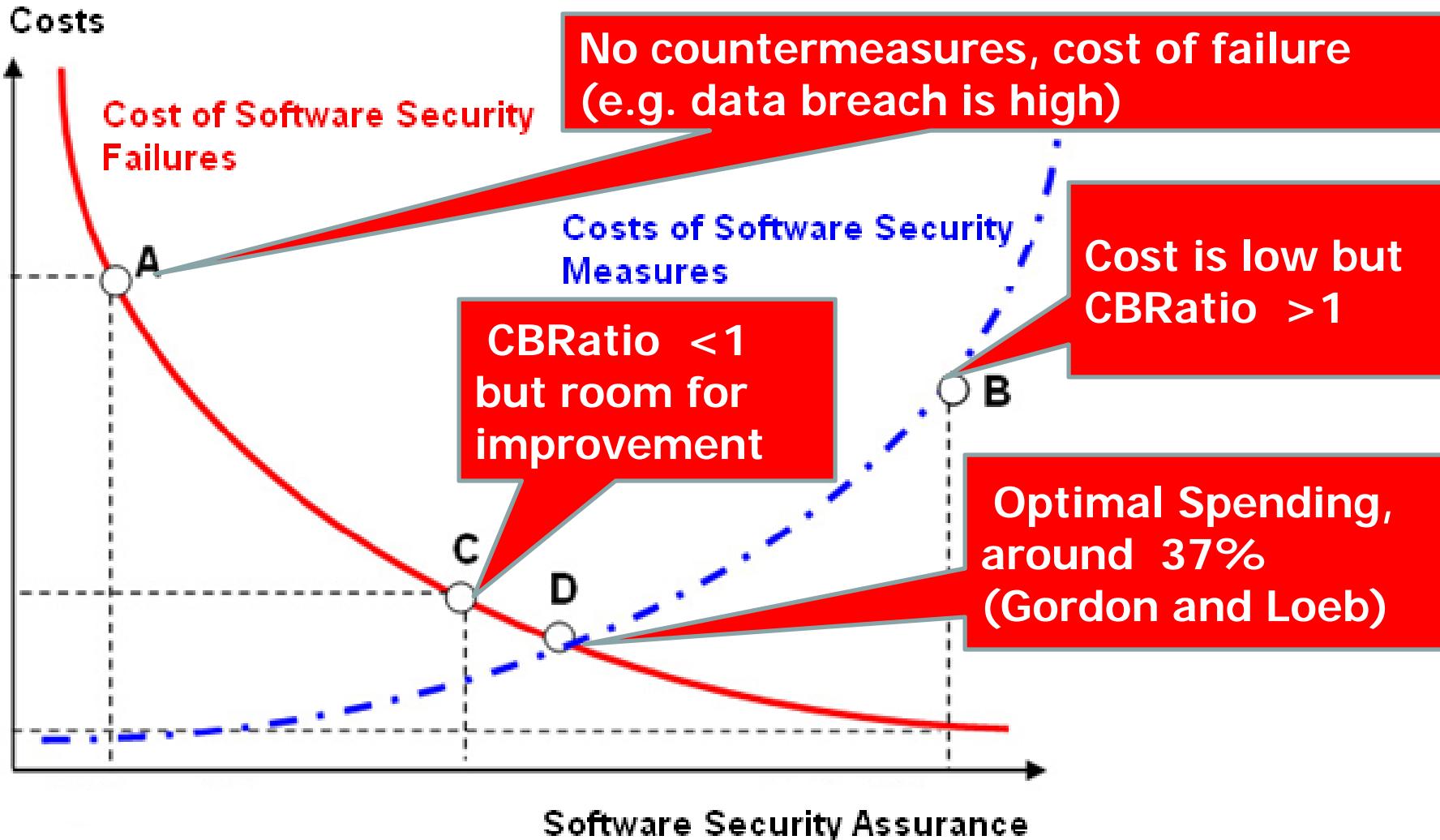
- ▶ **BENEFITs:**

- ▶ **Reduced costs** in fixing with patching, lessen business impact of exploits

# Assumption Costs and Failure Costs of the Software Security Initiative

## ■ Assumption Costs (proactive):

- ▶ **Cost of acquiring tools, standards and processes** to develop secure software
- ▶ **Cost of hiring and/or training** a software security team
- ▶ **Costs for implement security features** (e.g. estimate possible as function of KLOC)


## ■ Failure Costs (reactive):

- ▶ **Cost of develop and/or deploy patches**
- ▶ **Cost of incident response**
- ▶ **Cost of vulnerability exploits resulting in data breach, fraud, denial of service, quantifiable damage to the organization**

The most difficult to estimate

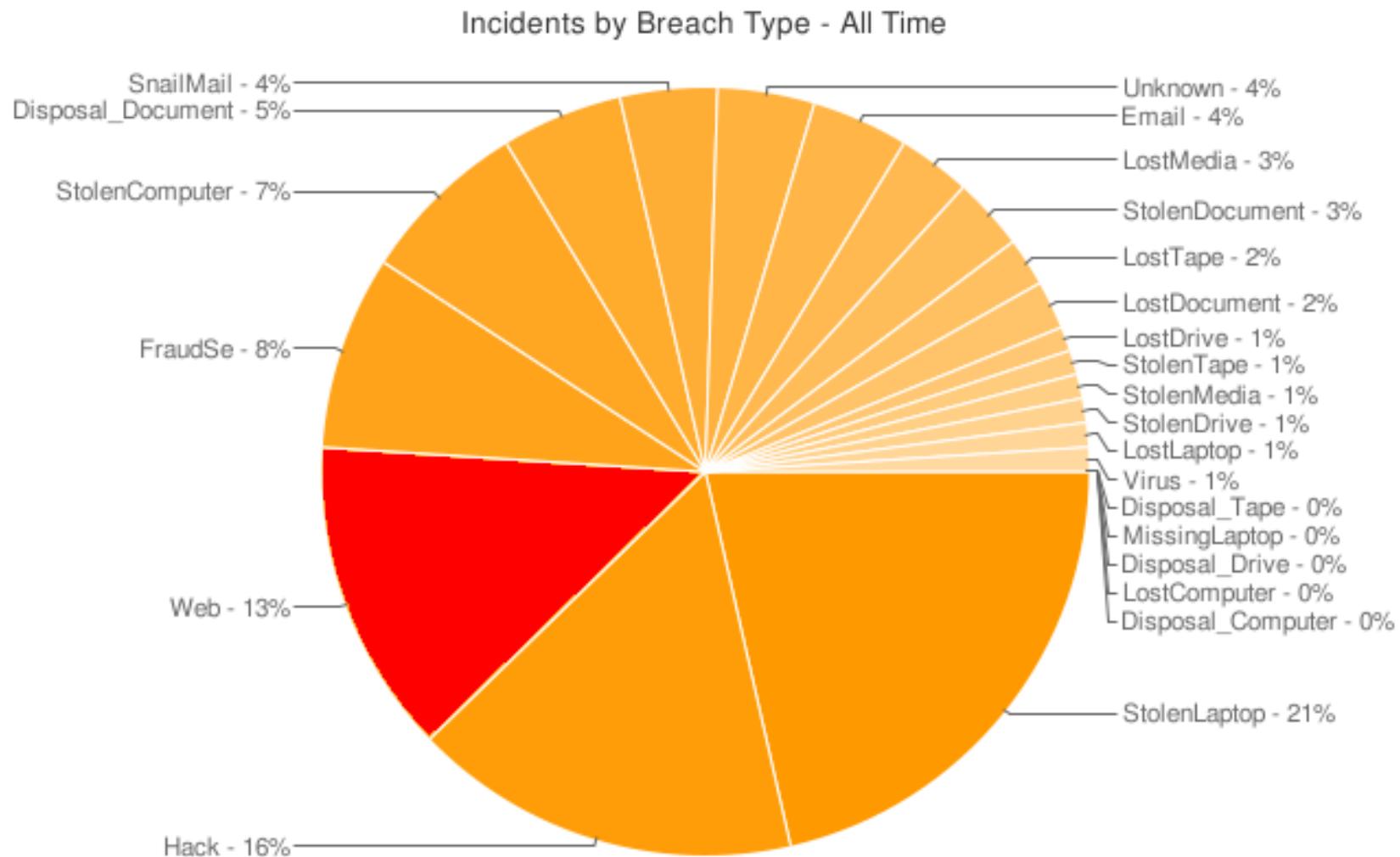


# Assumption Costs vs. Failure Costs



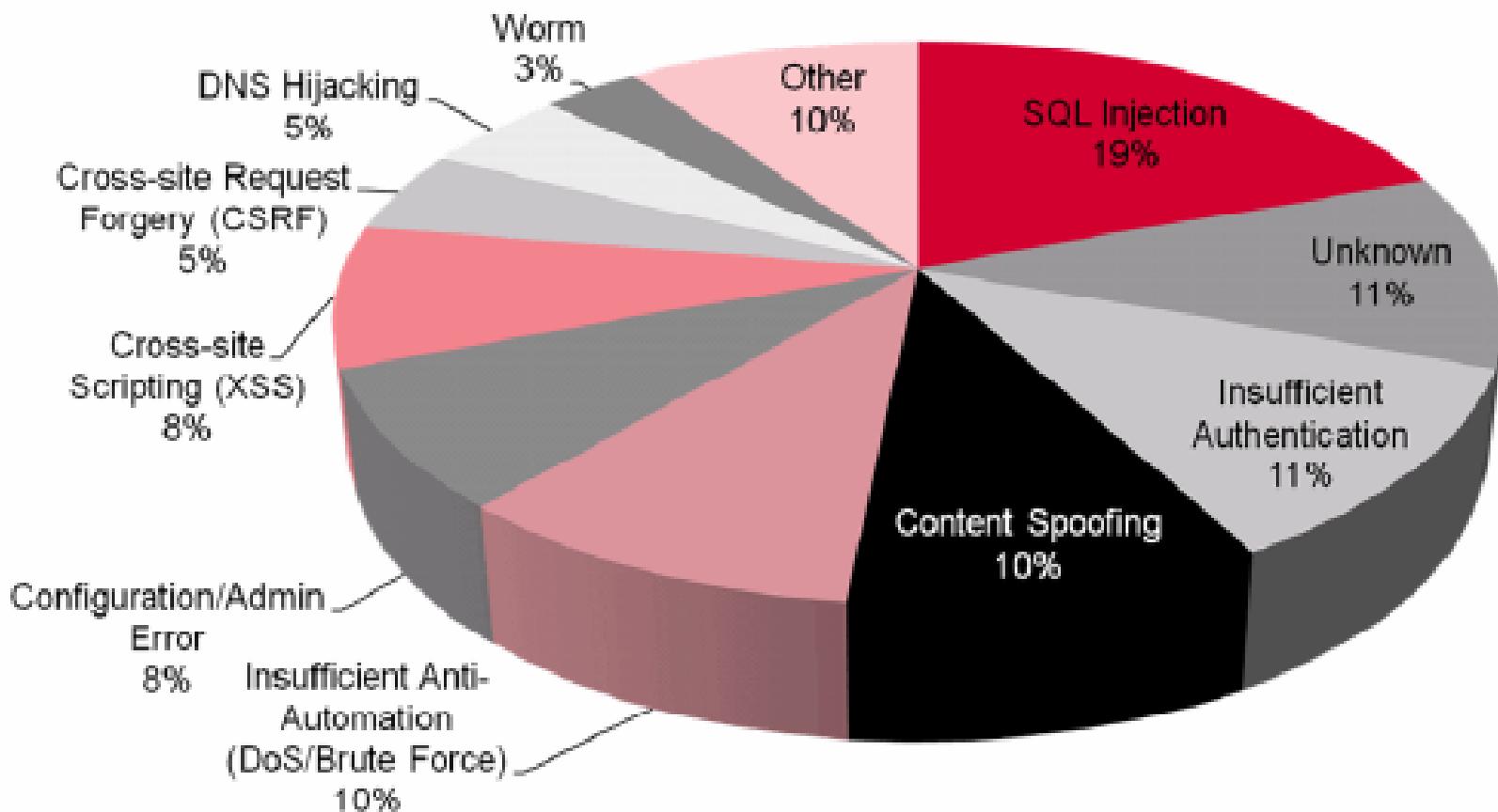
# Data Loss Liabilities Estimates

## ■ Consider FTC data (2003)


- ▶ 4.6 % of US population suffered identity fraud
- ▶ Companies spent  $3 \times 10^8$  hours repairing the troubles caused + \$ 5 Billion dollar spent out of pocket
- ▶ Minimum wage of 5.15 \$/hr (in 2003)
- ▶ 10 Million people involved
  - $P = 4.6 \%$
  - $L = \frac{3 \times 10^8 \times \$ 5.15/\text{hr} + \$ 5 \times 10^9}{10^7 \text{ victims}} = \$ 655/\text{victim}$

## ■ My annual liability ( $P \times L$ ) for each data theft victim is \$ 30.11

SOURCE: Dan. E. Geer, Economics & Strategies of Data Security




# Data Losses As Web Breaches (datalossdb.org)



SOURCE: Open Security Foundation Data Loss Statistics

# Which Vulnerabilities Are Exploited? (WHID)



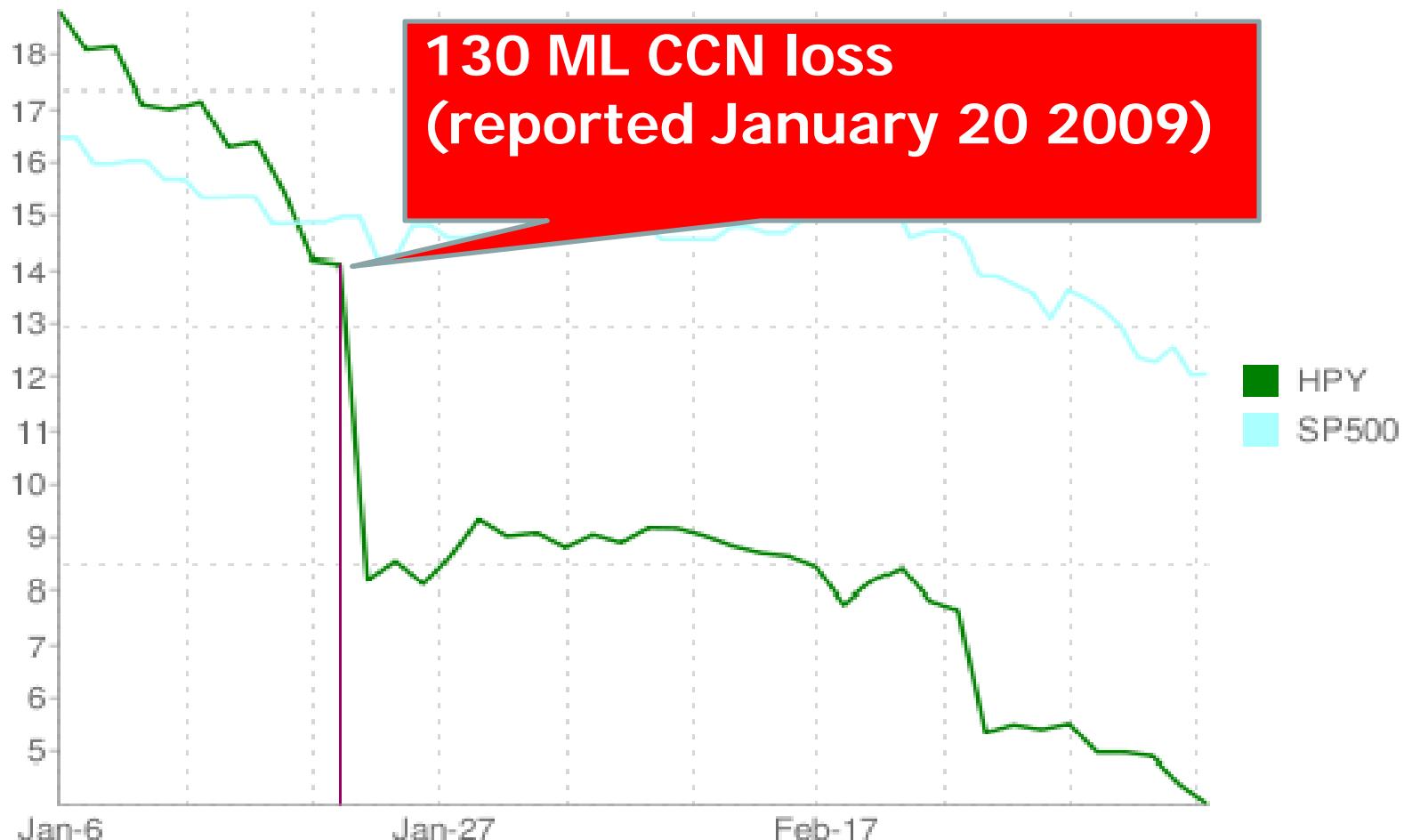
SOURCE: Breach Security The WHID 2009, August 2009

# Estimating SQL Injection Attack Liability

## ■ Probability of attack by type and attack vector incident (identity theft) data:

- ▶ 13 % of incidents involve breaches of web channel (datalossdb.org)
- ▶ 19 % of incidents use SQL injection as attack vector (WHID)
- ▶  $P = 0.13 \times 0.19 = 0.025$  (2.5 %)

## ■ Estimate data loss for this attack:


- ▶ \$ 655 per identity theft victim (2003 FTC data)
- ▶ 94 million individual records stolen (TJX incident)
- ▶  $L = 94 \times 10^6 \times 0.025 \times 655 = \$ 1.5 \text{ Billion}$

# Reporting of Losses in Quarterly Earnings

- The cyber attack on the retailer Marshalls and TJ Maxx (94 Million CCN reported in Jan/2007): **after-tax cash charge of approximately \$118 million**, or \$.25 per share.
- **The company increased its estimate of pre-tax charges for the compromise to nearly \$216 million.**
- According to some experts, TJX may have to **spend in the end a total between \$ 500 Million to \$ 1 Billion** (BankInfoSecurity.com), including non compliance fees (e.g. PCI-DSS) litigation fees and government fines.



# Another Way to Look at Business Impact Of Data Breaches : Drop in Stock Price



# Quantitative Risk Analysis

## ■ Goal:

- ▶ **Justify spending to improve security by assigning an objective monetary value to risk**

## ■ Risk Analysis Methodology:

- ▶ **Determine the Exposure Factor:** Percentage of asset loss caused by identified threat (e.g. 20%)

- ▶ **Determine Single Loss Expectancy (SLE):**

EF x the value of assets (e.g. \$ 1 ML \* 30% = \$ 200 K)

- ▶ **Estimate Annualized Rate of Occurrence (ARO):**  
twice in ten years  $2/10=0.2$ , 1 every year =1

- ▶ **Determine the Annualized Loss Expectancy (ALE)**

$$\text{ALE} = \text{SLE} \times \text{ARO} = \$ 40 \text{ K}$$



# Use Quantitative Risk Analysis to Estimate Annual Loss Due to SQL Injection Exploit

- Exposure Factor (likelihood) of data loss via SQL injection attack: 2.5%
  - ▶ Based upon datalossdb and WHID calculated probability data)
- SLE (EF x Value Assets): \$ 43 Million
  - ▶ Asset Value: assume SQL injection attack will cause fraud for 3 million credit card accounts (on-line web site for major bank) at a 580 \$/account (use SANS data)
- ARO: 40 % (four every 10 years)
- ALE (ALO x SLE) : = **\$ 17 Million**

# ROSI Of Secure Software Initiatives

## ■ ROSI (Return Of Security Investment)

- ▶  $\text{ROSI} = \text{Savings (Avoided loss)} / \text{Total Cost of Solution}$

## ■ Goal:

- ▶ Answer the question on how much I can save by investing in Software Security

## ■ According to previous studies (Soo Hoo-IBM):

- ▶ For every 100,000 \$ spent in software security I save:
  - \$21,000 (21%) when defects are fixed and identified during design
  - \$15,000 (15%) when defects are fixed during implementation
  - \$12,000 (12%) when defects are fixed during testing

# Using ROSI to justify software security investments

$$\blacksquare \text{ROSI} = \frac{[(\text{ALE} \times \% \text{ Risk Mitigation}) - \text{SCost}]}{\text{SCost}}$$

## ■ Calculation example:

- ▶ ALE: \$ 17 Million, risk exposure for SQL injection
- ▶ Risk Mitigation: 75 % of risk mitigated by software security solution source code analysis, filtering
- ▶ SCost: \$ 4 Million, Total Cost of Ownership (TCO) software security solution
- ▶ Savings = \$ 8.75 Million, loss prevention savings
- ▶ ROSI = 210 %

**Negative = investment not justifiable**

**Null = no return on investment**

**Positive = justifiable as compared with other solutions**

# Security Software Assurance Metrics: Balanced Scorecards

Reduced calls to  
CSR for  
reporting on  
security issues

**Customer**  
"To achieve our  
vision, how  
should we  
appear to our  
customers?"

**Financial**  
"To succeed  
financially, how  
should we  
appear to our  
shareholders?"

**Vision  
and  
Strategy**

**Learning and  
Growth**  
"To achieve our  
vision, how will  
we sustain our  
ability to  
change and  
grow?"

Correlation of budget  
with risk assessment  
and cost/benefits

balanced scorecard

**Internal Business  
Processes**  
"To satisfy our  
shareholders  
and customers,  
what business  
processes must  
we excel at?"

Improved  
results of  
software  
security  
processes and  
operations

Growth in assessed  
security processes  
& training activities

# Software Security Metrics In Support Of Business Cases

## ■ Metrics of technical value

- ▶ Costs for testing and fixing vulnerabilities
- ▶ Percent security requirements satisfied
- ▶ Percent developers with software sec. certifications

## ■ Metrics of comparative value

- ▶ TCO of software security activities vs. unit revenue
- ▶ Secure software engineering costs vs. patching costs

## ■ Metrics of business value

- ▶ Estimate for vulnerability & risk assessment costs
- ▶ Budget to address gaps in software sec. processes
- ▶ Costs for security certifications per business unit

# Come on is not so hard..



# In Summary

- ✓ Rationale For Software Security Business Case
- ✓ Preparing the Business Case
  - ✓ Maturity Models
  - ✓ Metrics and Measurements
- ✓ Making the Business Case
  - ✓ Software Security Assurance Awareness
  - ✓ Failure Costs vs. Assumption Costs
  - ✓ Qualitative Risk Assessments
  - ✓ Return Of Security Investment (ROSI)
  - ✓ Performance Measurement Metrics
- Questions & Answers

# Thanks for listening, further references

- Applied Software Measurement: Assuring Productivity and Quality
  - ▶ <http://www.amazon.com/Applied-Software-Measurement-Assuring-Productivity/dp/0070328269>
- PCI-Data Security Standard (PCI DSS)
  - ▶ [https://www.pcisecuritystandards.org/security\\_standards/pci\\_dss.shtml](https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml)
- A CISO's Guide to Application Security
  - ▶ [http://www.nysforum.org/committees/security/051409\\_pdfs/A%20CISO'S%20Guide%20to%20Application%20Security.pdf](http://www.nysforum.org/committees/security/051409_pdfs/A%20CISO'S%20Guide%20to%20Application%20Security.pdf)

# Further references con't

## ■ Gartner 2004 Press Release

- ▶ [http://www.gartner.com/press\\_releases/asset\\_106327\\_11.html](http://www.gartner.com/press_releases/asset_106327_11.html)

## ■ Making The Business Case For Software Assurance

- ▶ <https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/business/685-BSI.html>

## ■ SEI Capability Maturity Model Integration CMMI

- ▶ <http://www.sei.cmu.edu/cmmi/>

# Further references con't

- Software Assurance Maturity Model
  - ▶ <http://www.opensamm.org/>
- The Software Security Framework (SSF)
  - ▶ <http://www.bsi-mm.com/ssf/>
- National Information Assurance Glossary
  - ▶ [http://www.cnss.gov/Assets/pdf/cnssi\\_4009.pdf](http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf)
- Dan. E. Geer, Economics & Strategies of Data Security
  - ▶ <http://www.verdasys.com/thoughtleadership/>

# Further references con't

- Open Security Foundation, Data Loss Statistics
  - ▶ <http://datalossdb.org/statistics>
- The WHID 2009 Bi-Annual Report, August 2009
  - ▶ [http://www.breach.com/resources/whitepapers/downloads/WP\\_TheWebHackingIncidents-2009.pdf](http://www.breach.com/resources/whitepapers/downloads/WP_TheWebHackingIncidents-2009.pdf)
- Quantitative Risk Analysis Step-By-Step
  - ▶ [http://www.sans.org/reading\\_room/whitepapers/auditing/quantitative\\_risk\\_analysis\\_stepbystep\\_849?show=849.php&cat=auditing](http://www.sans.org/reading_room/whitepapers/auditing/quantitative_risk_analysis_stepbystep_849?show=849.php&cat=auditing)
- Breach Worse Than Reported..
  - ▶ [http://www.bankinfosecurity.com/articles.php?art\\_id=606](http://www.bankinfosecurity.com/articles.php?art_id=606)

# Further references con't

## ■ Estimating Benefits from Investing in Secure Software Development

- ▶ <https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/business/267-BSI.html>

## ■ Return On Security Investment (ROSI)

- ▶ [http://www.infosecwriters.com/text\\_resources/pdf/ROSI-Practical\\_Model.pdf](http://www.infosecwriters.com/text_resources/pdf/ROSI-Practical_Model.pdf)

## ■ Models for Assessing the Cost and Value of Software Assurance

- ▶ <https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/business/684-BSI.html>