10/08

The Open Web Application Security Project

@ OWASP

Establishing a Security API
for Your Enterprise

Java EE 2008 Edition
(based on OWASP ESAPI 3.1 release version)

alpha

Creative Commons (CC) Attribution Share-Alike
Free version at http:f/www.owasp.org

OWASP ESAPI | 2008

Forward

The Open Web Application Security Project (OWASP) is an open community dedicated to enabling
organizations to develop, purchase, and maintain applications that can be trusted. All of the OWASP
tools, documents, forums, and chapters are free and open to anyone interested in improving application
security. We advocate approaching application security as a people, process, and technology problem
because the most effective approaches to application security include improvements in all of these
areas. We can be found at www.owasp.org.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to provide
unbiased, practical, cost-effective information about application security. OWASP is not affiliated with
any technology company, although we support the informed use of commercial security technology.
Similar to many open-source software projects, OWASP produces many types of materials in a
collaborative, open way. The OWASP Foundation is a not-for-profit entity that ensures the project's
long-term success.

We have found that organizations that standardize their application security controls significantly
reduce their vulnerabilities in those areas. We’ve also noticed that many critical application security
controls, such as input validation, output encoding, and error handling are often ignored and left to be
reinvented by developers. So if you're tired of securing one application at a time, and wrestling with the
same vulnerabilities again and again, establishing your organization’s ESAPI is one of the best things you
can do.

About the author

The OWASP ESAPI Project is led by Jeff Williams, founder and CEO of Aspect Security, specializing
exclusively in application security services. Jeff also serves as the volunteer Chair of the Open Web
Application Security Project (OWASP). In addition to the Enterprise Security APl Project, Jeff has made

extensive contributions to the application security community through OWASP, including the Top Ten,
WebGoat, Secure Software Contract Annex, OWASP Risk Rating Methodology, the worldwide local

chapters program., and coining the term “Reflected XSS.” Jeff has been developing software for 25

years and is lucky to have 4 inspiring children, 3 loyal labradors, and a wonderful wife.

OWASP ESAPI | 2008

OWASP ESAPI | 2008

Table of Contents

FOrWAIG.. . ciiiiiiiiinuiiiiiiiiiinrenuieiiisiinerssasesssesssireesssssssssssssnnesssssssssssssssessssssssssssssessssssssssssssssssnnsassssssssns 2
Y 4o Yo [T 4T T 8
5 T 1] €= o VT I PN 10
Why is application SECUNItY NArd?coe it e e e e aba e e s sare e e enanaee s 10
WHhich applications @re @t FISK?cccuuiei it e e e e e str e e e e raer e e e earaeesensreeesnnsaeeas 10
Enabling developers to Write SECUIE COUE......coouiiiiiiiiiie et e e e etee e e aae e e e neeas 11
ESAPI cuts appliCation SECUNILY COSES ..uuiiiiiiiiiiiiiiiie ettt ee e e e erre e e e ebre e e e ate e e e e naeeeenraeas 11
A “Positive” Approach to Application SECUNItYccceeeeiiiiieeiiiiirerrrccr s rrreee e rnnee s e ennsessennnnens 13
Chasing VUINEIrabilitiesceeiiiieee et e e e et e e e e sttee e s e bae e e seataeeesneaeeeensaneesans 13
A “positive” approach to application SECUNILYeiiiciiiieiiiee e e 14
Focus on fundamental SECUrity CONTIOIS........coiiiiiii i e et e e e 14
Designing an Enterprise SECUrity APL.........cccvvuiiiiiiuiiiiiniiiiiiniiiinires s rsssssssnssssssssenees 15
Separating interfaces from implementation ... 15
S 0T o] oToT g d1aY =g =100 [=Te [=1 u o] o SRS 16
Fundamental security controls, Not @ frameWOorkuvieieii i e e 16
L] =Y o] PP PP PPPPPPPTN 16
Supporting YOUR software developmeNnt ProCESSccvveieiciiieeiiiieeeciree e ecireeesstreeeeeare e e esaaeeeesanreeean 17
Establishing YOUR Enterprise SecUrity APlccccieeuiiiiiiiiiinienmnisiiiniininmmssessnimmmmssssierssssesses 18
Why you shouldn’t build your own security CONtrolS.........cooecciiiieee i 18
Why you shouldn’t use security libraries direCtly.........cccoeeioeecciiiiiei e 19
Why you shouldn’t rely on security in the platform or framework..........ccooevieiiiiiiii e, 19
Create a security APl that matches YOUR €NterpriSe....ccciiuiiiieeiiieciiiieeee e e ettt e e e e e eecvere e e e e e eennens 19
USING ESAPL..ccuuiiiiiiiiiiiiiiiieiiiiiieiiisiieiiissieietassstessssssteessssstsessssstssssssssssssssssesssssssesssssssasssssssssssssssannss 20
Positive AUthentication.......ccciiiiiiiiiiiiiiiiri s sesa s s s e sa s s sesasssssesasssssanans 21
DT E F=4 o T PPPPPPPPRPPPPPRt 21
o 1T o AV LYY VATV o 1T PSR 21
L6 =T PSP PPPP U PPPPPPP 22
Establishing strong Credentialscocuiie it e e e rae e e e nrae e e ennees 22
o =Toru o=l g =T [T oL = E SRR 23
Ta A=Y = Lol Y XU d o T=T ol A Tt o PSR 24
Tl =T = Lol TN U LYY OSSPSR 34
Positive Session ManagemeENntccccciiieiiieeiiiiiiiiiieteiiieeeieneeetesietneserensesensessnssssnssssnssessnssssnsessnsssnns 50

OWASP ESAPI | 2008

USINE SSL ittt ettt e et et et et e e e e et e e eaeeeeeeee et et e e et e e ettt et et e e et et e e et ettt e et e e e e eeeeeaeaeaees 50
Use “Secure” and “HttpOnly” cookKie fIagsccueiiiiiiiiiiciee et 51
Avoid URL rewriting With s€ssion identifier..........ooiiiiiiiciiee e 51
Change session identifier 0N JOZINoociiiii it e e et ae e e e ata e e e erteeeens 52
LG o= oYUl 2T ={ o | ARSI 52
Cross Site ReqUESE FOIZEIY (CSRF) ..uuviiiiiiiiieeciiiee ettt ettt et e et e e et e e e e tve e e e e sntaeeeesnsaeeesnnaaeeennsneeans 52
POSitive HTTP Protection.....ccccciiiiiuiiiiiiiiiiiiiiiiiniiiieiieisiinssisiiesisisessisiesssssiesssssssesssssssssssssssannes 56
Class SAFEREGUESTviiiiiiiie ittt e e ectee e e et e e e et e e e ebteeeeebaeeesaateaaeeeestaeesansaeessansaeessssaeesanseneennns 57
Class SAfERESPONSE ...eeiiiiiee ittt ettt e ettt e e ettt e e e et e e e e et te e e e sbteeesesbaeeeeastaeaeeeastaeesansaeeeeansaeeesstaeesaseeeasns 78
INtEIFACE HTTPULIITIES 1oouveeeiie ettt e e s ste e s be e e sabe e sabeesabaesaeeesabeesabeeens 93
POSItive ACCESS CONION ...cvvieeueeiiiiiiiiiieinneisiiiiiiirenssessssiiiinerssessssssssiireesssssssssssssrerssssssssssssssassssssssss 106
DT = o PRI 106
CoNtrolling ACCESS 1O URLSviiiiiiiiiie ettt ettt e et e e et e e et e e e st e e e s e esataeeeensaeessnnsaeeeansseeesnnsenens 107
Controlling acCess 10 fUNCLIONS ...cc.uiiii e e e e e tr e e s e e e e e sbeeeeannaees 107
(0o T g a o] |11 gY =g Tol ol RN o =] Y/ (ol T3P 107
CoNtrolling ACCESS L0 fIlES .ueiiiiiiiieiiee e et e et e e e e tb e e e e aba e e e saae e e e nsraeeennraees 108
(0fo] g a o] [T oY= Tol ol iR o I -1 - F P 108
Controlling direct 0bJECt FEfEIENCES ...ccc.uviiieeeee e et e e e e e e e e earaeas 108
T gL =L o] T I 1Y 7= O PPPPPPPPPN 110
INtErface ACCESSCONTIOIIENciiiiiiieeeie ettt st e s ba e e sabeesateesabaesbeeesabeesaseas 111
Interface ACCESSREEIENCEIMAPuiii ittt e et e e e sta e e e e s nte e e e sbteeeeenbaeessantaeeesnnes 119
Positive INpUt Validationcoiereeiiiiicccrcccrrrccr e se s s e s e rne e s e e nnse s e rass s senasssssennssssnennssssnens 123
D T=E F=4 o [PPPPPPPPPPPPRt 123
IIINTIMIZE et e e et e e e s e b et e e e e te e e s e s b e bt e e e e e saamebateeesesaannraneeeeess 123
(€1 [e] 1 IV] 10 -1 d o o IO TP PSSR PPPR PP 124
(67T ToT a1 1or-1 [= TP TSRO PRSPPSO 124
Handling Validation @ITOrSiicuiii ettt e e e e ate e e e e e bae e e eatee e e srtneeesnseeeeennees 126
2ol 1 e =1 - OO TSR PTOOPPPPR 127
STAMPING QUL TN ECTION L.ttt et asasasasebababebebebnnenes 128
24Tl o T 0o T) =] o | SRR PSP 129
Ta =Yg = Lol -] o £ oY PSPPSR 130
(01 T Y[Te T o T o] = o oY T APPSR 177
Positive Output ENCOdiNg/ESCAPINGccceeeerererrrererssersssnsnsnnne 181
D T=E F=4 o [PPPPPPPPPPPPRt 181
)Y T2l I 0 =Tt 4o o TSP 182
L6101 =) (OO P PP OPPPPPPPPRNY 183
(@101 oTU =Y g Yol Yo [T =0 PS 184
[0} A=Y = Lol Y = g ol Yo [T o PP 186
Package Org.0WasP.€SaPI.COUBETSuuuiiiiiiiiiiiiiieeee e e ecectteee e e e e ercttrre e e e e e eesaaraaeeeseeeeeeesansssaeeeaseesassraneeens 199
[0 A=Y = Lol o T ol o | PSPPSR 200

OWASP ESAPI | 2008

C1aSS SATEFIIR ..ttt iie ettt st ettt st e e at e e s be e e bte e s ate e s taesbeeesabeesbeeeas 202
Positive Error Handling, Logging, and Intrusion Detectioncccceeeeerireeiiirieeccerenencerenencenenanesenens 204
DT = o PPN 204
PaCKage Org.0OWaSP.ESAPI.EITOIS .. .uuuriiiieeeeeeiitteeeeeeeesettereeeeeeessastseeeeaeseaaasstaseesaeeeesseaassssssseessenasssreseees 205
Class ENterpris@SecUrityEXCEPLION . .uvii ettt e et e e s are e e e sabre e e e araeas 207
(O F T oY (VT oY g1 et (ol=Y o)1 o o ISP 210
T A=Y = Lol T Mo == LT USRS 213
INtErface INtrUSTIONDETECTON ..viiiiiiiieeeiee ettt sre et e e s abe e e sbe e e saaeesabeesabaesbeeesabeesaseas 222
Positive Encryption, Hashing, and Random NUMDbeErscccveuciiiieiirircccrrrcerrreeccrereeereranee e 224
DT = o PRI 224
U T A o) aT ool aV] o oY ={ 5T o] o1V 2SS 224
TaTd =T = Yol I =l Lol 87/ o1 1] PSSR 225
Ta A=Y = ol ol g Yol Ao T d=To | o o 1=T o 4SRRIt 232
INtEITACE RANAOMIZET ..ci ittt ettt e e s e e s ba e e sbteesabeesabaesbeeesaseesaseas 235
Positive COmMmMmUNICAtiON SECUNITY ..cccuiiieiiieeiiiiniiiiiciiieiiiieieieeiiiieiiinessrsssieessrsssssssssssnesssssssssnssssnssses 239
POSItiVe HTTP SECUNITY..ccuuiiiiiiiiiiiiiiiiiiiiiiiiiiriiieiiinsietiennieiiesssiestessssestessssssesssssssesssssssssssssssssnsssssaes 240
Service Challenges (PAtLEINT) ..uuei et e st e e e et e e e esata e e s sntaeeeensbeeesansrnes 240
Positive Security Configuration......c.ccciiiuiiiiiiiiiiiiiiiiiiiierse e nesssssesssasssssssasssssees 241
Interface SeCUrityCONTIGUIAtIONcciiciiii it e e e e e ette e e e e bree e e e rtaeessntaeeeennes 242
A Note on “Rich Internet Applications”c..ciiiieeiiiiiiriiiirererrrreecr e reneessrenesessrenssssennssessrenssssssennns 250
T} Ao To [¥ o1 o] o WS PSPPSR 250
AN L PSPPSR 251

OWASP ESAPI | 2008

OWASP ESAPI | 2008

Introduction

Software is at a tipping point. The rapid increase in connectivity, combined with a dramatic rise in the
value of assets in our systems, and the increasing use of new protocols and technologies has resulted in
applications that represent significant risk to the organizations that build and use them.

One key part of the problem is that application security is a large and complex discipline that most
developers will not be able to master, particularly if they are busy learning the latest framework or
language. We believe that a key part of the road forward must be to simplify application security for
developers.

To help organizations accomplish this, OWASP has defined a security APl that covers all the security
controls a typical enterprise web application or web service project might need. There are about 120
methods across all the different security controls, organized into a simple intuitive set of interfaces.
We've worked very hard to make this API as clear and obvious as possible, to make it easy for
developers to make the right decision.

We're building this library in a completely free and open way. All ESAPI projects are offered under the
open source under the BSD license. This is absolutely critical for such important code. Only with
complete openness can we achieve the level of assurance required. And only with freedom can we help
organizations adopt our approach.

@ iEncrypior - Monila Firefox R [>
Sl EOU Yiew Higiory gookmans Tools Help

@ owosp-esapi-jova - Google Code - Mozita Firefox

& -9 -8 O G0 . goaglecode com/sm mmi ~| e} (Gl esapi googlecode

File Edit View History Bookmarks Tools Help

AT Classes Ovesviow Package Class Use Tree Deprocated Indox Help
e

@ > @oRkc y i y ~[

s sorEnms
RTALFRLD| CoSTR | TR

Packages

[rovs—

Interface IEncryptor

All Koown Inplemsating Classas:
Encoypr

prblic mpface [Encryptor

B provides o set of metbods for pion
Implementations shoud rely oo a strong cryptograptic implemestation, such as JCE or BouncyCaste. lmplementors shovid take care
to ensane thet they intikze ther implementation vwith 2 serong “master ey, and that they proteet this secret as tuch as possible

Poschle fonure enhancemeets (Sepending oa feedback) might inchde

encrypt method) and plai I

ang.String plaiscest)
Encryps the provided plantext aod refurns a ciphertext siing

S tamp [}
et timestamp representing the curvent de and time to be used by odber functions i the brary

© ¥ Profilel

Done © B Profilel

OWASP ESAPI | 2008

The library builds on the excellent security libraries available, such as Java Logging, JCE, and Adobe
Commons FileUpload. It uses the concepts from many of the security packages out there, such as Spring
Security, Apache Commons Validator, Microsoft's AntiXSS library, and many many more. This library
provides a single consistent interface to security functions that is intuitive for enterprise developers.
Used properly, the ESAPI provides enough functions to protect against most of the OWASP Top Ten and
quite a few more common vulnerabilities.

We want organizations to create their own security API for their enterprise. We recognize that every
organization has complex platforms, systems, directories, databases, and infrastructure. We are not
trying to replace any of that. We’re trying to simplify the application security problem for your
developers by providing a simple consistent API to your security infrastructure.

You can find the ESAPI Project on the OWASP website. Currently, the Java version is complete and
several organizations are already using it. Versions for .NET, PHP, Haskell, and Classic ASP are in
development.

OWASP ESAPI | 2008

Background

Application security is managing the risks from your software. To achieve secure applications, you’ll
need to enable your developers, verify your applications, and manage cost and risk. The ESAPI project
supports the first of these goals.

Why is application security hard?

Most developers are not taught security in school, so they only know a very small number of the 695
weakness types that MITRE has catalogued. Most never really receive any security feedback on the job,
because by the time a vulnerability in their code is found, they’re already off on the next project.

In order to write secure code today, developers an impossible amount to learn about application specific
attacks, security controls, and vulnerabilities. You can’t expect developers to wake up one day and think
to himself, “hey — SQL injection! | bet an attacker could insert SQL code in this field that would modify
the meaning of my queries!” All of those 695 weakness types are like that. They’'re not obvious to
people, and many are actually quite tricky for the experts.

Which applications are at risk?

What’s most important to secure, Internet-facing applications or intranet apps? Most people think that
the biggest risks come from the Internet-facing applications, but that may not be true. Intranet
applications are less likely to be attacked because the pool of threat agents (insiders) is smaller. But the
functions and assets are often quite a bit more critical — private data, trade secrets, financials, and
business plans. So the risk is frequently higher for intranet applications.

This risk rating calculus used to be fairly simple. You used to be able to identify which applications
contained the most sensitive assets and were exposed to the most attackers, and that would tell you
which ones were the most risky.

Unfortunately, in most enterprises, many applications are connected. There are many types of
connections. The simplest is when two applications actually talk to each other. But if a user can access
both through their browser, they’re also connected. If you have single sign on (SSO) in your enterprise,
then all your applications are connected through your employee’s browsers. Another way applications
are connected is when they are cohosted, sharing an operating system. A weakness in one application
could compromise another more sensitive application. Or perhaps applications share a backend system,
and an attack could propagate from one system to another.

Only in the past few years have many organizations started to realize the risk that vulnerabilities in their
“internal” applications pose to their business.

10

OWASP ESAPI | 2008

Enabling developers to write secure code

Let’s discuss enabling your developers to write secure code. An organization has to provide developers
with the things they need in order to be able to produce secure code. Far too many organizations
simply expect secure code without doing anything to make it possible for developers to build it.

The first thing to do is to work out the set of security controls available to developers in their
environment. Every organization has certain security controls in their infrastructure, such as encryption
libraries, logging servers, authentication servers, and more. Developers need easy access to these
controls and it helps to have a standard way to do this. Organizations that establish standard security
controls can cut security costs across the lifecycle, including training, design, implementation, and
testing.

Once you understand the security controls available, you can work out a secure coding guideline for
your organization. This is the set of rules for developers to follow when developing applications. This
guideline is specific and contains many code snippets and examples of how to program securely. In
addition, the guideline is tailored for your environment, your policies, and the technologies that you use.
We've found that higher level policies do not communicate well to developers. If you want a particular
programming practice followed then you better show it in code.

The last thing to do to support developers is to get them some hands on secure coding training. You
want instructors that are experienced developers with application security expertise — developers will
immediately detect a trainer who is not really a programmer. The course should cover when and how to
use all the major security controls, giving examples of the common security vulnerabilities associated
with each control and how to follow the secure coding guidelines in order to use the controls to avoid
these vulnerabilities.

ESAPI cuts application security costs

Security can be very expensive. In fact, it can be prohibitively expensive if not provided in the proper
manner. This requires us to focus on security as early as possible in the development lifecycle since the
costs of dealing with a security vulnerability in production are roughly 100 times greater than detecting
and eliminating them during design.

Let’s look at how vulnerabilities get introduced. Every vulnerability in production actually represents a
series of mistakes that occurred during the software development process. The worst way to discover an
application security problem is when it gets exploited by an attacker.

Using an ESAPI has cost benefits across the software development lifecycle. From training and
requirements all the way through implementation, testing, and deployment, the costs associated with
security are dramatically smaller when your enterprise has an ESAPI in place. In the table below, we

11

OWASP ESAPI | 2008

made some conservative estimates of the cost savings associated with an ESAPI in a company with
roughly 1000 applications. For example, the cost associated with doing security training is significantly
smaller, because you only have to teach the security APIs and where to use them, instead of everything
about security. Also, the costs of security testing are significantly decreased, because you no longer
have to verify that the security controls are correct since you’ve already tested them, just that they’re

used properly.

Cost Area Typical With ESAPI

AppSec Training (semiannual) $270K $135K
AppSec Requirements 250 days ($150K) 50 days ($30K)
AppSec Design 500 days ($300K) 250 days ($150K)
(Threat Model, Arch Review)
AppSec Implementation 1500 days ($900K) 500 days ($300K)
(Build and Use Controls)
AppSec Verification 500 days ($300K) 250 days ($150K)
(Scan, Code Review, Pen Test)
AppSec Remediation 500 days ($300K) 150 days ($90K)
AppSec Standards and 100 days ($60K) 20 days ($12K)
Guidelines
AppSec Inventory, Metrics, 250 days ($150K) 200 days ($120K)
and Management

Totals $2.43M $1.00M

12

OWASP ESAPI | 2008

A “Positive” Approach to Application Security

Designing an APl is no trivial task. It requires an extremely deep understanding of how security Is
typically done in the enterprise and how mistakes get made. We’ve spent a great deal of time studying
how developers make mistakes, and we’ve designed the APl to make these mistakes more difficult.

Chasing vulnerabilities

Many organizations approach application security with penetration testing and vulnerability scanning —
essentially hacking. While it is generally easy to find serious holes this way, it’s impossible to hack
yourself secure.

We've analyzed the security vulnerabilities discovered in a decade of application security verification
with code review and security testing. We found that almost all vulnerabilities fall into one of four
categories:

Misused
15%

Broken
30%

A huge percentage (35%) of security problems are due to missing controls — like applications that simply
don’t do output encoding, or that don’t encrypt sensitive data, or fail to use parameterized database
queries. So simply by making the right security controls available in an application, you can eliminate
quite a lot of vulnerabilities.

We also see far too many (30%) security controls that are simply broken. One application we looked at
recently had three different HTML entity encoding routines, all of which were blacklist and seriously
broken. As we'll see, security controls are hard — you don’t want to be reimplementing them all the
time. Developers need a strong set of standard security controls to use.

13

OWASP ESAPI | 2008

We also see vulnerabilities happen (20%) where security controls are available, but the developer simply
didn’t use them. Encryption is a great control but it doesn’t help if you don’t encrypt the sensitive
information. We need to provide controls that are easy to use. Ideally, they would automatically be
used, which is possible in some situations, like automatically logging when security checks fail, if those
checks are provided in standard security controls.

The last case is when the developer has controls available but uses or configures them incorrectly (15%).
Frequently, this is a direct result of the API being difficult to understand.

Based on these findings, we believe that we can eliminate huge numbers of vulnerabilities simply by
providing developers with well-implemented and well-designed security controls and doing everything
possible to make sure that developers use them in all the right places.

A “positive” approach to application security

This “positive” approach to security works because the number of attacks and categories of vulnerability
are so extensive. MITRE has catalogued almost 700 different categories of programming mistakes that
can lead to vulnerability. Each of these weaknesses is targeted by a variety of attacks. Addressing these
problems requires only a small number —a dozen or so — well-designed security controls. The positive
approach tends to be easier to manage and more cost-effective for organizations.

Don’t slip into thinking that as long as your web application does what it’s supposed to, anything else it
does is okay. Instead, think of your application as an API that you’re exposing to attackers. What shows
up in your user’s browsers is irrelevant, since attackers can invoke any method with any parameters.

ESAPI takes a positive approach to the design decisions inherent in creating a set of security controls. All
the controls use a fail-closed, deny by default, whitelist approach to implementing their functions.

Focus on fundamental security controls

Both ESAPI and this book are organized around fundamental security controls. We have not created
chapters around common vulnerabilities or attacks, such as XSS, CSRF, SQL injection, etc... Books
organized this way are sexy, but don’t encourage the best architecture possible.

For example, if you are trying to stamp out XSS from your enterprise, the right way to do it is to establish
great input validation and output encoding mechanisms that developers can use easily. We discuss
these two fundamental controls in our book. But those same controls help to stop a wide range of other
attacks as well. We believe that focusing on getting the right controls in place is the path to improved
software security.

14

OWASP ESAPI | 2008

Designing an Enterprise Security API

This section discusses the rationale for some of the key design decisions that went into creating the
ESAPI. We hope to share our approach so that you will understand why these decisions were made and
can consider the issues when creating your own ESAPI.

Separating interfaces from implementation

ESAPI is primarily a set of interfaces designed to make security easy to use. These interfaces are usable
by anyone who cares to implement them for their enterprise. By keeping the interfaces separate, we are
trying to encourage organizations to create their own implementations.

Custom Enterprise Web Application

OWASP Enterprise Security API

Randomizer

1]
2]
whd
]
i
o
c
(7]
£
o
3
<

IntrusionDetector

AccessController
AccessReferenceMap
VEUTELGTS
HTTPUtilities
EncryptedProperties
Exception Handling
SecurityConfiguration

Your Existing Enterprise Services or Libraries

However, we didn’t stop there. We built a complete set of reference implementations. The reference
implementations are complete and well tested, although there are a few limitations. In general, the
reference implementation is designed to run without requiring any other infrastructure, such as
database or LDAP servers.

The Authenticator and AccessController implementations in particular work of simple text file policies,
which may not be appropriate for enterprise applications. However, the rest of the reference
implementation is scalable and appropriate for enterprise applications. You will likely want to hook up
the Logger to your logging infrastructure.

15

OWASP ESAPI | 2008

Implementating the ESAPI interfaces is not difficult, and can be done without a great deal of security
knowledge. In our experience, it takes only a few hours to hook up a new implementation of an ESAPI
interface to an existing backend system, such as a user repository for example.

Supporting remediation

TODO

Fundamental security controls, not a framework

TODO

Assurance

It’s absolutely critical to get your applications security controls right. An error could expose many
applications. Confidence in your security controls comes from evidence like design documentation, code
review, security testing, and other analysis.

-] org.owasp.esapi.AuthenticatorTest

o B org.owasp.esapi.UserTest
a1-B] org.owasp.esapiRandomizerTest
41] org.owasp.esapi.AccessControllerT|
) 6] org.owasp.esapi HTTPUtilitiesTest

org.owasp.esapiValidatorTest
£ £] org.owasp.esapi.EncryptorTest
5] testHash
] testEncrypt
£ testDecrypt
okl testSign
5] testVerifySignature
] testSeal
£ testVerifySeal
] testGetCentificate
il testaddCertificate
£l testValidateCertificate
m

Eile Edit Navigate Search Project Run Window Heip
> S-HB-0-Q- BFE G @ @

[|42 Java EE
C_J0=20]

Proble | &l Tasks e JUnit| & Consol (= Covera &3+ Search [Quickq [Treere

;. IAliTests (Nov 7, 2007 12:49:36 PM) LIEE T R
4 | Element Coverage Covered Instru... Total Instructio...
« & ESAP - a1% 14670 16840

g | & test - 826% 5044 6106
wl 4 & sre - 807% 9626 10734
| + @ org.owasp.esapi - 4% 9341 10449

| [3) Threshold.java - g% 27 51

| [31 HTTRUtilities java - 569% 325 51

| @ AccessControllerjava - 744 % 386 519

| [@ SecurityConfigurationjava ™ 776 % 350 451

| [Authenticatorjava - % 882 1130

| i) Encryptorjava - 805% 359 446

[[@ Randomizerjava = g739 289 331

| [0 Userjava - 9313% 1584 1698

| [I) IntrusionDetector java = 938% 183 195

| [0 Validatorjava = 958% 835 872

| 1) Executorjava - 917% 213 218

| [Encoderjava - 982% 3279 3338

| [5) AccessReferenceMapjava ™ 1000 % bFil 121

| [0 EncryptedPropertiesjava ™ 1000 % 205 205

| 1) Logger,java = 1000 % 303 303

j @ org.owasp.esapi.errars - 1000 % 285 285

& Java - Eclipse SDK =l FU IFY
File Edit Navigate Search Project Run Window Help S OFTWARE

c3~ L -H-0-%U- BHG- D & P Mo [T

- & 2@ - >t O -

Prioblems | Javadoc] Declamtion| Search| Comote| Victationa: Coverage }}\- TORRIEI. Tasks| Call Hiera..| = # TPy
Finished after 1.386 seconds a® BE| Q! v ¥]I‘[-llt

Runs: 124124 8 Errors: 0 8 Failures: 0]

5 5] org.owasp.esapiLoggerTest & Java EE - C:A\Program Fil es 04 el

oRELLY

IVON'T SHOUT THE MESSENGER

WERSITy
= (=]
3 .

18
)
7"va‘\ PP ™

FindBugs

because it's easy’

The ESAPI project involves a world-class team of software security experts from vendors and industry.
The reference implementation is small and well structured — about 5,000 lines of well-documented and
extensively reviewed code. The code is clean in all the major static analysis tools, including FindBugs,
PMD, Ounce, and Fortify. The project also includes about 600 test cases that test all aspects of the
security mechanisms.

16

OWASP ESAPI | 2008

Supporting YOUR software development process

According to IDC, we create several billion lines of new code every year. We have to involve
development teams more in securing this code, as there simply are not enough application security
specialists to handle that much code, not to mention the trillion lines of code that IDC says have already
been developed.

Using an ESAPI is a way to leverage the application security specialists that you have. There are dramatic
cost savings associated with the use of an ESAPI throughout the software lifecycle. Training,
requirements, design, implementation, testing, deployment, operation, and remediation all take less
time, effort, and expertise because your security knowledge has been institutionalized in your ESAPI
library.

17

OWASP ESAPI | 2008

Establishing YOUR Enterprise Security API

Ask yourself what security controls your developers need to build your applications? Here’s a good way
to figure it out. Take a look at the common application security vulnerabilities you're finding in
penetration testing and code reviews. Then list the security controls that developers need to prevent
those holes. You’ll end up with a list that includes authentication, session management, access control,
input validation, canonicalization, output encoding, parameterized interfaces, encryption, hashing,
random numbers, logging, and error handling.

OWASP Top Ten OWASP ESAPI

Al. Cross Site Scripting (XSS)
1

A2, Injection Flaws

A3. Malicious File Ex;cution
Ad.Insecure Direct C:bject Reference
AB. Cross Site Reque%t Forgery (CSRF)

A6. Leakage and Improper Error Handling
l
A7. Broken Authentication and Sessions

T
AB8. Insecure Cryptographic Storage
1

A9. Insecure Communications HTTPUtilities (Secure Cookie, Channel)
l It
A10. Failure to Restrict URL Access

Ask yourself what coverage of the OWASP Top Ten you really need. Then make sure you have an API
that will enable developers to avoid those pitfalls.

Why you shouldn’t build your own security controls

Writing security controls is time-consuming and extremely prone to mistakes. MITRE’s CWE project lists
over 600 different types of security mistakes that developers can make, and most of them are not at all

obvious. Most people recognize that developers should not build their own encryption mechanisms, but
the same argument applies to all the security controls.

18

OWASP ESAPI | 2008

Why you shouldn’t use security libraries directly

There are plenty of libraries and frameworks out there that provide various security functions — Log4j,
Java Cryptographic Extension (JCE), JAAS, Acegi, and dozens more. Some of them are even pretty good
at what they do. But there are several reasons why enterprise developers should not use them directly.

Most importantly, these libraries are overpowerful. Most developers only need a very limited set of
security functions and don’t need a complex interface. Further, many of these libraries contain security
holes themselves — such as encoding libraries that don’t canonicalize or authentication libraries that
don’t use strong cryptographic functions. Because many security controls use features from other
controls, using security libraries that aren’t integrated together is a mistake.

Why you shouldn’t rely on security in the platform or framework

Unfortunately, the web application platforms and frameworks do not protect against many well-known
attacks. For example, consider header injection — allowing carriage return (CR) and line-feed (LF)
characters to be used in HTTP headers. This injection changes the way these HTTP messages are parsed,
allowing the attacker to affect how they are interpreted. This type of injection can allow attackers to
download malicious files to the user’s desktop among other serious impacts.

The platforms could protect against this attack which violates the HTTP specification, but many do not.
Instead, your application developers must know to carefully validate and filter user data before using it
in HTTP headers.

The platforms and frameworks are a shifting environment. Your code may be protected by something in
your infrastructure today, but that environment may change tomorrow. The best approach is to build
your applications so that they provide their own protection. If this results in some overlapping
protection, also known as defense-in-depth, that’s a good outcome.

Create a security API that matches YOUR enterprise

Even if you don’t trust open source code, please consider the concept of establishing an ESAPI. With the
OWASP project as a model, it would not take much time at all to create a custom ESAPI for your
organization. You could adopt just the ESAPI interfaces and use parts of the reference implementation
that make sense for you.

19

OWASP ESAPI | 2008

Using ESAPI

The full instructions for setting up ESAPI and using it are on the OWASP ESAPI website at
http://www.owasp.org/index.php/ESAPI. But the fundamentals are very simple.

First, you should download the latest ESAPI distribution and unzip it into your application’s lib directory.
In addition to the latest ESAPI.jar file, there are several libraries that are used by the ESAPI reference
implementation that you’ll need. Be careful if these libraries collide with libraries you are already using
in your application.

Next, you should ensure that your ESAPI resources are properly set up. The ESAPI reference
implementation uses a “resources” directory containing several files. The resources directory can be
located anywhere on your classpath or can be specified with an environment variable on the Java
command line as follows: -D org.owasp.esapi.resources="C:\resources”

The most important file in the resources directory is the ESAPl.properties file. In this file, you MUST
change the master password for your ESAPI installation. You may also want to add validation patterns,
logging configurations, encryption algorithms, and exception thresholds.

Once this is set up, you can call ESAPI from your code.

import org.owasp.esapi.ESAPI

String input = request.getParameter(“ssn”);

String validInput = ESAPI.validator().getValidInput(“ssn”, input, “ssn”, 25, false)
String safeOutput = ESAPI.encoder().encodeForHTML(validInput);

out.println(<div>SSN: ” + safeOutput + “</div>”);

20

OWASP ESAPI | 2008

Positive Authentication

Authentication is one of the cornerstones of an enterprise security program. Many other security
controls depend on proper authentication, including access control and accountability. Many enterprises
have a powerful authentication infrastructure in place, possibly including ActiveDirectory, LDAP, custom
databases, SiteMinder, or Tivoli, but have not done everything possible to make it easy for developers to
properly use this infrastructure.

Currently, ESAPI supports only username and password authentication. However, we recognize the
limitations of this approach to authentication and are investigating how to extend the API to support
more sophisticated of authentication, including certificates, federated approaches, and more.

Design

The ESAPI Authenticator is designed to work closely with the ESAPI User interface. Most of the work is
done in the Authenticator, while the User interface is a simple data transfer object. For simple
applications, the developer will only need to call the “login()” and “logout()” methods and
authentication will be handled securely.

‘ login() ‘

‘ logout() ‘

Web -
—~Application

%

Identity everywhere

One design decision in the Authenticator greatly simplifies the implementation of identity management
through ESAPI. The “getCurrentUser()” method is quite important as it makes it possible to easily get the
identity of the currently logged in user. Without this capability, developers would have to pass around
the request, session, or User object throughout their applications. This would virtually guarantee that

21

OWASP ESAPI | 2008

the currently logged in user is not available when it is needed for logging or access control decisions. The
ESAPI approach makes the identity available everywhere, so that these security activities can be
performed without any additional information.

User

ESAPI provides a User interface that models the information required for security. This interface is
intended to be essentially a data transfer object, so that all the details of establishing a database or
registry of Users is part of the Authenticator interface.

Many organizations already have a User class that they have created internally. You may want to
compare against the methods available in the ESAPI User interface to see if there are any capabilities
missing in your User implementation.

Probably the easiest thing to do is to add the ESAPI User interface to the list of interfaces implemented
by your User class. Then just implement the methods so that they work with your user repository.

Creating a user from your code is easy. You can simply create a user with an account name and a
password. This is designed to take information directly from a registration page. The username and
password strength checks are called by this method.

User user = ESAPI.authenticator().createUser(accountName, passwordl, password2);

Establishing strong credentials

ESAPI has considerable support for strong credentials. There are methods to check the strength of both
usernames and passwords. There is also support for generating strong passwords using a
cryptographically strong source of randomness and a character set that minimizes the likelihood of
confusion for the user.

String newPassword = ESAPI.authenticator().generateStrongPassword();

If you already have a User, then you can generate a strong password that takes into account their
username and previous passwords.

22

OWASP ESAPI | 2008

String newPassword = ESAPI.authenticator().generateStrongPassword(user, oldPassword);

ESAPI makes it simple to verify username and password strength. It uses an algorithm that checks the
number of different character sets used and the length to calculate a strength.

ESAPI.authenticator().verifyAccountNameStrength(accountName);
ESAPI.authenticator().verifyPasswordStrength(oldPassword, newPassword);

Protecting credentials

ESAPI ensures that credentials are stored in a hashed form to prevent disclosure if the user repository is
disclosed. To stop rainbow table attacks, the hashes are salted and iterated properly. ESAPI also ensures
that all pages from login form to logout confirmation must be transmitted over SSL to prevent credential
and session disclosure. See the Session Management chapter for more information

23

OWASP ESAPI | 2008

Interface Authenticator

org.owasp.esapi

All Known Implementing Classes:
FileBasedAuthenticator

public interface Authenticator

The Authenticator interface defines a set of methods for generating and handling account credentials
and session identifiers. The goal of this interface is to encourage developers to protect credentials from
disclosure to the maximum extent possible.

One possible implementation relies on the use of a thread local variable to store the current user's
identity. The application is responsible for calling setCurrentUser() as soon as possible after each HTTP
request is received. The value of getCurrentUser() is used in several other places in this API. This
eliminates the need to pass a user object to methods throughout the library. For example, all of the
logging, access control, and exception calls need access to the currently logged in user.

The goal is to minimize the responsibility of the developer for authentication. In this example, the user
simply calls authenticate with the current request and the name of the parameters containing the
username and password. The implementation should verify the password if necessary, create a session
if necessary, and set the user as the current user.

public void doPost (ServletRequest request, ServletResponse response) {
try {

User user = ESAPI.authenticator().login(request, response);

// continue with authenticated user

} catch (AuthenticationException e) {

// handle failed authentication (it's already been logged)

}

Method Summary

void |changePassword (User user, String currentPassword, String newPassword,
String newPassword?2)

Changes the password for the specified user.

void|eclearCurrent ()

Clear the current user.

24

OWASP ESAPI | 2008

User | createUser (String accountName, String passwordl, String password2)

Creates a new User with the information provided.

boolean |exists (String accountName)

Determine if the account exists.

String | generateStrongPassword ()

Generate a strong password.

String | generateStrongPassword (User user, String oldPassword)

Generate strong password that takes into account the user's information and old
password.

User |getCurrentUser ()

Returns the currently logged in User.

User |getUser (String accountName)

Returns the User matching the provided accountName.

User |getUser (long accountId)

Returns the User matching the provided accountld.

Set |getUserNames ()

Gets a collection containing all the existing user names.

String |hashPassword (String password, String accountName)

Returns a string representation of the hashed password, using the accountName as
the salt.

User|login (HttpServletRequest request, HttpServletResponse response)

Authenticates the user's credentials from the HttpServletRequest if necessary,
creates a session if necessary, and sets the user as the current user.

void|logout ()

Logs out the current user.

void | removeUser (String accountName)

Removes the account.

void | setCurrentUser (User user)

Sets the currently logged in User.

25

OWASP ESAPI | 2008

void |yverifyAccountNameStrength (String accountName)

Ensures that the account name passes site-specific complexity requirements, like

minimum length.

boolean |yerifyPassword (User user, String password)

Verify that the supplied password matches the password for this user.

void |verifyPasswordStrength (String oldPassword, String newPassword)

Ensures that the password meets site-specific complexity requirements.

Method Detail

clearCurrent

void eclearCurrent ()

Clear the current user. This allows the thread to be reused safely.

login

User login (HttpServletRequest request,
HttpServletResponse response)
throws AuthenticationException

Authenticates the user's credentials from the HttpServletRequest if necessary, creates a session

if necessary, and sets the user as the current user.

Parameters:
request - the current HTTP request
response - the response

Returns:
the user

Throws:

AuthenticationException - if the credentials are not verified, or if the account is

disabled, locked, expired, or timed out

26

OWASP ESAPI | 2008

verifyPassword

boolean verifyPassword(User user,

String password)

Verify that the supplied password matches the password for this user. This method is typically
used for "reauthentication" for the most sensitive functions, such as transactions, changing
email address, and changing other account information.

Parameters:
user - the user
password - the password
Returns:

true, if the password is correct for the specified user

logout

void logout ()

Logs out the current user.

createUser

User createUser(String accountName,
String passwordl,
String password?2)
throws AuthenticationException

Creates a new User with the information provided. Implementations should check the
accountName and password for proper format and strength against brute force attacks. Two
copies of the new password are required to encourage user interface designers to include a "re-
type password" field in their forms. Implementations should verify that both are the same.

Parameters:

accountName - the account name of the new user

27

OWASP ESAPI | 2008

passwordl - the password of the new user

password2 - the password of the new user. This field is to encourage user interface
designers to include two password fields in their forms.

Returns:
the User that has been created

Throws:

AuthenticationException - if user creation fails

generateStrongPassword

String generateStrongPassword()

Generate a strong password. Implementations should use a large character set that does not
include confusing characters, such asil 110 oand O. There are many algorithms to generate
strong memorable passwords that have been studied in the past.

Returns:

a password with strong password strength

generateStrongPassword

String generateStrongPassword (User user,
String oldPassword)

Generate strong password that takes into account the user's information and old password.
Implementations should verify that the new password does not include information such as the
username, fragments of the old password, and other information that could be used to weaken

the strength of the password.

Parameters:

user - the user whose information to use when generating password

28

OWASP ESAPI | 2008

oldPassword - the old password to use when verifying strength of new password. The
new password may be checked for fragments of oldPassword.

Returns:

a password with strong password strength

changePassword

void changePassword(User user,
String currentPassword,
String newPassword,
String newPassword2)
throws AuthenticationException

Changes the password for the specified user. This requires the current password, as well as the
password to replace it with. This new password must be repeated to ensure that the user has
typed it in correctly.

Parameters:
user - the user to change the password for
currentPassword - the current password for the specified user
newPassword - the new password to use
newPassword?2 - a verification copy of the new password
Throws:

AuthenticationException - if any errors occur

getUser

User getUser(long accountId)
Returns the User matching the provided accountld.

Parameters:

accountId - the account id

29

OWASP ESAPI | 2008

Returns:

the matching User object, or null if no match exists

getUser

User getUser (String accountName)
Returns the User matching the provided accountName.

Parameters:
accountName - the account name
Returns:

the matching User object, or null if no match exists

getUserNames

Set getUserNames ()
Gets a collection containing all the existing user names.

Returns:

a set of all user names

getCurrentUser

User getCurrentUser ()
Returns the currently logged in User.

Returns:

the matching User object, or the Anonymous user if no match exists

30

OWASP ESAPI | 2008

setCurrentUser

void setCurrentUser (User user)

Sets the currently logged in User.

Parameters:

user - the user to set as the current user

hashPassword

String hashPassword(String password,
String accountName)
throws EncryptionException

Returns a string representation of the hashed password, using the accountName as the salt. The
salt helps to prevent against "rainbow" table attacks where the attacker pre-calculates hashes
for known strings. This method specifies the use of the user's account name as the "salt" value.
The Encryptor.hash method can be used if a different salt is required.

Parameters:

password - the password to hash

accountName - the account name to use as the salt
Returns:

the hashed password

Throws:

EncryptionException

removeUser

void removeUser (String accountName)
throws AuthenticationException

Removes the account.

31

OWASP ESAPI | 2008

Parameters:

accountName - the account name to remove

Throws:

AuthenticationException - the authentication exception if user does not exist

verifyAccountNameStrength

void wverifyAccountNameStrength(String accountName)
throws AuthenticationException

Ensures that the account name passes site-specific complexity requirements, like minimum

length.
Parameters:
accountName - the account name

Throws:

AuthenticationException - if account name does not meet complexity requirements

verifyPasswordStrength

void verifyPasswordStrength(String oldPassword,
String newPassword)
throws AuthenticationException

Ensures that the password meets site-specific complexity requirements. This method takes the
old password so that the algorithm can analyze the new password to see if it is too similar to the
old password. Note that this has to be invoked when the user has entered the old password, as
the list of old credentials stored by ESAPI is all hashed.

Parameters:
oldPassword - the old password

newPassword - the new password

32

OWASP ESAPI | 2008

Returns:

true, if the new password meets complexity requirements and is not too similar to the
old password

Throws:

AuthenticationException - if newPassword is too similar to oldPassword or if

newPassword does not meet complexity requirements

exists

boolean exists(String accountName)

Determine if the account exists.

Parameters:
accountName - the account name
Returns:

true, if the account exists

33

OWASP ESAPI | 2008

Interface User

org.owasp.esapi

All Superinterfaces:
Principal

All Known Implementing Classes:
DefaultUser

public interface User

extends Principal

The User interface represents an application user or user account. There is quite a lot of information
that an application must store for each user in order to enforce security properly. There are also many
rules that govern authentication and identity management.

A user account can be in one of several states. When first created, a User should be disabled, not
expired, and unlocked. To start using the account, an administrator should enable the account. The
account can be locked for a number of reasons, most commonly because they have failed login for too
many times. Finally, the account can expire after the expiration date has been reached. The User must
be enabled, not expired, and unlocked in order to pass authentication.

Field Summary

User | ANONYMOUS

The ANONYMOUS user is used to represent an unidentified user.

Method Summary

void | addRole (String role)

Adds a role to an account.

void | addRoles (Set newRoles)

Adds a set of roles to an account.

34

OWASP ESAPI | 2008

void

changePassword (String oldPassword, String newPasswordl, String

newPassword?2)

Sets the user's password, performing a verification of the user's old password, the
equality of the two new passwords, and the strength of the new password.

void

disable ()

Disable account.

void

enable ()

Enable account.

long

getAccountId()

Gets the account id.

String

getAccountName ()

Gets the account name.

String

getCSRFToken()

Gets the CSRF token.

Date

getExpirationTime ()

Returns the date that the current user's account will expire, usually when the
account will be disabled.

int

getFailedLoginCount ()

Returns the number of failed login attempts since the last successful login for an
account.

Date

getLastFailedLoginTime ()

Returns the date of the last failed login time for a user.

String

getLastHostAddress ()

Returns the last host address used by the user.

Date

getLastLoginTime ()

Returns the date of the last successful login time for a user.

Date

getLastPasswordChangeTime ()

Gets the date of user's last password change.

35

OWASP ESAPI

2008

getRoles ()

Gets the roles assigned to a particular account.

String getScreenName ()
Gets the screen name.
void

incrementFailedLoginCount ()

Increment failed login count.

boolean

isAnonymous ()

Checks if user is anonymous.

boolean

isEnabled ()

Checks if an account is currently enabled.

boolean

isExpired()

Checks if an account is expired.

boolean

isInRole(String role)

Checks if an account has been assigned a particular role.

boolean

isLocked ()

Checks if an account is locked.

boolean

isLoggedIn ()

Tests to see if the user is currently logged in.

boolean

isSessionAbsoluteTimeout ()

Tests to see if the user's session has exceeded the absolute time out.

boolean

isSessionTimeout ()

Tests to see if the user's session has timed out from inactivity.

void

lock ()

Lock the user's account.

void

loginWithPassword (String password)

Login with password.

void

logout ()

Logout this user.

36

OWASP ESAPI | 2008

void

removeRole (String role)

Removes a role from an account.

String

resetCSRFToken ()

Returns a token to be used as a prevention against CSRF attacks.

void

setAccountName (String accountName)

Sets the account name.

void

setExpirationTime (Date expirationTime)

Sets the time when this user's account will expire.

void

setLastFailedLoginTime (Date lastFailedLoginTime)

Set the time of the last failed login for this user.

void

setLastHostAddress (String remoteHost)

Set the last remote host address used by this user.

void

setLastLoginTime (Date lastLoginTime)

Set the time of the last successful login for this user.

void

setLastPasswordChangeTime (Date lastPasswordChangeTime)

Set the time of the last password change for this user.

void

setRoles (Set roles)

Sets the roles of this account.

void

setScreenName (String screenName)

Sets the screen name.

void

unlock ()

Unlock account.

boolean

verifyPassword (String password)

Verify that the supplied password matches the password for this user.

Field Detail

ANONYMOUS

public static final User ANONYMOUS

37

OWASP ESAPI | 2008

The ANONYMOUS user is used to represent an unidentified user. Since there is always a real
user, the ANONYMOUS user is better than using null to represent this.

Method Detail

addRole

void addRole(String role)
throws AuthenticationException

Adds a role to an account.

Parameters:
role - the role to add
Throws:

AuthenticationException - the authentication exception

addRoles

void addRoles (Set newRoles)
throws AuthenticationException

Adds a set of roles to an account.

Parameters:
newRoles - the new roles to add
Throws:

AuthenticationException - the authentication exception

38

OWASP ESAPI | 2008

changePassword

void changePassword(String oldPassword,
String newPasswordl,
String newPassword2)

throws AuthenticationException,

EncryptionException

Sets the user's password, performing a verification of the user's old password, the equality of
the two new passwords, and the strength of the new password.

Parameters:
oldPassword - the old password
newPasswordl - the new password

newPassword2 - the new password - used to verify that the new password was typed
correctly

Throws:

AuthenticationException - if newPasswordl does not match newPassword?2, if

oldPassword does not match the stored old password, or if the new password does not
meet complexity requirements

EncryptionException

disable

void disable ()
Disable account.
Throws:

AuthenticationException - the authentication exception

enable

void enable ()

39

OWASP ESAPI | 2008

Enable account.

Throws:

AuthenticationException - the authentication exception

getAccountld

long getAccountId()
Gets the account id.

Returns:

the account id

getAccountName

String getAccountName ()
Gets the account name.

Returns:

the account name

getCSRFToken

String getCSRFToken ()
Gets the CSRF token.

Returns:

the CSRF token

40

OWASP ESAPI | 2008

getExpirationTime

Date getExpirationTime ()

Returns the date that the current user's account will expire, usually when the account will be
disabled.

Returns:

Date representing the account expiration time.

getFailedLoginCount

int getFailedLoginCount ()

Returns the number of failed login attempts since the last successful login for an account. This
method is intended to be used as a part of the account lockout feature, to help protect against
brute force attacks. However, the implementor should be aware that lockouts can be used to
prevent access to an application by a legitimate user, and should consider the risk of denial of

service.

Returns:

the number of failed login attempts since the last successful login

getLastHostAddress

String getLastHostAddress ()

Returns the last host address used by the user. This will be used in any log messages generated

by the processing of this request.

Returns:

the last host address used by the user

41

OWASP ESAPI | 2008

getLastFailedLoginTime

Date getLastFailedLoginTime ()
throws AuthenticationException

Returns the date of the last failed login time for a user. This date should be used in a message to
users after a successful login, to notify them of potential attack activity on their account.

Returns:
date of the last failed login

Throws:

AuthenticationException - the authentication exception

getLastLoginTime

Date getLastLoginTime ()

Returns the date of the last successful login time for a user. This date should be used in a
message to users after a successful login, to notify them of potential attack activity on their

account.

Returns:

date of the last successful login

getLastPasswordChangeTime

Date getLastPasswordChangeTime ()

Gets the date of user's last password change.

Returns:

the date of last password change

42

OWASP ESAPI | 2008

getRoles

Set getRoles ()
Gets the roles assigned to a particular account.

Returns:

an immutable set of roles

getScreenName

String getScreenName ()
Gets the screen name.

Returns:

the screen name

incrementFailedLoginCount

void incrementFailedLoginCount ()

Increment failed login count.

iSsAnonymous

boolean isAnonymous ()
Checks if user is anonymous.

Returns:

true, if user is anonymous

isEnabled

boolean isEnabled()

43

OWASP ESAPI | 2008

Checks if an account is currently enabled.

Returns:

true, if account is enabled

isExpired

boolean isExpired()
Checks if an account is expired.

Returns:

true, if account is expired

isInRole

boolean isInRole(String role)
Checks if an account has been assigned a particular role.

Parameters:
role - the role for which to check
Returns:

true, if role has been assigned to user

isLocked

boolean isLocked()

Checks if an account is locked.

Returns:

true, if account is locked

44

OWASP ESAPI | 2008

isLoggedIn

boolean isLoggedIn ()
Tests to see if the user is currently logged in.

Returns:

true, if the user is logged in

isSessionAbsoluteTimeout

boolean isSessionAbsoluteTimeout ()

Tests to see if the user's session has exceeded the absolute time out.

Returns:

true, if user's session has exceeded the absolute time out

isSessionTimeout

boolean isSessionTimeout ()
Tests to see if the user's session has timed out from inactivity.

Returns:

true, if user's session has timed out from inactivity

lock

void lock ()

Lock the user's account.

45

OWASP ESAPI

2008

loginWithPassword

void loginWithPassword(String password)
throws AuthenticationException

Login with password.

Parameters:
password - the password
Throws:

AuthenticationException - if login fails

logout

void logout ()

Logout this user.

removeRole

void removeRole (String role)
throws AuthenticationException

Removes a role from an account.

Parameters:
role - the role to remove
Throws:

AuthenticationException - the authentication exception

resetCSRFToken

String resetCSRFToken ()
throws AuthenticationException

46

OWASP ESAPI | 2008

Returns a token to be used as a prevention against CSRF attacks. This token should be added to
all links and forms. The application should verify that all requests contain the token, or they may
have been generated by a CSRF attack. It is generally best to perform the check in a centralized
location, either a filter or controller. See the verifyCSRFToken method.

Returns:
the new CSRF token
Throws:

AuthenticationException - the authentication exception

setAccountName

void setAccountName (String accountName)

Sets the account name.

Parameters:

accountName - the new account name

setExpirationTime

void setExpirationTime (Date expirationTime)

Sets the time when this user's account will expire.

Parameters:

expirationTime - the new expiration time

setRoles

void setRoles(Set roles)
throws AuthenticationException

Sets the roles of this account.

47

OWASP ESAPI

2008

Parameters:
roles - the new roles
Throws:

AuthenticationException - the authentication exception

setScreenName

void setScreenName (String screenName)

Sets the screen name.

Parameters:

screenName - the new screen name

unlock

void unlock ()

Unlock account.

verifyPassword

boolean verifyPassword(String password)
throws EncryptionException

Verify that the supplied password matches the password for this user. This method is typically
used for "reauthentication" for the most sensitive functions, such as transactions, changing

email address, and changing other account information.

Parameters:
password - the password that the user entered

Returns:

true, if the password passed in matches the account's password

438

OWASP ESAPI | 2008

Throws:

EncryptionException

setLastFailedLoginTime

void setLastFailedLoginTime (Date lastFailedLoginTime)

Set the time of the last failed login for this user.

setLastHostAddress

void setLastHostAddress (String remoteHost)

Set the last remote host address used by this user.

setLastLoginTime

void setLastLoginTime (Date lastLoginTime)

Set the time of the last successful login for this user.

setLastPasswordChangeTime

void setLastPasswordChangeTime (Date lastPasswordChangeTime)

Set the time of the last password change for this user.

49

OWASP ESAPI | 2008

Positive Session Management

Everyone knows that protecting passwords is important, but do you take the same care with your
session identifiers? Session identifier cookies are often exposed and just as important. Here’s how they
work - when you log into a web application, you exchange your credentials for a session identifier
cookie. This cookie gets sent with every subsequent request from your browser until you log out or the
session times out. During that window, if an attacker steals your session identifier, they have full access
to your account.

What is your session identifier? Log into a website and type “javascript:alert(document.cookie)” into
your browser. That number is very important and must be kept secret. Anyone who has it can hijack
your account. So what do you need to do to protect your application’s session identifiers?

Using SSL

Some web applications use SSL for the username and password, but then fall back to a non-SSL
connection after authentication. Unfortunately, this means that the session identifier is transmitted in
the clear in every HTTP request, where it can be easily read by anyone with access to the network. This
attack is called “sidejacking” and there are simple tools available to exploit this weakness.

Don’t forget your Ajax requests, as they may also contain a session identifier. Gmail has this problem, as
their application sometimes falls back to non-SSL for Ajax requests, exposing the user’s Gmail session
identifier on the wire. Google recently added a setting to “always use SSL” that you should enable right
now.

Despite performance issues, the only solution to protecting your session identifiers on the wire is to use
SSL for every single page from your login form to your logout confirmation.

ESAPI handles much of this automatically in the Authenticator by verifying that any authenticated
request uses SSL.

ESAPI.authenticator().login()

If you want to verify this yourself, you can use the support method in the HTTPUtilities.

50

OWASP ESAPI | 2008

ESAPI.httpUtilities().assertSecureRequest(request);

Use “Secure” and “HttpOnly” cookie flags

Even if your application always uses SSL, attackers may try to trick the browser into exposing the session
identifier over a non-SSL connection by getting victims to view a page including the following type of tag:

When the browser sees this tag (even in the attacker’s page) it will generate a non-SSL request and send
it to www.example.com. The request will include the session identifier, and the attacker can sidejack
the user’s session. The solution is to use the “Secure” flag on your session identifier. This flag tells the
browser to send the cookie only over an SSL connection.

Another way an attacker might steal the session identifier is to use an XSS attack. The injected script
simply accesses the cookie and sends it to the attacker. Another cookie flag called HttpOnly can protect
against this attack, as it tells the browser not to allow scripts to access the session identifier. While most
browsers respect the HttpOnly flag, many development environments do not yet make it easy to set.

ESAPI handles this automatically for all cookies in the SafeResponse class, which is automatically used if
you enable the ESAPIFilter.

HttpSession session = new SafeRequest(request).getSession();

Avoid URL rewriting with session identifier

Back in the early days of the web, the U.S. Government (wrongly) concluded that cookies were a privacy
violation and they banned them. Developers quickly came up with a workaround that involved including
the session identifier directly in the URL. Unfortunately, URLs are frequently disclosed via bookmarks,
referrers, web logs, cut-and-paste, and more. So the cure was much worse than the disease.

Given the small number of web users that do not allow session cookies and the high risk of session
identifier exposure, this URL rewriting technique should not be used. Disabling this may not be trivial, as
many frameworks fall back to this technique when cookies are not accepted. You can test your
environment by disabling cookies and browsing your site.

ESAPI overrides these methods in the SafeResponse class, which is automatically used if you use the
ESAPIFilter. If you want to call these methods manually:

51

OWASP ESAPI | 2008

String badInput = request.getParameter("badinput");
new SafeResponse(response).setHeader("inject", badInput);

Change session identifier on login

One creative way for attackers to steal session identifiers is to grab them before the user logs in. For
example, imagine an evil coworker goes to your desk, browses to a sensitive internal application, and
writes down your session identifier. Then when you come in to work and log in, the session identifier is
now authenticated, and the attacker can use it to access the application as you.

In principle, the attack is easy to defeat. All you have to do is change the session identifier when a user
logs in. Unfortunately, most platforms do not provide an easy way to actually accomplish this.
Fortunately, there is a simple method in ESAPI to do just this. This method is called automatically if you
are using ESAPI for authentication, but it can also be used as a standalone method.

ESAPI.httpUtilities().changeSessionId();

Get Logout Right

Many web applications don’t properly invalidate the user’s session when they hit the logout function.
This is important because logout is the only way that a user can end their session and minimize the
danger from an attacker that sniffs the session id, steals the session id with an XSS attack, or misuses the
session with a CSRF attack.

The most important thing is to actually invalidate the session on the server site. Clearing the session id
cookie from the browser is a nice feature, but it’s not critical from a security perspective.

ESAPI.authenticator().logout();

Cross Site Request Forgery (CSRF)

Did you know hackers can force your browser to send requests to any site they want? It’s not even
hard. All they have to do is get you to view an email or a webpage. Unless the site has specifically
protected against this (and almost nobody has), attackers can make your browser do anything you can
do — and they can use your credentials and your access privileges. They can set preferences, create
payees, write checks, change passwords, etc...

52

OWASP ESAPI | 2008

Generally, browsers stop cross site communication by following the “same-origin policy.” This rule is
pretty simple: if your site has a different origin (protocol, domain, and port don’t all match), you aren’t
allowed to access information from or send requests to the other site. Without this simple rule, there
would be no security on the Internet. Every website could access data from every other one —you’d
need a separate web browser for every website.

Unfortunately, the same-origin policy is nowhere near airtight. Attackers don’t even need an exploit to
bypass it. They can simply embed an IMG, SCRIPT, IFRAME, or FORM tag that references the targeted
website in an HTML page. When the victim’s browser renders this tag, it generates a request and sends
it to the targeted website —right around the same-origin policy. This is a feature of all browsers —it’s
used by many applications to grab images from other sites and to post form data to services.

Attackers can use this loophole to forge requests that appear to be coming from a legitimate user. These
are called “cross-site request forgeries” or CSRF for short. Take a look at this old CSRF attack on Neflix.
The attacker can post this image tag anywhere: a blog, a wiki, a website, even an email message.
Anyone who accidentally browses a page containing the attack while logged into Netflix will have a
movie silently added to their queue.

<img src=http://www.netflix.com/AddToQueue?movieid=70011204
width="1" height="1" border="0">

Attackers can submit forms on your behalf as well.

<body onload="document.forms[@].submit()">

<form method="POST" action="https://bank.com/transfer.do">
<input type="hidden" name="account" value="123456789"/>
<input type="hidden" name="amount" value="2500"/>

</form>

More complex attacks involve a sending series of requests and delays, allowing the attacker to execute a
series of actions in a row. In a strange way, a CSRF attack is a sort of program that executes web
instructions on behalf of the attacker. You can test your applications for CSRF vulnerabilities with the
OWASP CSRFTester.

What If your browser went renegade? Imagine your browser suddenly turned evil and started trying to
mess up your life. What could it do? It might raid the email account you’re currently logged into. Maybe
it would go after any bank accounts and healthcare sites you’re using. Did you click “remember my
login” on any websites? Guess what, your renegade browser is logged in and can take those accounts

over.

53

OWASP ESAPI | 2008

And what if you’re at work or connected to the VPN? Your browser can go after the corporate portal.
Do you have single sign-on? That means you’re logged into every web application on your intranet, and
your renegade browser can go after any of them.

Using CSRF, an attacker can attack all of these targets and can do just about anything you can do
through your browser. All these attacks can be done remotely and basically anonymously.

What can you do to protect yourself? First, don’t stay logged into web sites. You have to actually hit the
logout button, not just close the browser. Second, stop CSRF from getting to your critical web sites by
using a separate browser to access them. Companies should start thinking about using a separate
browser for accessing intranet applications.

If your web application is attacked by a CSRF, all you’ll see is normal transactions being performed by
authenticated and authorized users. There won’t be any way to tell that the user didn’t actually execute
the transaction. Probably the only way you’ll find out that you have a CSRF problem is when users start
complaining about phantom transactions on their account. The attacker can cover their tracks easily by
removing the attack once it has worked.

Taken alone, CSRF attacks are simple and powerful. However, most attackers use CSRF and XSS in
conjunction. Together, these two techniques allow attackers to invade a victim’s browser and execute
malicious programs using the credentials of site the user is logged into. This combination is devastating
and I'm frankly surprised that a cross-application CSRF-XSS worm hasn’t already been developed.

The best solution to CSRF is to require a random token in each business function in your application. You
can generate the random token when the user logs in and store it in their session. When you generate
links and forms, simply add it to the URL or put it in a hidden form field. For example:

http://www.example.com?token=8FD41A&data=1

Requests that show up without the right token are forged and you can reject them. If you want to add
protection without modifying code, the OWASP CSRFGuard is a filter that sits in front of your application
and adds token support. In ESAPI, there’s built in support for generating these tokens and automatically
adding them to a url.

String url = ESAPI.httpUtilities().addCSRFToken(“/example/action?t=1”);

If you like, you can get the token and add it to a hidden field in a form.

54

OWASP ESAPI | 2008

String token = ESAPI.httpUtilities().getCSRFToken();

That’s about the best solution we know of today. OWASP is already working to get CSRF defenses into
the web and container standards, but it’s not likely to actually happen anytime soon. If you have an
application framework, you may want to investigate integrating CSRF protection like CSRFGuard. But
don’t wait — it will be extremely difficult to roll out protection against forged requests after you're
already being attacked.

55

OWASP ESAPI | 2008

Positive HTTP Protection

TODO

56

OWASP ESAPI | 2008

Class SafeRequest

org.owasp.esapi.filters

java.lang.Object

(- org.owasp.esapi.filters.SafeRequest

All Implemented Interfaces:
HttpServletRequest, ServletRequest

public class SafeRequest

extends Object

implements HttpServletRequest

This request wrapper simply overrides unsafe methods in the HttpServletRequest API with safe versions

that return canonicalized data where possible. The wrapper returns a safe value when a validation error
is detected, including stripped or empty strings.

Constructor Summary

SafeRequest (HttpServletRequest request)

Construct a safe request that overrides the default request methods with safer versions.

Method Summary

Object |getAttribute (String name)

Same as HttpServletRequest, no security changes required.

Enumeration| getAttributeNames ()

Same as HttpServletRequest, no security changes required.

String | getAuthType ()

Same as HttpServletRequest, no security changes required.

String | getCharacterEncoding ()

Same as HttpServletRequest, no security changes required.

57

OWASP ESAPI

2008

int

getContentLength ()

Same as HttpServletRequest, no security changes required.

String

getContentType ()

Same as HttpServletRequest, no security changes required.

String

getContextPath ()

Returns the context path from the HttpServletRequest after
canonicalizing and filtering out any dangerous characters.

Cookiel]

getCookies ()

Returns the array of Cookies from the HttpServletRequest after
canonicalizing and filtering out any dangerous characters.

long

getDateHeader (String name)

Same as HttpServletRequest, no security changes required.

String

getHeader (String name)

Returns the named header from the HttpServletRequest after
canonicalizing and filtering out any dangerous characters.

Enumeration

getHeaderNames ()

Returns the enumeration of header names from the HttpServletRequest

after canonicalizing and filtering out any dangerous characters.

Enumeration

getHeaders (String name)

Returns the enumeration of headers from the HttpServietRequest after

canonicalizing and filtering out any dangerous characters.

ServletInputStream

getInputStream()

Same as HttpServletRequest, no security changes required.

int

getIntHeader (String name)

Same as HttpServletRequest, no security changes required.

String

getLocalAddr ()

Same as HttpServletRequest, no security changes required.

Locale

getlocale()

Same as HttpServletRequest, no security changes required.

58

OWASP ESAPI

2008

Enumeration

getlocales ()

Same as HttpServletRequest, no security changes required.

String|getLocalName ()

Same as HttpServletRequest, no security changes required.

int | getLocalPort ()

Same as HttpServletRequest, no security changes required.

String getMethod ()
Same as HttpServletRequest, no security changes required.
String getParameter(String name)

Returns the named parameter from the HttpServletRequest after

canonicalizing and filtering out any dangerous characters.
Map getParameterMap ()

Returns the parameter map from the HttpServletRequest after

canonicalizing and filtering out any dangerous characters.
Enumeration | getParameterNames ()

Returns the enumeration of parameter names from the
HttpServletRequest after canonicalizing and filtering out any dangerous
characters.

String(] | getParameterValues (String name)

Returns the array of matching parameter values from the
HttpServletRequest after canonicalizing and filtering out any dangerous
characters.

String getPathInfo ()
Returns the path info from the HttpServiletRequest after canonicalizing
and filtering out any dangerous characters.
String |getPathTranslated ()
Same as HttpServletRequest, no security changes required.
String|getProtocol ()

Same as HttpServletRequest, no security changes required.

59

OWASP ESAPI | 2008

String|getQueryString()

Returns the query string from the HttpServletRequest after
canonicalizing and filtering out any dangerous characters.

BufferedReader EetReader ()

Same as HttpServletRequest, no security changes required.

String|getRealPath (String path)

Same as HttpServletRequest, no security changes required.

String|getRemoteAddr ()

Same as HttpServletRequest, no security changes required.

String| getRemoteHost ()

Same as HttpServletRequest, no security changes required.

int | getRemotePort ()

Same as HttpServletRequest, no security changes required.

String|getRemoteUser ()

Returns the name of the ESAPI user associated with this request.

RequestDispatcher | getRequestDispatcher (String path)

Checks to make sure the path to forward to is within the WEB-INF
directory and then returns the dispatcher.

String | getRequestedSessionId()

Returns the URI from the HttpServletRequest after canonicalizing and
filtering out any dangerous characters.

String|getRequestURI ()

Returns the URI from the HttpServletRequest after canonicalizing and
filtering out any dangerous characters.

StringBuffer getRequestURL ()

Returns the URL from the HttpServletRequest after canonicalizing and
filtering out any dangerous characters.

60

OWASP ESAPI | 2008

String|getScheme ()
Returns the scheme from the HttpServletRequest after canonicalizing
and filtering out any dangerous characters.
String|getServerName ()
Returns the server name (host header) from the HttpServletRequest
after canonicalizing and filtering out any dangerous characters.
int |getServerPort ()
Returns the server port (after the : in the host header) from the
HttpServletRequest after parsing and checking the range 0-65536.
String |getServletPath ()
Returns the server path from the HttpServietRequest after canonicalizing
and filtering out any dangerous characters.
HttpSession getSession ()
Returns a session, creating it if necessary, and sets the HttpOnly flag on
the JSESSIONID cookie.
HttpSession getSession(boolean create)
Returns a session, creating it if necessary, and sets the HttpOnly flag on
the JSESSIONID cookie.
Principal | getUserPrincipal ()

Returns the ESAPI User associated with this request.

boolean

isRequestedSessionIdFromCookie ()

Same as HttpServletRequest, no security changes required.

boolean

isRequestedSessionIdFromUrl ()

Same as HttpServletRequest, no security changes required.

boolean

isRequestedSessionIdFromURL ()

Same as HttpServletRequest, no security changes required.

boolean

isRequestedSessionIdValid()

Same as HttpServletRequest, no security changes required.

61

OWASP ESAPI

2008

boolean

isSecure ()

Same as HttpServletRequest, no security changes required.

boolean

isUserInRole (String role)

Returns true if the ESAPI User associated with this request has the
specified role.

void

removeAttribute (String name)

Same as HttpServletRequest, no security changes required.

void

setAttribute (String name, Object o)

Same as HttpServletRequest, no security changes required.

void

setCharacterEncoding(String enc)

Sets the character encoding to the ESAPI configured encoding.

Constructor Detail

SafeRequest

public SafeRequest (HttpServletRequest request)

Construct a safe request that overrides the default request methods with safer versions.

Method Detail

getAttribute

public Object getAttribute (String name)

Same as HttpServletRequest, no security changes required.

Specified by:

getAttribute ininterface servlietRequest

getAttributeNames

public Enumeration getAttributeNames ()

62

OWASP ESAPI | 2008

Same as HttpServletRequest, no security changes required.

Specified by:

getAttributeNames in interface servletRequest

getAuthType

public String getAuthType ()
Same as HttpServletRequest, no security changes required.

Specified by:

getAuthType ininterface HttpServletRequest

getCharacterEncoding

public String getCharacterEncoding()
Same as HttpServletRequest, no security changes required.

Specified by:

getCharacterEncoding in interface ServletRequest

getContentLength

public int getContentLength ()
Same as HttpServletRequest, no security changes required.

Specified by:

getContentLength in interface ServletRequest

63

OWASP ESAPI | 2008

getContentType

public String getContentType ()
Same as HttpServletRequest, no security changes required.

Specified by:

getContentType in interface ServletRequest

getContextPath

public String getContextPath()

Returns the context path from the HttpServietRequest after canonicalizing and filtering out any
dangerous characters.

Specified by:

getContextPath in interface HttpServletRequest

getCookies

public Cookie[] getCookies ()

Returns the array of Cookies from the HttpServletRequest after canonicalizing and filtering out
any dangerous characters.

Specified by:

getCookies in interface HttpServletRequest

getDateHeader

public long getDateHeader (String name)

Same as HttpServletRequest, no security changes required.

64

OWASP ESAPI | 2008

Specified by:

getDateHeader in interface HttpServletRequest

getHeader

public String getHeader (String name)

Returns the named header from the HttpServletRequest after canonicalizing and filtering out
any dangerous characters.

Specified by:

getHeader in interface HttpServletRequest

getHeaderNames

public Enumeration getHeaderNames ()

Returns the enumeration of header names from the HttpServletRequest after canonicalizing and
filtering out any dangerous characters.

Specified by:

getHeaderNames in interface HttpServletRequest

getHeaders

public Enumeration getHeaders (String name)

Returns the enumeration of headers from the HttpServletRequest after canonicalizing and
filtering out any dangerous characters.

Specified by:

getHeaders in interface HttpServletRequest

65

OWASP ESAPI | 2008

getInputStream

public ServletInputStream getInputStream()
throws IOException

Same as HttpServletRequest, no security changes required. Note that this input stream may
contain attacks and the developer is responsible for canonicalizing, validating, and encoding any
data from this stream.

Specified by:
getInputStream in interface servlietRequest

Throws:

IOException

getintHeader

public int getIntHeader (String name)

Same as HttpServletRequest, no security changes required.

Specified by:

getIntHeader in interface HttpServletRequest

getLocalAddr

public String getLocalAddr ()

Same as HttpServletRequest, no security changes required.

Specified by:

getLocalAddr in interface servletRequest

getLocale

public Locale getLocale ()

66

OWASP ESAPI | 2008

Same as HttpServletRequest, no security changes required.

Specified by:

getLocale in interface servletRequest

getLocales

public Enumeration getLocales ()
Same as HttpServletRequest, no security changes required.

Specified by:

getLocales in interface servletRequest

getLocalName

public String getLocalName ()
Same as HttpServletRequest, no security changes required.

Specified by:

getLocalName in interface ServletRequest

getLocalPort

public int getLocalPort ()
Same as HttpServletRequest, no security changes required.

Specified by:

getLocalPort in interface ServletRequest

67

OWASP ESAPI | 2008

getMethod

public String getMethod()
Same as HttpServletRequest, no security changes required.

Specified by:

getMethod in interface HttpServletRequest

getParameter

public String getParameter (String name)

Returns the named parameter from the HttpServletRequest after canonicalizing and filtering out
any dangerous characters.

Specified by:

getParameter in interface ServlietRequest

getParameterMap

public Map getParameterMap ()

Returns the parameter map from the HttpServletRequest after canonicalizing and filtering out
any dangerous characters.

Specified by:

getParameterMap in interface servietRequest

getParameterNames

public Enumeration getParameterNames ()

Returns the enumeration of parameter names from the HttpServletRequest after canonicalizing
and filtering out any dangerous characters.

68

OWASP ESAPI | 2008

Specified by:

getParameterNames in interface ServletRequest

getParameterValues

public String[] getParameterValues (String name)

Returns the array of matching parameter values from the HttpServletRequest after

canonicalizing and filtering out any dangerous characters.

Specified by:

getParametervalues in interface ServletRequest

getPathlnfo

public String getPathInfo()
Returns the path info from the HttpServletRequest after canonicalizing and filtering out any

dangerous characters.

Specified by:

getPathInfo ininterface HttpServletRequest

getPathTranslated

public String getPathTranslated()

Same as HttpServletRequest, no security changes required.

Specified by:

getPathTranslated in interface HttpServletRequest

69

OWASP ESAPI | 2008

getProtocol

public String getProtocol ()

Same as HttpServletRequest, no security changes required.

Specified by:

getProtocolininteﬁaceServletRequest

getQueryString

public String getQueryString()

Returns the query string from the HttpServletRequest after canonicalizing and filtering out any

dangerous characters.

Specified by:

getQueryStringininteﬁaceHttpServletRequest

getReader

public BufferedReader getReader ()
throws IOException

Same as HttpServletRequest, no security changes required. Note that this reader may contain
attacks and the developer is responsible for canonicalizing, validating, and encoding any data
from this stream.

Specified by:
getReaderininteﬁaceServletRequest

Throws:

IOException

70

OWASP ESAPI | 2008

getRealPath

public String getRealPath(String path)
Same as HttpServletRequest, no security changes required.

Specified by:

getRealPath in interface servletRequest

getRemoteAddr

public String getRemoteAddr ()
Same as HttpServletRequest, no security changes required.

Specified by:

getRemoteAddr in interface servletRequest

getRemoteHost

public String getRemoteHost ()
Same as HttpServletRequest, no security changes required.

Specified by:

getRemoteHost in interface servletRequest

getRemotePort

public int getRemotePort ()
Same as HttpServletRequest, no security changes required.

Specified by:

getRemotePortininteﬁaceServletRequest

71

OWASP ESAPI | 2008

getRemoteUser

public String getRemoteUser ()

Returns the name of the ESAPI user associated with this request.

Specified by:

getRemoteUser in interface HttpServletRequest

getRequestDispatcher

public RequestDispatcher getRequestDispatcher (String path)

Checks to make sure the path to forward to is within the WEB-INF directory and then returns the
dispatcher. Otherwise returns null.

Specified by:

getRequestDispatcher in interface ServletRequest

getRequestedSessionld

public String getRequestedSessionId()

Returns the URI from the HttpServletRequest after canonicalizing and filtering out any
dangerous characters. Code must be very careful not to depend on the value of a requested

session id reported by the user.

Specified by:

getRequestedSessionId in interface HttpServletRequest

getRequestURI

public String getRequestURI ()

72

OWASP ESAPI | 2008

Returns the URI from the HttpServletRequest after canonicalizing and filtering out any
dangerous characters.

Specified by:

getRequestURI in interface HttpServletRequest

getRequestURL

public StringBuffer getRequestURL ()

Returns the URL from the HttpServiletRequest after canonicalizing and filtering out any
dangerous characters.

Specified by:

getRequestURL in interface HttpServletRequest

getScheme

public String getScheme ()

Returns the scheme from the HttpServletRequest after canonicalizing and filtering out any
dangerous characters.

Specified by:

getScheme in interface servlietRequest

getServerName

public String getServerName ()

Returns the server name (host header) from the HttpServletRequest after canonicalizing and
filtering out any dangerous characters.

Specified by:

getServerName in interface servletRequest

73

OWASP ESAPI | 2008

getServerPort
public int getServerPort ()
Returns the server port (after the : in the host header) from the HttpServletRequest after

parsing and checking the range 0-65536.

Specified by:

getServerPort in interface servletRequest

getServletPath

public String getServletPath()
Returns the server path from the HttpServletRequest after canonicalizing and filtering out any

dangerous characters.

Specified by:

getServletPath in interface HttpServletRequest

getSession
public HttpSession getSession()

Returns a session, creating it if necessary, and sets the HttpOnly flag on the JSESSIONID cookie.

Specified by:

getSessionininteﬁaceHttpServletRequest

getSession

public HttpSession getSession(boolean create)

Returns a session, creating it if necessary, and sets the HttpOnly flag on the JSESSIONID cookie.

74

OWASP ESAPI | 2008

Specified by:

getSessionininteﬁaceHttpServletRequest

getUserPrincipal

public Principal getUserPrincipal ()
Returns the ESAPI User associated with this request.

Specified by:

getUserPrincipal in interface HttpServletRequest

isRequestedSessionldFromCookie

public boolean isRequestedSessionIdFromCookie ()
Same as HttpServletRequest, no security changes required.

Specified by:

isRequestedSessionIdFromCookie ininterface HttpServletRequest

isRequestedSessionldFromUrl

public boolean isRequestedSessionIdFromUrl ()
Same as HttpServletRequest, no security changes required.

Specified by:

isRequestedSessionIdFromUrlininteﬁaceHttpServletRequest

isRequestedSessionldFromURL

public boolean isRequestedSessionIdFromURL ()

75

OWASP ESAPI | 2008

Same as HttpServletRequest, no security changes required.

Specified by:

isRequestedSessionIdFromURL in interface HttpServletRequest

isRequestedSessionldValid

public boolean isRequestedSessionIdValid()
Same as HttpServletRequest, no security changes required.

Specified by:

isRequestedSessionIdvalid in interface HttpServletRequest

isSecure

public boolean isSecure ()
Same as HttpServletRequest, no security changes required.

Specified by:

isSecure in interface ServletRequest

isUserInRole

public boolean isUserInRole (String role)
Returns true if the ESAPI User associated with this request has the specified role.

Specified by:

isUserInRole in interface HttpServletRequest

76

OWASP ESAPI | 2008

removeAttribute

public void removeAttribute (String name)
Same as HttpServletRequest, no security changes required.

Specified by:

removeAttribute in interface servletRequest

setAttribute

public void setAttribute (String name,
Object o)

Same as HttpServletRequest, no security changes required.

Specified by:

setAttribute in interface servletRequest

setCharacterEncoding

public void setCharacterEncoding(String enc)
throws UnsupportedEncodingException

Sets the character encoding to the ESAPI configured encoding.
Specified by:
setCharacterEncodingininteﬁaceServletRequest

Throws:

UnsupportedEncodingException

77

OWASP ESAPI | 2008

Class SafeResponse

org.owasp.esapi.filters

java.lang.Object

L—org.owasp.esapi.filters.SafeResponse

All Implemented Interfaces:
HttpServletResponse, ServletResponse

public class SafeResponse
extends Object

implements HttpServletResponse

This response wrapper simply overrides unsafe methods in the HttpServletResponse API with safe

versions.

Constructor Summary

SafeResponse (HttpServletResponse response)

Construct a safe response that overrides the

default response methods with safer versions.

SafeResponse (HttpServletResponse response,

String mode)

Method Summary

void | addCookie (Cookie cookie)

Add a cookie to the respo
or illegal characters in the name

nse after ensuring that there are no encoded
and name and value.

void | addDateHeader (String name,

Add a cookie to the respo

or illegal characters in the name.

long date)

nse after ensuring that there are no encoded

78

OWASP ESAPI | 2008

void

addHeader (String name, String value)

Add a header to the response after ensuring that there are no encoded
or illegal characters in the name and name and value.

void

addIntHeader (String name, int value)

Add an int header to the response after ensuring that there are no
encoded or illegal characters in the name and name.

boolean

containsHeader (String name)

Same as HttpServletResponse, no security changes required.

String | encodeRedirectUrl (String url)
Return the URL without any changes, to prevent disclosure of the
JSESSIONID.
String | encodeRedirectURL (String url)
Return the URL without any changes, to prevent disclosure of the
JSESSIONID The default implementation of this method can add the
JSESSIONID to the URL if support for cookies is not detected.
String |encodeUrl (String url)
Return the URL without any changes, to prevent disclosure of the
JSESSIONID The default implementation of this method can add the
JSESSIONID to the URL if support for cookies is not detected.
String |encodeURL (String url)
Return the URL without any changes, to prevent disclosure of the
JSESSIONID The default implementation of this method can add the
JSESSIONID to the URL if support for cookies is not detected.
void| flushBuffer ()
Same as HttpServletResponse, no security changes required.
int | getBufferSize()
Same as HttpServletResponse, no security changes required.
String | getCharacterEncoding ()

Same as HttpServletResponse, no security changes required.

79

OWASP ESAPI | 2008

String | getContentType ()

Same as HttpServletResponse, no security changes required.

Locale |getLocale ()

Same as HttpServletResponse, no security changes required.

ServletOutputStream|getOutputStream ()

Same as HttpServletResponse, no security changes required.

PrintWriter getWriter ()

Same as HttpServletResponse, no security changes required.

boolean |isCommitted ()

Same as HttpServletResponse, no security changes required.

void | reset ()

Same as HttpServletResponse, no security changes required.

void | resetBuffer ()

Same as HttpServletResponse, no security changes required.

void| sendError (int sc)

Override the error code with a 200 in order to confound attackers using
automated scanners.

void|sendError (int sc, String msg)

Override the error code with a 200 in order to confound attackers using
automated scanners.

void | sendRedirect (String location)

This method generates a redirect response that can only be used to
redirect the browser to safe locations, as configured in the ESAPI security
configuration.

void| setBufferSize (int size)

Same as HttpServletResponse, no security changes required.

void | setCharacterEncoding (String charset)

Sets the character encoding to the ESAPI configured encoding.

80

OWASP ESAPI | 2008

void| setContentLength (int len)

Same as HttpServletResponse, no security changes required.

void | setContentType (String type)

Same as HttpServletResponse, no security changes required.

void | setDateHeader (String name, long date)

Add a date header to the response after ensuring that there are no
encoded or illegal characters in the name.

void | setHeader (String name, String value)

Add a header to the response after ensuring that there are no encoded
or illegal characters in the name and value.

void | setIntHeader (String name, int value)

Add an int header to the response after ensuring that there are no
encoded or illegal characters in the name.

void | setLocale (Locale loc)

Same as HttpServletResponse, no security changes required.

void|setStatus (int sc)

Override the status code with a 200 in order to confound attackers
using automated scanners.

void | setStatus (int sc, String sm)

Override the status code with a 200 in order to confound attackers
using automated scanners.

Constructor Detail

SafeResponse

public SafeResponse (HttpServletResponse response)

Construct a safe response that overrides the default response methods with safer versions.

SafeResponse

public SafeResponse (HttpServletResponse response,
String mode)

81

OWASP ESAPI | 2008

Method Detail

addCookie

public void addCookie (Cookie cookie)

Add a cookie to the response after ensuring that there are no encoded or illegal characters in
the name and name and value. This method also sets the secure and HttpOnly flags on the
cookie. This implementation uses a custom "set-cookie" header instead of using Java's cookie
interface which doesn't allow the use of HttpOnly.

Specified by:

addCookie in interface HttpServletResponse

addDateHeader

public void addDateHeader (String name,
long date)

Add a cookie to the response after ensuring that there are no encoded or illegal characters in
the name.

Specified by:

addDateHeader in interface HttpServletResponse

addHeader

public void addHeader (String name,
String value)

Add a header to the response after ensuring that there are no encoded or illegal characters in
the name and name and value. This implementation follows the following recommendation: "A
recipient MAY replace any linear white space with a single SP before interpreting the field value

or forwarding the message downstream." http://www.w3.org/Protocols/rfc2616/rfc2616-
sec2.htmlftsec2.2

82

OWASP ESAPI | 2008

Specified by:

addHeader in interface HttpServletResponse

addIntHeader

public void addIntHeader (String name,
int value)

Add an int header to the response after ensuring that there are no encoded or illegal characters

in the name and name.

Specified by:

addIntHeader ininterface HttpServletResponse

containsHeader

public boolean containsHeader (String name)

Same as HttpServletResponse, no security changes required.

Specified by:

containsHeader ininterface HttpServletResponse

encodeRedirectUrl

public String encodeRedirectUrl (String url)

Return the URL without any changes, to prevent disclosure of the JSESSIONID. The default
implementation of this method can add the JSESSIONID to the URL if support for cookies is not
detected. This exposes the JSESSIONID credential in bookmarks, referer headers, server logs,

and more.

Specified by:

encodeRedirectUrl in interface HttpServletResponse

83

OWASP ESAPI | 2008

Returns:

original url

encodeRedirectURL

public String encodeRedirectURL (String url)

Return the URL without any changes, to prevent disclosure of the JSESSIONID The default
implementation of this method can add the JSESSIONID to the URL if support for cookies is not
detected. This exposes the JSESSIONID credential in bookmarks, referer headers, server logs,

and more.
Specified by:
encodeRedirectURL in interface HttpServletResponse

Returns:

original url

encodeUrl

public String encodeUrl (String url)

Return the URL without any changes, to prevent disclosure of the JSESSIONID The default
implementation of this method can add the JSESSIONID to the URL if support for cookies is not
detected. This exposes the JSESSIONID credential in bookmarks, referer headers, server logs,

and more.
Specified by:
encodeUrl in interface HttpServletResponse

Returns:

original url

84

OWASP ESAPI | 2008

encodeURL

public String encodeURL (String url)

Return the URL without any changes, to prevent disclosure of the JSESSIONID The default
implementation of this method can add the JSESSIONID to the URL if support for cookies is not
detected. This exposes the JSESSIONID credential in bookmarks, referer headers, server logs,

and more.
Specified by:
encodeURL in interface HttpServletResponse

Returns:

original url

flushBuffer

public void flushBuffer ()
throws IOException

Same as HttpServletResponse, no security changes required.
Specified by:
flushBuffer in interface servletResponse

Throws:

IOException

getBufferSize

public int getBufferSize()

Same as HttpServletResponse, no security changes required.

Specified by:

getBufferSize in interface servlietResponse

85

OWASP ESAPI | 2008

getCharacterEncoding

public String getCharacterEncoding ()
Same as HttpServiletResponse, no security changes required.

Specified by:

getCharacterEncodingininteﬁaceServletResponse

getContentType

public String getContentType ()
Same as HttpServletResponse, no security changes required.

Specified by:

getContentType in interface servlietResponse

getLocale

public Locale getLocale()
Same as HttpServletResponse, no security changes required.

Specified by:

getLocale in interface servletResponse

getOutputStream

public ServletOutputStream getOutputStream/()
throws IOException

Same as HttpServletResponse, no security changes required.

86

OWASP ESAPI | 2008

Specified by:
getOutputStreamininteﬁaceServletResponse

Throws:

IOException

getWriter

public PrintWriter getWriter()
throws IOException

Same as HttpServiletResponse, no security changes required.
Specified by:
getWriter ininterface servlietResponse

Throws:

IOException

isCommitted

public boolean isCommitted()

Same as HttpServletResponse, no security changes required.

Specified by:

isCommitted in interface servletResponse

reset

public void reset ()

Same as HttpServletResponse, no security changes required.

87

OWASP ESAPI | 2008

Specified by:

resetininteﬁaceServletResponse

resetBuffer

public void resetBuffer ()

Same as HttpServletResponse, no security changes required.

Specified by:

resetBuffer ininterface servletResponse

sendError

public void sendError (int sc)
throws IOException

Override the error code with a 200 in order to confound attackers using automated scanners.

Specified by:
sendError in interface HttpServletResponse

Throws:

IOException

sendError

public void sendError(int sc,
String msgqg)
throws IOException

Override the error code with a 200 in order to confound attackers using automated scanners.
The message is canonicalized and filtered for dangerous characters.

88

OWASP ESAPI | 2008

Specified by:
sendError in interface HttpServletResponse

Throws:

IOException

sendRedirect

public void sendRedirect (String location)
throws IOException

This method generates a redirect response that can only be used to redirect the browser to safe
locations, as configured in the ESAPI security configuration. This method does not that redirect
requests can be modified by attackers, so do not rely information contained within redirect
requests, and do not include sensitive information in a redirect.

Specified by:
sendRedirectininteﬁaceHttpServletResponse

Throws:

IOException

setBufferSize

public void setBufferSize(int size)
Same as HttpServletResponse, no security changes required.
Specified by:

setBuffersSize ininterface servletResponse

setCharacterEncoding

public void setCharacterEncoding(String charset)

89

OWASP ESAPI | 2008

Sets the character encoding to the ESAPI configured encoding.

Specified by:

setCharacterEncoding in interface servletResponse

setContentLength

public void setContentLength(int len)
Same as HttpServletResponse, no security changes required.

Specified by:

setContentLength in interface servletResponse

setContentType

public void setContentType (String type)
Same as HttpServletResponse, no security changes required.

Specified by:

setContentTypeininteﬁaceServletResponse

setDateHeader

public void setDateHeader (String name,
long date)

Add a date header to the response after ensuring that there are no encoded or illegal characters
in the name.

Specified by:

setDateHeaderininteﬁaceHttpServletResponse

90

OWASP ESAPI | 2008

setHeader

public void setHeader (String name,

String value)

Add a header to the response after ensuring that there are no encoded or illegal characters in
the name and value. "A recipient MAY replace any linear white space with a single SP before
interpreting the field value or forwarding the message downstream."
http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2

Specified by:

setHeader in interface HttpServletResponse

setIntHeader

public void setIntHeader (String name,

int value)

Add an int header to the response after ensuring that there are no encoded or illegal characters
in the name.

Specified by:

setIntHeader in interface HttpServletResponse

setLocale

public void setLocale(Locale loc)
Same as HttpServletResponse, no security changes required.
Specified by:

setLocale ininterface servletResponse

setStatus

public void setStatus(int sc)

91

OWASP ESAPI | 2008

Override the status code with a 200 in order to confound attackers using automated scanners.

Specified by:

setStatus in interface HttpServletResponse

setStatus

public void setStatus(int sc,
String sm)

Override the status code with a 200 in order to confound attackers using automated scanners.
The message is canonicalized and filtered for dangerous characters.

Specified by:

setStatus in interface HttpServletResponse

92

OWASP ESAPI | 2008

Interface HTTPUtilities

org.owasp.esapi

All Known Implementing Classes:
DefaultHTTPUTtilities

public interface HTTPUtilities

The HTTPUtilities interface is a collection of methods that provide additional security related to HTTP
requests, responses, sessions, cookies, headers, and logging.

Field Summary

String | REMEMBER TOKEN_COOKIE_NAME

Key for remember token cookie

Method Summary

String |addCSRFToken (String href)

Adds the current user's CSRF token (see User.getCSRFToken()) to the URL for
purposes of preventing CSRF attacks.

void |assertSecureRequest (HttpServletRequest request)

Ensures that the current request uses SSL and POST to protect any sensitive
parameters in the querystring from being sniffed or logged.

HttpSession | changeSessionIdentifier (HttpServletRequest request)

Invalidate the old session after copying all of its contents to a newly created
session with a new session id.

String |decryptHiddenField (String encrypted)

Decrypts an encrypted hidden field value and returns the cleartext.

Map |decryptQueryString (String encrypted)

Takes an encrypted querystring and returns a Map containing the original
parameters.

93

OWASP ESAPI

2008

Map

decryptStateFromCookie (HttpServletRequest request)

Retrieves a map of data from a cookie encrypted with encryptStatelnCookie().

String

encryptHiddenField (String value)

Encrypts a hidden field value for use in HTML.

String

encryptQueryString (String query)

Takes a querystring (everything after the question mark in the URL) and
returns an encrypted string containing the parameters.

void

encryptStateInCookie (HttpServletResponse response, Map cleartext)

Stores a Map of data in an encrypted cookie.

Cookie

getCookie (HttpServletRequest request, String name)

Get the first cookie with the matching name.

String

getCSRFToken ()

Returns the current user's CSRF token.

SafeRequest

getCurrentRequest ()

Retrieves the current HttpServletRequest

SafeResponse

getCurrentResponse ()

Retrieves the current HttpServletResponse

List

getSafeFileUploads (HttpServletRequest request, File tempDir, File

finalDir)

Extract uploaded files from a multipart HTTP requests.

void

killAllCookies (HttpServletRequest request, HttpServletResponse

response)

Kill all cookies received in the last request from the browser.

void

killCookie (HttpServletRequest request, HttpServletResponse response,

String name)

Kills the specified cookie by setting a new cookie that expires immediately.

void

1logHTTPRequest (HttpServletRequest request, Logger logger)

Format the Source IP address, URL, URL parameters, and all form parameters

into a string suitable for the log file.

94

OWASP ESAPI | 2008

void

logHTTPRequest (HttpServletRequest request, Logger logger, List

parameterNamesToObfuscate)

Format the Source IP address, URL, URL parameters, and all form parameters
into a string suitable for the log file.

void

safeSendForward (HttpServletRequest request, HttpServletResponse

response, String context, String location)

This method perform a forward to any resource located inside the WEB-INF
directory.

void

safeSetContentType (HttpServletResponse response)

Sets the content type on each HTTP response, to help protect against cross-
site scripting attacks and other types of injection into HTML documents.

void

setCurrentHTTP (HttpServletRequest request, HttpServletResponse

response)

Stores the current HttpRequest and HttpResponse so that they may be readily
accessed throughout ESAPI (and elsewhere)

void

setNoCacheHeaders (HttpServletResponse response)

Set headers to protect sensitive information against being cached in the

browser.
String | setRememberToken (HttpServletRequest request, HttpServletResponse
response, String password, int maxAge, String domain, String path)
Set a cookie containing the current User's remember me token for automatic
authentication.
void |verifyCSRFToken (HttpServletRequest request)
Checks the CSRF token in the URL (see User.getCSRFToken()) against the user's
CSRF token and throws an IntrusionException if it is missing.
Field Detail

REMEMBER_TOKEN_COOKIE_NAME

public static final String REMEMBER_TOKEN_COOKIE_NAME

Key for remember token cookie

95

OWASP ESAPI | 2008

Method Detail

assertSecureRequest

void assertSecureRequest (HttpServletRequest request)
throws AccessControlException

Ensures that the current request uses SSL and POST to protect any sensitive parameters in the
querystring from being sniffed or logged. For example, this method should be called from any
method that uses sensitive data from a web form. This method uses getCurrentRequest () to

obtain the current Ht tpServletRequest object

Throws:

AccessControlException - if security constraints are not met

addCSRFToken

String addCSRFToken (String href)

Adds the current user's CSRF token (see User.getCSRFToken()) to the URL for purposes of
preventing CSRF attacks. This method should be used on all URLs to be put into all links and
forms the application generates.

Parameters:
nref - the URL to which the CSRF token will be appended

Returns:

the updated URL with the CSRF token parameter added

getCookie

Cookie getCookie (HttpServletRequest request,
String name)

Get the first cookie with the matching name.

96

OWASP ESAPI | 2008

Returns:

the requested cookie

getCSRFToken

String getCSRFToken ()

Returns the current user's CSRF token. If there is no current user then return null.

Returns:

the current users CSRF token

changeSessionldentifier

HttpSession changeSessionIdentifier (HttpServletRequest request)
throws AuthenticationException

Invalidate the old session after copying all of its contents to a newly created session with a new
session id. Note that this is different from logging out and creating a new session identifier that
does not contain the existing session contents. Care should be taken to use this only when the

existing session does not contain hazardous contents. This method uses getCurrentRequest ()

to obtain the current Httpsession object

Returns:
the new HttpSession with a changed id

Throws:

AuthenticationException

EnterpriseSecurityException - the enterprise security exception

verifyCSRFToken

void verifyCSRFToken (HttpServletRequest request)
throws IntrusionException

97

OWASP ESAPI | 2008

Checks the CSRF token in the URL (see User.getCSRFToken()) against the user's CSRF token and
throws an IntrusionException if it is missing.

Throws:

IntrusionException - if CSRF token is missing or incorrect

decryptHiddenField

String decryptHiddenField(String encrypted)

Decrypts an encrypted hidden field value and returns the cleartext. If the field does not decrypt
properly, an IntrusionException is thrown to indicate tampering.

Parameters:
encrypted - hidden field value to decrypt
Returns:

decrypted hidden field value stored as a String

setRememberToken

String setRememberToken (HttpServletRequest request,
HttpServletResponse response,
String password,
int maxAge,
String domain,
String path)

Set a cookie containing the current User's remember me token for automatic authentication.
The use of remember me tokens is generally not recommended, but this method will help do it
as safely as possible. The user interface should strongly warn the user that this should only be
enabled on computers where no other users will have access. The username can be retrieved
with: User username = ESAPI.authenticator().getCurrentUser();

Parameters:

password - the user's password

98

OWASP ESAPI | 2008

maxAge - the length of time that the token should be valid for in relative seconds
domain - the domain to restrict the token to or null
path - the path to restrict the token to or null

Returns:

encrypted "Remember Me" token stored as a String

encryptHiddenField

String encryptHiddenField(String value)
throws EncryptionException

Encrypts a hidden field value for use in HTML.

Parameters:

value - the cleartext value of the hidden field
Returns:

the encrypted value of the hidden field

Throws:

EncryptionException

encryptQueryString

String encryptQueryString(String query)
throws EncryptionException

Takes a querystring (everything after the question mark in the URL) and returns an encrypted
string containing the parameters.

Parameters:

query - the querystring to encrypt

99

OWASP ESAPI | 2008

Returns:
encrypted querystring stored as a String

Throws:

EncryptionException

decryptQueryString

Map decryptQueryString(String encrypted)
throws EncryptionException

Takes an encrypted querystring and returns a Map containing the original parameters.

Parameters:

encrypted - the encrypted querystring to decrypt
Returns:

a Map object containing the decrypted querystring

Throws:

EncryptionException

getSafeFileUploads

List getSafeFileUploads (HttpServletRequest request,
File tempDir,
File finalDir)
throws ValidationException

Extract uploaded files from a multipart HTTP requests. Implementations must check the content
to ensure that it is safe before making a permanent copy on the local filesystem. Checks should
include length and content checks, possibly virus checking, and path and name checks. Refer to
the file checking methods in Validator for more information. This method uses
getCurrentRequest () to obtain the HttpServletRequest object

100

OWASP ESAPI | 2008

Parameters:

tempDir - the temporary directory

finalDir - the final directory
Returns:

List of new File objects from upload
Throws:

validationException - if the file fails validation

decryptStateFromCookie

Map decryptStateFromCookie (HttpServletRequest request)
throws EncryptionException

Retrieves a map of data from a cookie encrypted with encryptStatelnCookie().

Returns:
a map containing the decrypted cookie state value

Throws:

EncryptionException

killAllCookies

void killAllCookies (HttpServletRequest request,
HttpServletResponse response)

Kill all cookies received in the last request from the browser. Note that new cookies set by the
application in this response may not be killed by this method.

killCookie

void killCookie (HttpServletRequest request,
HttpServletResponse response,
String name)

101

OWASP ESAPI | 2008

Kills the specified cookie by setting a new cookie that expires immediately. Note that this
method does not delete new cookies that are being set by the application for this response.

encryptStatelnCookie

void encryptStateInCookie (HttpServletResponse response,
Map cleartext)
throws EncryptionException

Stores a Map of data in an encrypted cookie. Generally the session is a better place to store
state information, as it does not expose it to the user at all. If there is a requirement not to use
sessions, or the data should be stored across sessions (for a long time), the use of encrypted
cookies is an effective way to prevent the exposure.

Throws:

EncryptionException

safeSendForward

void safeSendForward (HttpServletRequest request,
HttpServletResponse response,
String context,
String location)
throws AccessControlException,

ServletException,
IOException

This method perform a forward to any resource located inside the WEB-INF directory.
Forwarding to publicly accessible resources can be dangerous, as the request will have already
passed the URL based access control check. This method ensures that you can only forward to
non-publicly accessible resources.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

location - the URL to forward to

102

OWASP ESAPI | 2008

Throws:

AccessControlException

ServletException

IOException

safeSetContentType

void safeSetContentType (HttpServletResponse response)

Sets the content type on each HTTP response, to help protect against cross-site scripting attacks
and other types of injection into HTML documents.

setNoCacheHeaders

void setNoCacheHeaders (HttpServletResponse response)
Set headers to protect sensitive information against being cached in the browser. Developers
should make this call for any HTTP responses that contain any sensitive data that should not be
cached within the browser or any intermediate proxies or caches. Implementations should set

headers for the expected browsers. The safest approach is to set all relevant headers to their
most restrictive setting. These include:

Cache-Control: no-store
Cache-Control: no-cache
Cache-Control: must-revalidate

Expires: -1

Note that the header "pragma: no-cache" is only useful in HTTP requests, not HTTP responses.
So even though there are many articles recommending the use of this header, it is not helpful
for preventing browser caching. For more information, please refer to the relevant standards:

e HTTP/1.1 Cache-Control "no-cache"
e HTTP/1.1 Cache-Control "no-store"
e HTTP/1.0 Pragma "no-cache"

103

OWASP ESAPI

2008

HTTP/1.0 Expires
IE6 Caching Issues

Firefox browser.cache.disk cache ssl

Mozilla

This method uses getCurrentResponse () to obtain the HttpServletResponse object

setCurrentHTTP

void setCurrentHTTP (HttpServletRequest request,
HttpServletResponse response)

Stores the current HttpRequest and HttpResponse so that they may be readily accessed

throughout ESAPI (and elsewhere)

Parameters:
request - the current request

response - the current response

getCurrentRequest

SafeRequest getCurrentRequest ()
Retrieves the current HttpServletRequest

Returns:

the current request

getCurrentResponse

SafeResponse getCurrentResponse ()

Retrieves the current HttpServletResponse

104

OWASP ESAPI | 2008

Returns:

the current response

logHTTPRequest

void logHTTPRequest (HttpServletRequest request,
Logger logger)

Format the Source IP address, URL, URL parameters, and all form parameters into a string
suitable for the log file. Be careful not to log sensitive information, and consider masking with
the logHTTPRequest(List parameterNamesToObfuscate) method.

Parameters:

logger - the logger to write the request to

logHTTPRequest

void logHTTPRequest (HttpServletRequest request,
Logger logger,
List parameterNamesToObfuscate)

Format the Source IP address, URL, URL parameters, and all form parameters into a string
suitable for the log file. The list of parameters to obfuscate should be specified in order to
prevent sensitive information from being logged. If a null list is provided, then all parameters
will be logged. If HTTP request logging is done in a central place, the
parameterNamesToObfuscate could be made a configuration parameter. We include it here in
case different parts of the application need to obfuscate different parameters. This method uses
getCurrentResponse () to obtain the HttpServletResponse object

Parameters:
logger - the logger to write the request to

parameterNamesToObfuscate - the sensitive parameters

105

OWASP ESAPI | 2008

Positive Access Control

Access control is one of the most complex areas for developers to implement in their applications. The
primary difficulty is that access control decisions must be made at many levels in an application. This is
similar to the real world, where you might have a gate at the physical entrance to a facility, a guard at
the building, locked doors within a facility, and locked desks within offices.

Design

Access control mechanisms can be difficult to implement. In ESAPI all the access control methods follow
a simple pattern. Each level has two methods, assertlsAuthorizedForX() and isAuthorizedForX(). The
boolean method simply delegates to the assert method.

‘isAuthorizedForFuncI:ion() ‘ isAuthorizedForData() ‘
‘ isAuthorizedForURL()
ﬂ isAuthorizedForService() ‘
User Controller Business Data Layer ! Backend
; = Functions — <
=4
Presentation > r
Layer =~ C
isAuthorizedForFunction() ‘T/ ‘ isAuthorizedForFile() ‘

Each of these methods uses a deny by default approach, that prevents access unless there is a specific
rule authorizing it.

In most cases, failing an access control check represents an intrusion in progress and should be flagged
as an attack. An appropriate response might be to log a special message, log out the current user, or
disable the current user’s account. However, in some cases, failing an access control check does not
indicate an attack. For example, if a web page uses an access control check to determine whether or not
to display links or buttons for administrators, the failure is expected for non-admin users.

106

OWASP ESAPI | 2008

Controlling access to URLs

Unless every URL in an application is public, then there is a need for performing URL based access
control. A carefully constructed web application might be able to perform all of its access control by
checking the URL. However, most applications need “multi-role” URLs, and therefore need other access
control methods.

Many of the access control products on the market perform URL-based access control. If you use these
products, you should be sure that the policy they enforce is easy to access and change. Knowing these
rules is critical for developers to make the right choices implementing access control.

try {
ESAPI.accessController().assertAuthorizedForURL(“/admin®) {

// allow access to the admin functions
} catch (AccessControlException ace) {
. attack in progress

}

Controlling access to functions

In many applications, business functions will be restricted by role or other access control decision. If
possible, the best approach is to adopt a pattern of checking access inside every single business
function.

try {
ESAPI.accessController().assertAuthorizedForFunction(BUSINESS_FUNCTION);

// execute BUSINESS_FUNCTION
} catch (AccessControlException ace) {
. attack in progress
}

Controlling access to services

In some cases, the access to backend services should only be allowed on behalf of certain users. In these
cases, the assertAuthorizedForService() call can be used to verify access is authorized.

107

OWASP ESAPI | 2008

try {
ESAPI.accessController().assertAuthorizedForService(“PaymentGateway”);

// access service
} catch (AccessControlException ace) {
. attack in progress

}

Controlling access to files

Many applications access files from the local filesystem. In many cases, these files are only authorized
for a particular user. ESAPI allows you to control access easily.

try {
ESAPI.accessController().assertAuthorizedForService(“PaymentGateway”);

// access service
} catch (AccessControlException ace) {
. attack in progress

}

Controlling access to data

Data is particularly critical for applications. TODO.

try {
Report report = persistencelLayer.getReport(“test”);

ESAPI.accessController().assertAuthorizedForData(“read”, report);
// use the data
} catch (AccessControlException ace) {
. attack in progress

}

Controlling direct object references

Most applications use parameters or form fields that reference data on the server by its name orid.
Attackers love to try to access unauthorized data by tampering with these “direct” references. For
example, imagine a URL that references a file on the server:

http://www.example.com/banking/fetchReport?fn=03102008.x1s

Attackers will immediately attempt to manipulate the filename to access other files on the host. If the
code takes the “fn” parameter and appends it to a filepath, the attacker might try sending

108

OWASP ESAPI | 2008

“?fn=../../../../etc/password%00” to gain access to the host’s password file. The %00 at the end of the
URL will be decoded by the container into a null byte that terminates the string, leaving only the
attackers path in the parameter. There are hundreds of attack variants, so don't try to filter out attacks.

Database keys are also often exposed. Attackers will attempt to manipulate the “uid” parameter in the
URL below to access other user accounts.

http://www.example.com/banking/genReport?uid=10347343

A simple approach to solving direct reference issues is replacing them with indirect references. You can
use an “access reference map” to assign integers to the authorized resources, and then use the integers
in the web page instead of the direct reference. When the indirect integer reference is returned, your
code can look up the corresponding direct reference in the map. This prevents tampering with the
parameter and significantly restricts the application’s attack surface.

‘ getDirectReference()

' ‘ Controller Business Data Layer

e Functions —

Presentation

| Layer <3
‘ getIndirectReference() ’/[
http://app?file=Reportl123.xls Report123.xls
http://app?file=1 —
http://app?id=9182374 Ref;'e"ce Acct:9182374
http://app?id=7d3393 ap

109

OWASP ESAPI | 2008

// Create a new list of files
Set fileSet = new HashSet();

// add direct references (e.g. File objects)
File filel = new File(...);
fileSet.add(filel);

// create an access reference map
AccessReferenceMap map = new AccessReferenceMap(fileSet);

// store the map somewhere safe - like the session!
session.setAttribute(“filemap”, map);

// get the indirect reference for a file and add it to the map
String indRef = map.getIndirectReference(filel);
String href = “http://www.example.com/esapi?file=" + indRef);

When the request is returned from the browser, look up the indirect reference and get the File object.

// if the indirect reference doesn't exist, it's very likely an attack
// getDirectReference throws an AccessControlException
// you should handle as appropriate

String indref = request.getParameter(“file”);
File file = (File)map.getDirectReference(indref);

// use the file object without fear of tampering

Presentation Layer

Many of the absolute worst application security holes are related to access control. The complexity is
often through the roof. Frequently the schemes evolve over a long period of time. One extremely
common problem is that an access control checks are made in the presentation layer, but the
corresponding check is not made in the business logic.

For example, imagine that an online bank has special features that are only displayed to customers with
over $250,000 in savings. The presentation layer has careful access control checks so that these
functions are not exposed to less affluent users. When a rich customer selects one of these features, a
request containing the parameter “function=speciall” is generated that invokes a special business
function. This parameter is not particularly secret and may be disclosed by authorized users. asdasdf

110

OWASP ESAPI | 2008

Interface AccessController

org.owasp.esapi

All Known Implementing Classes:
FileBasedAccessController

public interface AccessController

The AccessController interface defines a set of methods that can be used in a wide variety of
applications to enforce access control. In most applications, access control must be performed in
multiple different locations across the various application layers. This class provides access control for
URLs, business functions, data, services, and files.

The implementation of this interface will need to access the current User object (from
Authenticator.getCurrentUser()) to determine roles or permissions. In addition, the implementation will
also need information about the resources that are being accessed. Using the user information and the
resource information, the implementation should return an access control decision.

Implementers are encouraged to build on existing access control mechanisms, such as methods like
isUserInRole() or hasPrivilege(). While powerful, these methods can be confusing, as users may be in
multiple roles or possess multiple overlapping privileges. These methods encourage the use of complex
boolean tests throughout the code. The point of this interface is to centralize access control logic so that
it is easy to use and easy to verify.

try |
ESAPI.accessController () .assertAuthorizedForFunction(BUSINESS_FUNCTION) ;
// execute BUSINESS_FUNCTION

} catch (AccessControlException ace) {

. attack in progress

Note that in the user interface layer, access control checks can be used to control whether particular
controls are rendered or not. These checks are supposed to fail when an unauthorized user is logged in,
and do not represent attacks. Remember that regardless of how the user interface appears, an attacker
can attempt to invoke any business function or access any data in your application. Therefore, access
control checks in the user interface should be repeated in both the business logic and data layers.

<% 1f (ESAPI.accessController () .isAuthorizedForFunction(ADMIN_FUNCTION)) { %>
ADMIN

<% } else { %>

NORMAL

<% } %>

111

OWASP ESAPI

2008

Method Summary

void

assertAuthorizedForData (String key)

Checks if the current user is authorized to access the referenced data.

void

assertAuthorizedForData (String action, Object data)

void

assertAuthorizedForFile (String filepath)

Checks if an account is authorized to access the referenced file.

void

assertAuthorizedForFunction (String functionName)

Checks if an account is authorized to access the referenced function.

void

assertAuthorizedForService (String serviceName)

Checks if an account is authorized to access the referenced service.

void

assertAuthorizedForURL (String url)

Checks if an account is authorized to access the referenced URL.

boolean

isAuthorizedForData (String key)

Checks if an account is authorized to access the referenced data.

boolean

isAuthorizedForData (String action, Object data)

boolean

isAuthorizedForFile (String filepath)

Checks if an account is authorized to access the referenced file.

boolean

isAuthorizedForFunction (String functionName)

Checks if an account is authorized to access the referenced function.

boolean

isAuthorizedForService (String serviceName)

Checks if an account is authorized to access the referenced service.

boolean

isAuthorizedForURL (String url)

Checks if an account is authorized to access the referenced URL.

Method Detail

isAuthorizedForURL

boolean isAuthorizedForURL(String url)

112

OWASP ESAPI | 2008

Checks if an account is authorized to access the referenced URL. Generally, this method should
be invoked in the application's controller or a filter as follows:

ESAPI.accessController () .isAuthorizedForURL (request.getRequestURI().toString())

I

The implementation of this method should call assertAuthorizedForURL(String url), and if an
AccessControlException is not thrown, this method should return true.

Parameters:
url - the URL as returned by request.getRequestURI().toString()
Returns:

true, if is authorized for URL

isAuthorizedForFunction

boolean isAuthorizedForFunction (String functionName)

Checks if an account is authorized to access the referenced function. The implementation of this
method should call assertAuthorizedForFunction(String functionName), and if an
AccessControlException is not thrown, this method should return true.

Parameters:
functionName - the function name
Returns:

true, if is authorized for function

isAuthorizedForData
boolean isAuthorizedForData(String key)
Checks if an account is authorized to access the referenced data. The implementation of this

method should call assertAuthorizedForData(String key), and if an AccessControlException is not
thrown, this method should return true.

113

OWASP ESAPI | 2008

Parameters:
key - the key
Returns:

true, if is authorized for data

isAuthorizedForData

boolean isAuthorizedForData(String action,
Object data)

isAuthorizedForFile

boolean isAuthorizedForFile(String filepath)

Checks if an account is authorized to access the referenced file. The implementation of this
method should call assertAuthorizedForFile(String filepath), and if an AccessControlException is
not thrown, this method should return true.

Parameters:
filepath - the path of the file to be checked, including filename
Returns:

true, if is authorized for file

isAuthorizedForService

boolean isAuthorizedForService (String serviceName)

Checks if an account is authorized to access the referenced service. This can be used in
applications that provide access to a variety of backend services. The implementation of this
method should call assertAuthorizedForService(String serviceName), and if an
AccessControlException is not thrown, this method should return true.

114

OWASP ESAPI | 2008

Parameters:
serviceName - the service name
Returns:

true, if is authorized for service

assertAuthorizedForURL

void assertAuthorizedForURL (String url)
throws AccessControlException

Checks if an account is authorized to access the referenced URL. The implementation should
allow access to be granted to any part of the URL. Generally, this method should be invoked in
the application's controller or a filter as follows:

ESAPI.accessController () .assertAuthorizedForURL (request.getRequestURI () .toStrin
g());

This method throws an AccessControlException if access is not authorized, or if the referenced
URL does not exist. If the User is authorized, this method simply returns. Specification: The
implementation should do the following: 1) Check to see if the resource exists and if not, throw
an AccessControlException 2) Use available information to make an access control decision a.
Ideally, this policy would be data driven b. You can use the current User, roles, data type, data
name, time of day, etc. c. Access control decisions must deny by default 3) If access is not
permitted, throw AccessControlException with details

Parameters:
url - the URL as returned by request.getRequestURI().toString()
Throws:

AccessControlException - if access is not permitted

assertAuthorizedForFunction

void assertAuthorizedForFunction(String functionName)
throws AccessControlException

115

OWASP ESAPI | 2008

Checks if an account is authorized to access the referenced function. The implementation should
define the function "namespace" to be enforced. Choosing something simple like the class name
of action classes or menu item names will make this implementation easier to use. This method
throws an AccessControlException if access is not authorized, or if the referenced function does
not exist. If the User is authorized, this method simply returns. Specification: The
implementation should do the following: 1) Check to see if the function exists and if not, throw
an AccessControlException 2) Use available information to make an access control decision a.
Ideally, this policy would be data driven b. You can use the current User, roles, data type, data
name, time of day, etc. c. Access control decisions must deny by default 3) If access is not
permitted, throw AccessControlException with details

Parameters:
functionName - the function name
Throws:

AccessControlException - if access is not permitted

assertAuthorizedForData

void assertAuthorizedForData(String key)
throws AccessControlException

Checks if the current user is authorized to access the referenced data. This method simply
returns if access is authorized. It throws an AccessControlException if access is not authorized,
or if the referenced data does not exist. Specification: The implementation should do the
following: 1) Check to see if the resource exists and if not, throw an AccessControlException 2)
Use available information to make an access control decision a. Ideally, this policy would be data
driven b. You can use the current User, roles, data type, data name, time of day, etc. c. Access
control decisions must deny by default 3) If access is not permitted, throw
AccessControlException with details

Parameters:
key - the name of the target data object
Throws:

AccessControlException - if access is not permitted

116

OWASP ESAPI | 2008

assertAuthorizedForData

void assertAuthorizedForData (String action,
Object data)
throws AccessControlException

Throws:

AccessControlException

assertAuthorizedForFile

void assertAuthorizedForFile(String filepath)
throws AccessControlException

Checks if an account is authorized to access the referenced file. The implementation should
validate and canonicalize the input to be sure the filepath is not malicious. This method throws
an AccessControlException if access is not authorized, or if the referenced File does not exist. If
the User is authorized, this method simply returns. Specification: The implementation should do
the following: 1) Check to see if the File exists and if not, throw an AccessControlException 2)
Use available information to make an access control decision a. Ideally, this policy would be data
driven b. You can use the current User, roles, data type, data name, time of day, etc. c. Access
control decisions must deny by default 3) If access is not permitted, throw
AccessControlException with details

Parameters:
filepath - the path of the file to be checked, including filename
Throws:

AccessControlException - if access is not permitted

See Also:

Encoder.canonicalize (String)

assertAuthorizedForService

void assertAuthorizedForService (String serviceName)
throws AccessControlException

117

OWASP ESAPI | 2008

Checks if an account is authorized to access the referenced service. This can be used in
applications that provide access to a variety of backend services. This method throws an
AccessControlException if access is not authorized, or if the referenced service does not exist. If
the User is authorized, this method simply returns. Specification: The implementation should do
the following: 1) Check to see if the service exists and if not, throw an AccessControlException 2)
Use available information to make an access control decision a. Ideally, this policy would be data
driven b. You can use the current User, roles, data type, data name, time of day, etc. c. Access
control decisions must deny by default 3) If access is not permitted, throw
AccessControlException with details

Parameters:
serviceName - the service name
Throws:

AccessControlException - if access is not permitted

118

OWASP ESAPI | 2008

Interface AccessReferenceMap

org.owasp.esapi

All Known Implementing Classes:
IntegerAccessReferenceMap, RandomAccessReferenceMap

public interface AccessReferenceMap

The AccessReferenceMap interface is used to map from a set of internal direct object references to a set
of indirect references that are safe to disclose publicly. This can be used to help protect database keys,
filenames, and other types of direct object references. As a rule, developers should not expose their
direct object references as it enables attackers to attempt to manipulate them.

Indirect references are handled as strings, to facilitate their use in HTML. Implementations can generate
simple integers or more complicated random character strings as indirect references. Implementations
should probably add a constructor that takes a list of direct references.

Note that in addition to defeating all forms of parameter tampering attacks, there is a side benefit of the
AccessReferenceMap. Using random strings as indirect object references, as opposed to simple integers
makes it impossible for an attacker to guess valid identifiers. So if per-user AccessReferenceMaps are
used, then request forgery (CSRF) attacks will also be prevented.

Set fileSet = new HashSet();
fileSet.addAll(...); // add direct references (e.g. File objects)
AccessReferenceMap map = new AccessReferenceMap(fileSet);

// store the map somewhere safe - like the session!
String indRef = map.getIndirectReference(filel);
String href = "http://www.aspectsecurity.com/esapi?file=" + indRef);

// if the indirect reference doesn't exist, it's likely an attack
// getDirectReference throws an AccessControlException

// you should handle as appropriate

String indref = request.getParameter("file");

File file = (File)map.getDirectReference(indref);

Method Summary

String |addDirectReference (Object direct)

Adds a direct reference to the AccessReferenceMap and generates an associated
indirect reference.

119

OWASP ESAPI | 2008

Object |getDirectReference (String indirectReference)

Get the original direct object reference from an indirect reference.

String |getIndirectReference (Object directReference)

Get a safe indirect reference to use in place of a potentially sensitive direct object
reference.

Iterator |iterator ()

Get an iterator through the direct object references.

String | removeDirectReference (Object direct)

Removes a direct reference and its associated indirect reference from the
AccessReferenceMap.

void update (Set directReferences)

Updates the access reference map with a new set of directReferences, maintaining

any existing indirectReferences associated with items that are in the new list.

Method Detail

iterator

Iterator iterator ()

Get an iterator through the direct object references. No guarantee is made as to the order of
items returned.

Returns:

the iterator

getIndirectReference
String getIndirectReference (Object directReference)
Get a safe indirect reference to use in place of a potentially sensitive direct object reference.

Developers should use this call when building URL's, form fields, hidden fields, etc... to help
protect their private implementation information.

120

OWASP ESAPI | 2008

Parameters:

directReference - the direct reference

Returns:

the indirect reference

getDirectReference

Object getDirectReference (String indirectReference)
throws AccessControlException

Get the original direct object reference from an indirect reference. Developers should use this
when they get an indirect reference from a request to translate it back into the real direct
reference. If an invalid indirectReference is requested, then an AccessControlException is
thrown.

Parameters:

indirectReference - the indirect reference
Returns:

the direct reference
Throws:

AccessControlException - if no direct reference exists for the specified indirect

reference

addDirectReference

String addDirectReference (Object direct)

Adds a direct reference to the AccessReferenceMap and generates an associated indirect
reference.

Parameters:

direct - the direct reference

121

OWASP ESAPI | 2008

Returns:

the corresponding indirect reference

removeDirectReference

String removeDirectReference (Object direct)
throws AccessControlException

Removes a direct reference and its associated indirect reference from the AccessReferenceMap.

Parameters:

direct - the direct reference to remove
Returns:

the corresponding indirect reference

Throws:

AccessControlException

update

void update (Set directReferences)

Updates the access reference map with a new set of directReferences, maintaining any existing
indirectReferences associated with items that are in the new list.

122

OWASP ESAPI | 2008

Positive Input Validation

Validation is all about minimizing the attack surface of your application. An unvalidated form field can
contain virtually any attack against a downstream interpreter or application. By enforcing a specific
positive pattern, you dramatically reduce the attacker’s freedom. Of course you shouldn’t forget about
using parameterized interfaces or output encoding/escaping, but checking the input is a critical first

step.
Design
TODO
Codecs:
HTML Entity Encoding
Yalidate: Percent Encoding
getValidDate() JavaScript Encoding
getvalidCreditcard() 1 I Decoding VBScript Encoding
getVaIidE_iafeHTML() v Engine CSS Encoding
getValidInput() MySQL Encoding
getValidNumber() Oracle Encoding
getvalidFileName() LDAPEncoding
getvalidRedirect()
safeReadLine()
Validation
Engine
/// \\\
Any Encoding W F Any Interpreter
Controller\/ Business Data Layer Backend
LIS Functions — -
> o
Presentation
Layer
TODO
Minimize

The easiest way to make sure you don’t accept bad input is to eliminate the need for accepting the input
in the first place.

You should consider eliminating hidden fields entirely. Hidden fields are form values that aren’t
displayed to the user. When the user submits a form, the hidden fields are submitted just like any other
form field. Attackers can easily change hidden field values to anything they want with browser tools like
TamperData or WebDeveloper. Hidden fields are frequently quite vulnerable to attack because they’re
often overlooked when implementing validation.

123

OWASP ESAPI | 2008

You could use normal input validation techniques to check the hidden field, but the best way to check is
to do a direct comparison with the value that you just set in the web page. Of course, if you can do this,
there’s really no point in having the hidden fields at all, so consider just getting rid of them and reducing
your attack surface.

Global validation

There are hundreds of thousands of Unicode code points and dozens of different encodings. This creates
a huge attack surface for your application.

As a first stage, your application should enforce a global set of allowed characters. You can make the list
of allowed characters as broad as it has to be, but you’ll bound your attack surface. If you want to get
fancy, you can create individual whitelists for the various parts of the HTTP request.

The global character whitelist isn’t enough though. Your application will probably have to allow in some
dangerous characters like apostrophe for example (to support poor Mr. O’Malley). Therefore, you also
need to do specific validation on a field-by-field basis.

In ESAPI this is easy. ESAPI provides a single method that checks all parts of the HTTP request, including
the querystring, headers, cookies, and form fields to make sure they match a predefined set of patterns.
The specific patterns for these are defined in ESAPI.properties. If you'd like to make this happen
automatically on every request, you can add this call to your controller or use a Filter in front of your
application to apply this validation.

ESAPI.validator().assertIsValidHTTPRequest();

Canonicalize

It’s a time honored principle that you cannot validate data until it is in its canonical form. However,
actually canonicalizing user data is incredibly tricky these days. The table below shows many of the
possible ways to encode a less-than sign

124

OWASP ESAPI | 2008

o Bt X3C B X03C;
A X03C B4 X003C;
/ / percent encoding &# X003c x ;gggggé :
%3c 8# X0003c o xuuuuua&;
%30 2# X00003C alt
84 X00DD003c adT
// html entity encoding B X3c; adt
B4 60 B X03cC; 3:
B4 060 84 X003c; BAT;
B+ 0060 B XK0003c; Bdt;
B4 00060 84 X00003c; BAT;
8+ 000060 B4 X000003c; . .
a# 0000060 A %30 <i]avascrlpt escape syntax
84 60; 84 x03C Y x3c
8.4 060; %# x003C “X3c
8# 0060; B4 x0003C ul03c
B4 00060; 8# x00003C “U003c
8+ 000060; B4 x000003C Q;gg
84 0000060; 84 %3C; 4 uDD3C
B %30 8% =#03C; % UD03C
24 =03c 8# x003C;
84 x003c 2% x0003C; // tss escape syntax
8 x0003c 8:4#x00003C; Qﬁ;c
2:# x00003c 84 x000003C; 4 003c
2# x000003c B4 X3C +.0003c
B 1 3c; S X03C 4, 00003c
B x03c; 8# X003C %3C
2# %003c; f:# X0003C \gggc
8# x0003c; 84 X00003C QDDEBC
B4 x00003c; 84 X000003C %, 00003C
f# x000003C; B K30

There are also many ways to double encode data.

< -> &1t; -> 1t; (double entity)
\ -> %5c -> %255c(double percent)
etc...

There are also double encoding with multiple schemes, for example:

< -> &1t; -> %261t%3b (first entity, then percent)
< -> %26 -> 26 (first percent, then entity)
etc...

And nested encoding, for example:

125 |

OWASP ESAPI | 2008

%3c -> %253c (nested encode % with percent)

%3c -> %%33%63 (nested encode percent both nibbles)
%3c -> %%33c (nested encode first nibble with percent)
%3c -> %3%63 (nested encode second nibble with percent)
< -> &8108;t; (nested encode 1 with entity)

etc...

And even nested encoding with multiple schemes:

< -> &%6ct; (nested encode 1 with percent)
%3c -> %&x33;c (nested encode 3 with entity)
etc...

And the order of applying the decoding is critical. If you decode in one order, the output is safe. If you
decode in another order, the output is dangerous.

Original Decode 1 Partial Decode 2 Final
%26It; HTML Entity %26lt; URL Decode <
%26lt; URL Decode < HTML Entity
3c HTML Entity %?3c URL Decode
3c¢ URL Decode 3c¢ HTML Entity %3¢

%25261t%253B HTML Entity %25261t%253B URL Decode %26It%3B

%25261t%253B URL Decode %26It%%3B HTML Entity %26t%3B

%25261t%253B 2x URL Decode < HTML Entity _

TODO

Handling validation errors

TODO

126

OWASP ESAPI | 2008

Rich data

All web applications allow some form of rich data, but it has become a key part of Web 2.0. Data is
“rich” if it allows markup, special characters, images, formatting, and other complex syntax. This
richness allows users create new and innovative content and services.

Unfortunately, richness also affords attackers an unprecedented opportunity to bury attacks targeting
downstream users and systems. At least half the vulnerabilities that plague web applications and web
services involve some form of injection. If your application forwards one of these buried attacks to
innocent users downstream, you’re potentially liable for the damage.

Unscrambling the Egg

One of the oldest security principles in the book is that you should always keep code and data separate.
Once you mix them together, it’s almost impossible separate them again. Unfortunately, most of the
data formats and protocols we’re using today mixing code and data like a bad DJ. That’s why injection is
going to be with us for a long time.

HTML is one of the worst offenders. JavaScript code can be placed in a huge number of places with
dozens of different forms and encodings. See the XSS cheatsheet for some examples. HTML allows
JavaScript in the header, body, dozens of event handlers, links, CSS definitions, and style attributes.
There’s no simple validation that can detect all the variants of code in all these places. You have to have
a full security parser to validate HTML data before you can use it.

Untrusted Data Is Code

Almost everything connected to the Internet will execute “data” if an attacker buries the right kind of
code in it. The code might be JavaScript, VB, SQL, LDAP, XPath, shell script, machine code or a hundred
others depending on where that data goes. SQL injection is just an attacker sneaking malicious SQL
inside user input that gets concatenated into a query. Injected code isn’t just a snippet anymore — it
might be a huge program.

What's important to remember is that every piece of untrusted data — every form field, every URL
parameter, every cookie, and every XML parameter might contain injected code for some downstream
system. If you’re not absolutely sure there is no code in the data — and that’s pretty much impossible —
then for all you know, that data is really a little program. There is no such thing as plain old “data”
anymore.

Think about HTML for a minute. We don’t really “view” web pages anymore. They’re programs. We
“run” them in our browser. Even a tiny fragment of HTML can contain a script. Even without Javascript,
web pages can be used for CSRF attacks that perform a series of functions for the attacker. That’s a kind
of program too. Would you open an HTML document sent to you?

127

OWASP ESAPI | 2008

Getting Worse

Attackers have even started to chain these attacks and use them in multiple stages. Consider the recent
massive bot attacks that use SQL injection to jam JavaScript code into all the strings in a database. The
infected data gets used in a webpage and the attack redirects the victim’s browser to a site that installs
malware. You can imagine attacks that are passed from system to system before they are ever executed
and their payload is realized.

One factor that makes detecting these attacks difficult is that the web enables so many different types
of encoding. There are over 100 different character encodings, and we’ve added higher level encodings
such as percent-encoding, HTML-entity encoding, and bbcode on top of those. The real nightmare here
is that anywhere downstream, systems may decode this data and reawaken a dormant attack.

So, even if your application isn’t vulnerable to injection, someone might use the data from your
application or service. As “Web 2.0” continues to mashup data from different sources, the likelihood of
these attacks increases.

Stamping Out Injection

Developers should treat untrusted data as though it’s malicious code with three easy steps - validate,
separate, and encode.

1. Validate means that you should have a “whitelist” input validation rule for every input — no
exceptions. Not just for form fields, but hidden fields, URL parameters, headers, cookies, and all
backend systems.

2. Separate means you shouldn’t mix up the data into command strings. Wherever possibly you
should use parameterized interfaces, such as PreparedStatement in Java, that prevent injection by
keeping code and data separate.

3. Encode means that you should encode untrusted data for the destination. One thing you absolutely
have to do, but almost nobody does, is specify the character set that you’ll be using. Then you’ll need
a set of methods that apply the proper encoding for the destination, such as an HTML page, HTML
attribute, JavaScript, XPath query, LDAP query, etc...

Why do we care about downstream injection? Injection is not a new problem —we’ve known about it for
decades. The body of knowledge on XSS and SQL injection is extensive. If your system has a flaw that
forwards an attack to an innocent victim who is harmed because of your negligence, courts are not
going to have any trouble holding you liable.

128

OWASP ESAPI | 2008

Rich Content

More and more, the data passed around the Internet is "rich", meaning that it contains markup and the
data is intended to be parsed, rendered, and sometimes executed. Ensuring that this rich data does not
contain any malicious instructions is extremely difficult. Nowhere is this problem more significant than
in HTML, the worst scramble of code and data of all time.

Validating rich content is incredibly difficult. You cannot use simple string searches or even regular
expressions to validate this type of data. You need a real parser. Actually, you need a parser that is
tolerant of malformed markup and other syntax problems.

ESAPI protects against scripts embedded in rich data in a new way. Rather than trying to search through
the input for dangerous characters and patterns, ESAPI takes advantage of another OWASP project
called AntiSamy, which fully parses the rich content and has an extensive set of rules for which tags and
attributes are allowed.

The difficulty of verifying whether rich content contains attacks is increasing rapidly as we use more and
more complex formats. Using a robust parser and a whitelist set of rules is the right approach for
detecting and preventing attacks. In addition to HTML, AntiSamy supports CSS, which is particularly
challenging to parse and validate.

To use ESAPI to validate rich HTML data, use the following approach:

String dirty = request.getParameter(“input”);
String safeMarkup = ESAPI.validator().getValidSafeHTML("input", dirty, 2500, true);
// store, use, or render the safeMarkup

129

OWASP ESAPI

2008

Interface Validator

org.owasp.esapi

All Known Implementing Classes:

DefaultValidator

public

interface Validator

The Validator interface defines a set of methods for canonicalizing and validating untrusted input.

Implementors should feel free to extend this interface to accommodate their own data formats. Rather

than throw exceptions, this interface returns boolean results because not all validation problems are

security issues. Boolean returns allow developers to handle both valid and invalid results more cleanly

than exceptions.

Implementations must adopt a "whitelist" approach to validation where a specific pattern or character

set is matched. "Blacklist" approaches that attempt to identify the invalid or disallowed characters are

much more likely to allow a bypass with encoding or other tricks.

Method Summary

void

assertIsValidHTTPRequest ()

Validates the current HTTP request by comparing parameters, headers, and
cookies to a predefined whitelist of allowed characters.

void

assertIsValidHTTPRequestParameterSet (String context, Set required, Set

optional)

Validates that the parameters in the current request contain all required
parameters and only optional ones in addition.

void

assertIsValidHTTPRequestParameterSet (String context, Set required, Set

optional, ValidationErrorList errorList)

Validates that the parameters in the current request contain all required
parameters and only optional ones in addition.

void

assertValidFileUpload(String context, String filepath, String filename,

byte[] content, int maxBytes, boolean allowNull)

Validates the filepath, filename, and content of a file.

130

OWASP ESAPI | 2008

void

assertValidFileUpload(String context, String filepath, String filename,

byte[] content, int maxBytes, boolean allowNull, ValidationErrorList

errorList)

Validates the filepath, filename, and content of a file.

String

getValidCreditCard (String context, String input, boolean allowNull)

Returns a canonicalized and validated credit card number as a String.

String

getValidCreditCard(String context, String input, boolean allowNull,

ValidationErrorList errorList)

Returns a canonicalized and validated credit card number as a String.

Date

getValidDate (String context, String input, DateFormat format, boolean
allowNull)

Returns a valid date as a Date.

Date

getValidDate (String context, String input, DateFormat format, boolean
allowNull, ValidationErrorList errorList)

Returns a valid date as a Date.

String

getValidDirectoryPath (String context, String input, boolean allowNull)

Returns a canonicalized and validated directory path as a String.

String

getValidDirectoryPath (String context, String input, boolean allowNull,

ValidationErrorList errorList)

Returns a canonicalized and validated directory path as a String.

Double

getValidDouble (String context, String input, double minValue, double

maxValue, boolean allowNull)

Returns a validated real number as a double.

Double

getValidDouble (String context, String input, double minValue, double

maxValue, boolean allowNull, ValidationErrorList errorList)

Returns a validated real number as a double.

byte[] |getValidFileContent (String context, byte[] input, int maxBytes, boolean
allowNull)
Returns validated file content as a byte array.
byte[] |getValidFileContent (String context, byte[] input, int maxBytes, boolean

allowNull, ValidationErrorList errorList)

Returns validated file content as a byte array.

131

OWASP ESAPI | 20

08

String

getValidFileName (String context, String input, boolean allowNull)

Returns a canonicalized and validated file name as a String.

String

getValidFileName (String context, String input, boolean allowNull,

ValidationErrorList errorList)

Returns a canonicalized and validated file name as a String.

String

getValidInput (String context, String input, String type, int maxLength,
boolean allowNull)

Returns canonicalized and validated input as a String.

String

getValidInput (String context, String input, String type, int maxLength,
boolean allowNull, ValidationErrorList errorList)

Returns canonicalized and validated input as a String.

Integer

getValidInteger (String context, String input, int minValue, int maxValue,
boolean allowNull)

Returns a validated integer.

Integer

getValidInteger (String context, String input, int minValue, int maxValue,

boolean allowNull, ValidationErrorList errorList)

Returns a validated integer.

String

getValidListItem(String context, String input, List list)

Returns the list item that exactly matches the canonicalized input.

String

getValidListItem(String context, String input, List list,

ValidationErrorList errorList)

Returns the list item that exactly matches the canonicalized input.

Double

getValidNumber (String context, String input, long minValue, long maxValue,
boolean allowNull)

Returns a validated number as a double within the range of minValue to maxValue.

Double

getValidNumber (String context, String input, long minValue, long maxValue,

boolean allowNull, ValidationErrorList errorList)

Returns a validated number as a double within the range of minValue to maxValue.

byte [

getValidPrintable (String context, byte[] input, int maxLength, boolean
allowNull)

Returns canonicalized and validated printable characters as a byte array.

132

OWASP ESAPI | 2008

byte[] |getValidPrintable (String context, byte[] input, int maxLength, boolean
allowNull, ValidationErrorList errorList)
Returns canonicalized and validated printable characters as a byte array.
String |getValidPrintable (String context, String input, int maxLength, boolean
allowNull)
Returns canonicalized and validated printable characters as a String.
String |getValidPrintable (String context, String input, int maxLength, boolean
allowNull, ValidationErrorList errorList)
Returns canonicalized and validated printable characters as a String.
String |getValidRedirectLocation (String context, String input, boolean allowNull)
Returns a canonicalized and validated redirect location as a String.
String |getValidRedirectLocation (String context, String input, boolean allowNull,
ValidationErrorList errorList)
Returns a canonicalized and validated redirect location as a String.
String |getValidSafeHTML (String context, String input, int maxLength, boolean
allowNull)
Returns canonicalized and validated "safe" HTML.
String |getValidSafeHTML (String context, String input, int maxLength, boolean
allowNull, ValidationErrorList errorList)
Returns canonicalized and validated "safe" HTML.
boolean|jisValidCreditCard(String context, String input, boolean allowNull)
Returns true if input is a valid credit card.
boolean|isValidDate (String context, String input, DateFormat format, boolean
allowNull)
Returns true if input is a valid date according to the specified date format.
boolean|isValidDirectoryPath (String context, String input, boolean allowNull)
Returns true if input is a valid directory path.
boolean|isValidDouble (String context, String input, double minValue, double
maxValue, boolean allowNull)
Returns true if input is a valid double within the range of minValue to maxValue.

133

OWASP ESAPI | 20

08

boolean

isvValidFileContent (String context, byte[] input, int maxBytes, boolean
allowNull)

Returns true if input is valid file content.

boolean

isvValidFileName (String context, String input, boolean allowNull)

Returns true if input is a valid file name.

boolean

isvValidFileUpload(String context, String filepath, String filename, bytel]

content, int maxBytes, boolean allowNull)

Returns true if a file upload has a valid name, path, and content.

boolean

isValidHTTPRequest ()

Validate the current HTTP request by comparing parameters, headers, and cookies
to a predefined whitelist of allowed characters.

boolean

isValidHTTPRequestParameterSet (String context, Set required, Set optional)

Returns true if the parameters in the current request contain all required
parameters and only optional ones in addition.

boolean

isValidInput (String context, String input, String type, int maxLength,
boolean allowNull)

Returns true if input is valid according to the specified type.

boolean|isValidInteger (String context, String input, int minValue, int maxValue,
boolean allowNull)
Returns true if input is a valid integer within the range of minValue to maxValue.
boolean|jisValidListItem(String context, String input, List list)
Returns true if input is a valid list item.
boolean|jisValidNumber (String context, String input, long minValue, long maxValue,
boolean allowNull)
Returns true if input is a valid number within the range of minValue to maxValue.
boolean|isValidPrintable (String context, byte[] input, int maxLength, boolean
allowNull)
Returns true if input contains only valid printable ASCII characters.
boolean|isValidPrintable (String context, String input, int maxLength, boolean

allowNull)

Returns true if input contains only valid printable ASCII characters (32-126).

134

OWASP ESAPI | 2008

boolean

isvalidRedirectLocation(String context, String input, boolean allowNull)

Returns true if input is a valid redirect location, as defined by "ESAPI.properties".

boolean

isvValidSafeHTML (String context, String input, int maxLength, boolean

allowNull)

Returns true if input is "safe" HTML.

String

safeReadLine (InputStream inputStream, int maxLength)

Reads from an input stream until end-of-line or a maximum number of characters.

Method Detail

isValidInput

boolean isValidInput (String context,

String input,

String type,

int maxLength,

boolean allowNull)
throws IntrusionException

Returns true if input is valid according to the specified type. The type parameter must be the

name of a defined type in the ESAPI configuration or a valid regular expression. Implementers

should take care to make the type storage simple to understand and configure.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.

type - The regular expression name that maps to the actual regular expression from
"ESAPI.properties".

maxLength - The maximum post-canonicalized String length allowed.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

135

OWASP ESAPI | 2008

Returns:

true, if the input is valid based on the rules set by 'type'

Throws:

IntrusionException

getValidInput

String getValidInput (String context,
String input,
String type,
int maxLength,
boolean allowNull)
throws ValidationException,
IntrusionException

Returns canonicalized and validated input as a String. Invalid input will generate a descriptive
ValidationException, and input that is clearly an attack will generate a descriptive

IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.

type - The regular expression name that maps to the actual regular expression from
"ESAPI.properties".

maxLength - The maximum post-canonicalized String length allowed.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

The canonicalized user input.

136

OWASP ESAPI | 2008

Throws:

ValidationException

IntrusionException

getValidinput

String getValidInput (String context,
String input,
String type,
int maxLength,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns canonicalized and validated input as a String. Invalid input will generate a descriptive
ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.

type - The regular expression name that maps to the actual regular expression from
"ESAPI.properties".

maxLength - The maximum post-canonicalized String length allowed.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by

context
Returns:

The canonicalized user input.

137

OWASP ESAPI | 2008

Throws:

IntrusionException

isValidDate

boolean isValidDate (String context,
String input,
DateFormat format,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid date according to the specified date format.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.
format - Required formatting of date inputted.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

true, if input is a valid date according to the format specified by 'format’

Throws:

IntrusionException

getValidDate

Date getValidDate (String context,
String input,
DateFormat format,
boolean allowNull)
throws ValidationException,
IntrusionException

138

OWASP ESAPI | 2008

Returns a valid date as a Date. Invalid input will generate a descriptive ValidationException, and
input that is clearly an attack will generate a descriptive IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.
format - Required formatting of date inputted.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
A valid date as a Date

Throws:

ValidationException

IntrusionException

getValidDate

Date getValidDate (String context,
String input,
DateFormat format,
boolean allowNull,
ValidationErrorList errorList)
throws IntrusionException

Returns a valid date as a Date. Invalid input will generate a descriptive ValidationException and
store it inside of the errorList argument, and input that is clearly an attack will generate a
descriptive IntrusionException. Instead of throwing a ValidationException on error, this variant
will store the exception inside of the ValidationErrorList.

139

OWASP ESAPI | 2008

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.
format - Required formatting of date inputted.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
A valid date as a Date

Throws:

IntrusionException

isValidSafeHTML

boolean isValidSafeHTML (String context,
String input,
int maxLength,
boolean allowNull)
throws IntrusionException

Returns true if input is "safe" HTML. Implementors should reference the OWASP AntiSamy
project for ideas on how to do HTML validation in a whitelist way, as this is an extremely difficult
problem.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.

140

OWASP ESAPI | 2008

maxLength - The maximum post-canonicalized String length allowed.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if input is valid safe HTML

Throws:

IntrusionException

getValidSafeHTML

String getValidSafeHTML (String context,
String input,
int maxLength,
boolean allowNull)
throws ValidationException,
IntrusionException

Returns canonicalized and validated "safe" HTML. Implementors should reference the OWASP
AntiSamy project for ideas on how to do HTML validation in a whitelist way, as this is an

extremely difficult problem.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is

done with respect to the value passed in.
input - The actual user input data to validate.
maxLength - The maximum post-canonicalized String length allowed.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

Valid safe HTML

141

OWASP ESAPI | 2008

Throws:

ValidationException

IntrusionException

getValidSafeHTML

String getValidSafeHTML (String context,
String input,
int maxLength,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns canonicalized and validated "safe" HTML. Implementors should reference the OWASP
AntiSamy project for ideas on how to do HTML validation in a whitelist way, as this is an
extremely difficult problem. Instead of throwing a ValidationException on error, this variant will
store the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.
maxLength - The maximum post-canonicalized String length allowed.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by

context
Returns:
Valid safe HTML

Throws:

IntrusionException

142

OWASP ESAPI | 2008

isValidCreditCard

boolean isValidCreditCard(String context,
String input,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid credit card. Maxlength is mandated by valid credit card type.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual user input data to validate.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

true, if input is a valid credit card number

Throws:

IntrusionException

getValidCreditCard

String getValidCreditCard(String context,
String input,
boolean allowNull)

throws ValidationException,
IntrusionException

Returns a canonicalized and validated credit card number as a String. Invalid input will generate
a descriptive ValidationException, and input that is clearly an attack will generate a descriptive

IntrusionException.

143

OWASP ESAPI | 2008

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is

done with respect to the value passed in.
input - The actual user input data to validate.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
A valid credit card number

Throws:

ValidationException

IntrusionException

getValidCreditCard

String getValidCreditCard(String context,
String input,
boolean allowNull,
ValidationErrorList errorList)
throws IntrusionException

Returns a canonicalized and validated credit card number as a String. Invalid input will generate
a descriptive ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is

done with respect to the value passed in.

input - The actual input data to validate.

144

OWASP ESAPI | 2008

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
A valid credit card number

Throws:

IntrusionException

isValidDirectoryPath

boolean isValidDirectoryPath(String context,
String input,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid directory path.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if input is a valid directory path

Throws:

IntrusionException

145

OWASP ESAPI | 2008

getValidDirectoryPath

String getValidDirectoryPath(String context,
String input,
boolean allowNull)

throws ValidationException,
IntrusionException

Returns a canonicalized and validated directory path as a String. Invalid input will generate a
descriptive ValidationException, and input that is clearly an attack will generate a descriptive

IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
A valid directory path

Throws:

ValidationException

IntrusionException

getValidDirectoryPath

String getValidDirectoryPath(String context,
String input,
boolean allowNull,
ValidationErrorList errorList)
throws IntrusionException

Returns a canonicalized and validated directory path as a String. Invalid input will generate a
descriptive ValidationException, and input that is clearly an attack will generate a descriptive

146

OWASP ESAPI | 2008

IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
A valid directory path

Throws:

IntrusionException

isValidFileName

boolean isValidFileName (String context,
String input,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid file name.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.

147

OWASP ESAPI | 2008

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if input is a valid file name

Throws:

IntrusionException

getValidFileName

String getValidFileName (String context,
String input,
boolean allowNull)

throws ValidationException,
IntrusionException

Returns a canonicalized and validated file name as a String. Implementors should check for
allowed file extensions here, as well as allowed file name characters, as declared in
"ESAPIl.properties". Invalid input will generate a descriptive ValidationException, and input that
is clearly an attack will generate a descriptive IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is

done with respect to the value passed in.
input - The actual input data to validate.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
A valid file name

Throws:

ValidationException

148

OWASP ESAPI | 2008

IntrusionException

getValidFileName

String getValidFileName (String context,
String input,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns a canonicalized and validated file name as a String. Implementors should check for
allowed file extensions here, as well as allowed file name characters, as declared in
"ESAPI.properties". Invalid input will generate a descriptive ValidationException, and input that
is clearly an attack will generate a descriptive IntrusionException. Instead of throwing a
ValidationException on error, this variant will store the exception inside of the
ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is

done with respect to the value passed in.
input - The actual input data to validate.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by

context
Returns:
A valid file name

Throws:

IntrusionException

149

OWASP ESAPI | 2008

isValidNumber

boolean isValidNumber (String context,
String input,
long minValue,
long maxValue,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid number within the range of minValue to maxValue.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minValue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if input is a valid number

Throws:

IntrusionException

getValidNumber

Double getValidNumber (String context,
String input,
long minValue,
long maxValue,
boolean allowNull)
throws ValidationException,
IntrusionException

150

OWASP ESAPI | 2008

Returns a validated number as a double within the range of minValue to maxValue. Invalid input
will generate a descriptive ValidationException, and input that is clearly an attack will generate a

descriptive IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minvalue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
A validated number as a double.

Throws:

ValidationException

IntrusionException

getValidNumber

Double getValidNumber (String context,
String input,
long minValue,
long maxValue,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns a validated number as a double within the range of minValue to maxValue. Invalid input
will generate a descriptive ValidationException, and input that is clearly an attack will generate a
descriptive IntrusionException. Instead of throwing a ValidationException on error, this variant
will store the exception inside of the ValidationErrorList.

151

OWASP ESAPI | 2008

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minvalue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
A validated number as a double.

Throws:

IntrusionException

isValidInteger

boolean isValidInteger (String context,
String input,
int minValue,
int maxValue,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid integer within the range of minValue to maxValue.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

152

OWASP ESAPI | 2008

input - The actual input data to validate.
minvalue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if input is a valid integer

Throws:

IntrusionException

getValidInteger

Integer getValidInteger (String context,
String input,
int minValue,
int maxValue,
boolean allowNull)
throws ValidationException,

IntrusionException

Returns a validated integer. Invalid input will generate a descriptive ValidationException, and
input that is clearly an attack will generate a descriptive IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minvalue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

153

OWASP ESAPI | 2008

Returns:
A validated number as an integer.

Throws:

ValidationException

IntrusionException

getValidInteger

Integer getValidInteger (String context,
String input,
int minValue,
int maxValue,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns a validated integer. Invalid input will generate a descriptive ValidationException, and
input that is clearly an attack will generate a descriptive IntrusionException. Instead of throwing
a ValidationException on error, this variant will store the exception inside of the
ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minvalue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by

context

154

OWASP ESAPI | 2008

Returns:
A validated number as an integer.

Throws:

IntrusionException

isValidDouble

boolean isValidDouble (String context,
String input,
double minValue,
double maxValue,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid double within the range of minValue to maxValue.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minValue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if input is a valid double.

Throws:

IntrusionException

155

OWASP ESAPI | 2008

getValidDouble

Double getValidDouble (String context,
String input,
double minValue,
double maxValue,
boolean allowNull)
throws ValidationException,
IntrusionException

Returns a validated real number as a double. Invalid input will generate a descriptive
ValidationException, and input that is clearly an attack will generate a descriptive

IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minvalue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
A validated real number as a double.

Throws:

ValidationException

IntrusionException

156

OWASP ESAPI | 2008

getValidDouble

Double getValidDouble (String context,
String input,
double minValue,
double maxValue,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns a validated real number as a double. Invalid input will generate a descriptive
ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
minvalue - Lowest legal value for input.
maxValue - Highest legal value for input.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
A validated real number as a double.

Throws:

IntrusionException

157

OWASP ESAPI | 2008

isValidFileContent

boolean isValidFileContent (String context,
byte[] input,
int maxBytes,
boolean allowNull)
throws IntrusionException

Returns true if input is valid file content. This is a good place to check for max file size, allowed
character sets, and do virus scans.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
maxBytes - The maximum number of bytes allowed in a legal file.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if input contains valid file content.

Throws:

IntrusionException

getValidFileContent

byte[] getValidFileContent (String context,
byte[] input,
int maxBytes,
boolean allowNull)
throws ValidationException,
IntrusionException

Returns validated file content as a byte array. This is a good place to check for max file size,
allowed character sets, and do virus scans. Invalid input will generate a descriptive

158

OWASP ESAPI | 2008

ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
maxBytes - The maximum number of bytes allowed in a legal file.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
A byte array containing valid file content.

Throws:

ValidationException

IntrusionException

getValidFileContent

byte[] getValidFileContent (String context,
byte[] input,
int maxBytes,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns validated file content as a byte array. This is a good place to check for max file size,
allowed character sets, and do virus scans. Invalid input will generate a descriptive
ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

159

OWASP ESAPI | 2008

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The actual input data to validate.
maxBytes - The maximum number of bytes allowed in a legal file.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context.

Returns:
A byte array containing valid file content.

Throws:

IntrusionException

isValidFileUpload

boolean isValidFileUpload(String context,
String filepath,
String filename,
byte[] content,
int maxBytes,
boolean allowNull)
throws IntrusionException

Returns true if a file upload has a valid name, path, and content.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

filepath - The file path of the uploaded file.

160

OWASP ESAPI | 2008

filename - The filename of the uploaded file
content - A byte array containing the content of the uploaded file.
maxBytes - The max number of bytes allowed for a legal file upload.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
true, if a file upload has a valid name, path, and content.

Throws:

IntrusionException

assertValidFileUpload

void assertValidFileUpload(String context,
String filepath,
String filename,
byte[] content,
int maxBytes,
boolean allowNull)
throws ValidationException,

IntrusionException

Validates the filepath, filename, and content of a file. Invalid input will generate a descriptive
ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

filepath - The file path of the uploaded file.
filename - The filename of the uploaded file

content - A byte array containing the content of the uploaded file.

161

OWASP ESAPI | 2008

maxBytes - The max number of bytes allowed for a legal file upload.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Throws:

ValidationException

IntrusionException

assertValidFileUpload

void assertValidFileUpload(String context,
String filepath,
String filename,
byte[] content,
int maxBytes,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Validates the filepath, filename, and content of a file. Invalid input will generate a descriptive
ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

filepath - The file path of the uploaded file.

filename - The filename of the uploaded file

content - A byte array containing the content of the uploaded file.
maxBytes - The max number of bytes allowed for a legal file upload.

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

162

OWASP ESAPI | 2008

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Throws:

IntrusionException

isValidHTTPRequest

boolean isValidHTTPRequest ()
throws IntrusionException

Validate the current HTTP request by comparing parameters, headers, and cookies to a
predefined whitelist of allowed characters. See the SecurityConfiguration class for the methods
to retrieve the whitelists.

Returns:
true, if is a valid HTTP request

Throws:

IntrusionException

assertlsValidHTTPRequest

void assertIsValidHTTPRequest ()
throws ValidationException,

IntrusionException

Validates the current HTTP request by comparing parameters, headers, and cookies to a
predefined whitelist of allowed characters. Invalid input will generate a descriptive

ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException.

Throws:

ValidationException

IntrusionException

163

OWASP ESAPI | 2008

isValidListItem

boolean isValidListItem(String context,
String input,
List list)
throws IntrusionException

Returns true if input is a valid list item.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is

done with respect to the value passed in.
input - The value to search 'list' for.
list - The list to search for 'input'.

Returns:

true, if 'input' was found in 'list'.

Throws:

IntrusionException

getValidListltem

String getValidListItem(String context,
String input,
List list)
throws ValidationException,
IntrusionException

Returns the list item that exactly matches the canonicalized input. Invalid or non-matching input
will generate a descriptive ValidationException, and input that is clearly an attack will generate a

descriptive IntrusionException.

164

OWASP ESAPI | 2008

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - The value to search 'list' for.
list - The list to search for 'input'.
Returns:
The list item that exactly matches the canonicalized input.

Throws:

ValidationException

IntrusionException

getValidListltem

String getValidListItem(String context,
String input,
List list,
ValidationErrorList errorList)

throws IntrusionException

Returns the list item that exactly matches the canonicalized input. Invalid or non-matching input
will generate a descriptive ValidationException, and input that is clearly an attack will generate a
descriptive IntrusionException. Instead of throwing a ValidationException on error, this variant
will store the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is

done with respect to the value passed in.
input - The value to search 'list' for.

list - The list to search for 'input'.

165

OWASP ESAPI | 2008

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
The list item that exactly matches the canonicalized input.

Throws:

IntrusionException

isValidHTTPRequestParameterSet

boolean isValidHTTPRequestParameterSet (String context,
Set required,
Set optional)
throws IntrusionException

Returns true if the parameters in the current request contain all required parameters and only
optional ones in addition.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

required - parameters that are required to be in HTTP request
optional - additional parameters that may be in HTTP request
Returns:

true, if all required parameters are in HTTP request and only optional parameters in
addition. Returns false if parameters are found in HTTP request that are not in either set
(required or optional), or if any required parameters are missing from request.

Throws:

IntrusionException

166

OWASP ESAPI | 2008

assertlsValidHTTPRequestParameterSet

void assertIsValidHTTPRequestParameterSet (String context,
Set required,
Set optional)
throws ValidationException,

IntrusionException

Validates that the parameters in the current request contain all required parameters and only
optional ones in addition. Invalid input will generate a descriptive ValidationException, and input
that is clearly an attack will generate a descriptive IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

required - parameters that are required to be in HTTP request
optional - additional parameters that may be in HTTP request

Throws:

ValidationException

IntrusionException

assertlsValidHTTPRequestParameterSet

void assertIsValidHTTPRequestParameterSet (String context,
Set required,
Set optional,
ValidationErrorList errorList)
throws IntrusionException

Validates that the parameters in the current request contain all required parameters and only
optional ones in addition. Invalid input will generate a descriptive ValidationException, and input
that is clearly an attack will generate a descriptive IntrusionException. Instead of throwing a
ValidationException on error, this variant will store the exception inside of the
ValidationErrorList.

167

OWASP ESAPI | 2008

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

required - parameters that are required to be in HTTP request
optional - additional parameters that may be in HTTP request

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Throws:

IntrusionException

isValidPrintable

boolean isValidPrintable(String context,
byte[] input,
int maxLength,
boolean allowNull)
throws IntrusionException

Returns true if input contains only valid printable ASCII characters.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - data to be checked for validity
maxLength - Maximum number of bytes stored in 'input'

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

true, if 'input’ is less than maxLength and contains only valid, printable characters

168

OWASP ESAPI | 2008

Throws:

IntrusionException

getValidPrintable

byte[] getValidPrintable(String context,
byte[] input,
int maxLength,
boolean allowNull)
throws ValidationException

Returns canonicalized and validated printable characters as a byte array. Invalid input will
generate a descriptive ValidationException, and input that is clearly an attack will generate a
descriptive IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - data to be returned as valid and printable
maxLength - Maximum number of bytes stored in 'input’

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:
a byte array containing only printable characters, made up of data from 'input’

Throws:

ValidationException

169

OWASP ESAPI | 2008

getValidPrintable

byte[] getValidPrintable (String context,
byte[] input,
int maxLength,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns canonicalized and validated printable characters as a byte array. Invalid input will
generate a descriptive ValidationException, and input that is clearly an attack will generate a
descriptive IntrusionException. Instead of throwing a ValidationException on error, this variant
will store the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - data to be returned as valid and printable
maxLength - Maximum number of bytes stored in 'input'

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
a byte array containing only printable characters, made up of data from 'input’

Throws:

IntrusionException

170

OWASP ESAPI | 2008

isValidPrintable

boolean isValidPrintable(String context,
String input,
int maxLength,
boolean allowNull)
throws IntrusionException

Returns true if input contains only valid printable ASCII characters (32-126).

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - data to be checked for validity
maxLength - Maximum number of bytes stored in 'input' after canonicalization

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

true, if 'input’ is less than maxLength after canonicalization and contains only valid,

printable characters

Throws:

IntrusionException

getValidPrintable

String getValidPrintable (String context,
String input,
int maxLength,
boolean allowNull)
throws ValidationException

Returns canonicalized and validated printable characters as a String. Invalid input will generate a
descriptive ValidationException, and input that is clearly an attack will generate a descriptive

IntrusionException.

171

OWASP ESAPI | 2008

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - data to be returned as valid and printable
maxLength - Maximum number of bytes stored in 'input' after canonicalization

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

a String containing only printable characters, made up of data from 'input’

Throws:

ValidationException

getValidPrintable

String getValidPrintable(String context,
String input,
int maxLength,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns canonicalized and validated printable characters as a String. Invalid input will generate a
descriptive ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - data to be returned as valid and printable

172

OWASP ESAPI | 2008

maxLength - Maximum number of bytes stored in 'input' after canonicalization

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by
context

Returns:
a String containing only printable characters, made up of data from 'input’

Throws:

IntrusionException

isValidRedirectLocation

boolean isValidRedirectLocation(String context,
String input,
boolean allowNull)
throws IntrusionException

Returns true if input is a valid redirect location, as defined by "ESAPI.properties".

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - redirect location to be checked for validity, according to rules set in
"ESAPIl.properties"

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

true, if 'input' is a valid redirect location, as defined by "ESAPI.properties", false
otherwise.

173

OWASP ESAPI | 2008

Throws:

IntrusionException

getValidRedirectLocation

String getValidRedirectLocation (String context,
String input,
boolean allowNull)

throws ValidationException,
IntrusionException

Returns a canonicalized and validated redirect location as a String. Invalid input will generate a
descriptive ValidationException, and input that is clearly an attack will generate a descriptive

IntrusionException.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - redirect location to be returned as valid, according to encoding rules set in

"ESAPIl.properties"

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

Returns:

A canonicalized and validated redirect location, as defined in "ESAPl.properties"

Throws:

ValidationException

IntrusionException

174

OWASP ESAPI | 2008

getValidRedirectLocation

String getValidRedirectLocation(String context,
String input,
boolean allowNull,
ValidationErrorList errorList)

throws IntrusionException

Returns a canonicalized and validated redirect location as a String. Invalid input will generate a
descriptive ValidationException, and input that is clearly an attack will generate a descriptive
IntrusionException. Instead of throwing a ValidationException on error, this variant will store
the exception inside of the ValidationErrorList.

Parameters:

context - A descriptive name of the parameter that you are validating (e.g.,
LoginPage_UsernameField). This value is used by any logging or error handling that is
done with respect to the value passed in.

input - redirect location to be returned as valid, according to encoding rules set in

"ESAPIl.properties"

allowNull - If allowNull is true then an input that is NULL or an empty string will be
legal. If allowNull is false then NULL or an empty String will throw a ValidationException.

errorList - If validation is in error, resulting error will be stored in the errorList by

context
Returns:

A canonicalized and validated redirect location, as defined in "ESAPI.properties"

Throws:

IntrusionException

safeReadLine

String safeReadLine (InputStream inputStream,
int maxLength)
throws ValidationException

175

OWASP ESAPI | 2008

Reads from an input stream until end-of-line or a maximum number of characters. This method
protects against the inherent denial of service attack in reading until the end of a line. If an
attacker doesn't ever send a newline character, then a normal input stream reader will read
until all memory is exhausted and the platform throws an OutOfMemoryError and probably
terminates.

Parameters:
inputStream - The InputStream from which to read data
maxLength - Maximum characters allowed to be read in per line
Returns:
a String containing the current line of inputStream

Throws:

ValidationException

176

OWASP ESAPI | 2008

Class ValidationErrorlList

org.owasp.esapi
java.lang.Object

L-org.owasp.esapi.ValidationErrorList

public class ValidationErrorList

extends Object

The ValidationErrorList class defines a well-formed collection of ValidationExceptions so that groups of
validation functions can be called in a non-blocking fashion.

To use the ValidationErrorList to execute groups of validation attempts, your controller code would look
something like:

ValidationErrorList () errorList = new ValidationErrorList();.

String name = getValidInput ("Name", form.getName(), "SomeESAPIRegExNamel", 255, fals
e, errorlList);

String address = getValidInput ("Address", form.getAddress(), "SomeESAPIRegExName2", 2
55, false, errorlList);

Integer weight = getValidInteger ("Weight", form.getWeight(), 1, 1000000000, false, er
rorList);

Integer sortOrder = getValidInteger ("Sort Order", form.getSortOrder(), -

100000, +100000, false, errorlList);

request.setAttribute("ERROR_LIST", errorList);

The at your view layer you would be able to retrieve all of your error messages via a helper function like:

public static ValidationErrorList getErrors() {
HttpServletRequest request = ESAPI.httpUtilities().getCurrentRequest();
ValidationErrorList errors = new ValidationErrorList();
if (request.getAttribute (Constants.ERROR_LIST) != null) {
errors = (ValidationErrorList)request.getAttribute ("ERROR_LIST");
}

return errors;

You can list all errors like:

o°

for (Object vo : errorlList.errors()) {
ValidationException ve = (ValidationException)vo;
%>
%= ESAPI.encoder () .encodeForHTML (ve.getMessage()) %>

177

OWASP ESAPI

2008

o\

o°
\

And even check if a specific Ul component is in error via calls like:

ValidationException e = errorlList.getError ("Name");

Constructor Summary

ValidationErrorList ()

Method Summary

void

addError (String context, ValidationException ve)

Adds a new error to list with a unique named context.

List

errors ()

Returns list of ValidationException, or empty list of no errors exist.

ValidationException

getError (String context)

Retrieves ValidationException for given context if one exists.

boolean

isEmpty ()

Returns true if no error are present.

int

size ()

Returns the numbers of errors present.

Constructor Detail

ValidationErrorList

public ValidationErrorList ()

178

OWASP ESAPI | 2008

Method Detail

addError

public void addError (String context,
ValidationException ve)

Adds a new error to list with a unique named context. No action taken if either element is null.

Existing contexts will be overwritten.

Parameters:

context - unique named context for this ValidationErrorList

errors

public List errors()

Returns list of ValidationException, or empty list of no errors exist.

Returns:

List

getError

public ValidationException getError (String context)

Retrieves ValidationException for given context if one exists.
Parameters:
context - unique name for each error

Returns:

ValidationException or null for given context

179

OWASP ESAPI

2008

isEmpty

public boolean isEmpty ()

Returns true if no error are present.

Returns:

boolean

size

public int size()

Returns the numbers of errors present.

Returns:

boolean

180

OWASP ESAPI | 2008

Positive Output Encoding/Escaping

Output encoding and escaping is one of the most important and most widely ignored security controls.
The goal is to prevent injection into renderers, interpreters, and decoders anywhere in or downstream
from the application. Injection is at the root of many of the most serious application security flaws,
including XSS, SQL injection, command injection, and more.

Design

Users should understand that the best defense against injection is to use a parameterized interface. This
is an interface that keeps the parameters, typically user data, separate from the actual commands to be
executed by the interpreter. The alternative is to use a “dynamic” query or command that concatenates
all the user data into the command, so that the interpreter can’t tell them apart.

Unfortunately, many interpreters don’t have a parameterized interface, so we have to use the next best
thing, encoding or escaping. Encoding and escaping work by changing all the characters that are
relevant to the interpreter into harmless characters that just appear as data.

So for example, if the single quote character (‘) is used to end a quoted string in a SQL interpreter, that
character might be escaped with a backslash (\’), so that it is no longer significant to the interpreter.
This prevents the attacker from modifying the meaning of the query.

In ESAPI there are quite a variety of encoders that apply to data that is to be used in different contexts.

Controller Business Data Layer l Backend
> Functions — =
Presentation ; ['
' Layer | C

&

] [Encode:
\\/ - setCharacterEncoding()

Encoding encodeForHTML()

Engine encodeForHTMLAttrHbute()
encodeForJavaScript()
encodeForVBScript()

encodeForCss()

encodeForURL()
encodeForXML()
encodeForLDAP()

encodeForDN()

181

OWASP ESAPI | 2008

XSS and Injection

Think you’ve protected your web applications from cross-site scripting (XSS) vulnerabilities? The odds
are against you. Roughly 90% of web applications have this problem, and it’s getting worse.

XSS happens any time your application uses input from an HTTP request directly in HTML output. This

includes everything in the HTTP request, including the querystring, form fields, hidden fields, pulldown
menus, checkboxes, cookies, and headers. It doesn’t matter if you immediately send the input back to
the user who sent it (“Reflected XSS”) or store it for a while and send it later to someone else (“Stored
XSS”).

XSS is a fairly serious vulnerability. By sending just the right input, typically a few special characters like "
and > and then some javascript, an attacker can get a script running in the context of your web page.
That script can disclose your application’s cookies, rewrite your HTML, perform a phishing attack, or
steal data from your forms. Attackers can even install an “XSS proxy” inside the victim’s browser,
allowing them to control your users’ browsers remotely.

Security problems like XSS are inevitable when you don’t keep code and data apart —and HTML is the
worst mashup of code and data of all time. There’s no way good way to keep JavaScript code and HTML
data separate from each other. To prevent SQL injection, you can use a parameterized query to keep the
data and code separate. But there’s nothing equivalent for HTML. Just about every HTML element
allows JavaScript code in attributes and event handlers, even CSS:

<div style="xss:expression(alert('xss'))" />

Even though proper output encoding protects against injection, you still must validate. One way to keep
code out of user input is “whitelist input validation.” All you have to do is verify that each input matches
a strict definition of what you expect, like a tight regular expression. Attempting to take a shortcut and
apply a global filter for attacks is known as a “blacklist” approach and never works. Unfortunately, even
the tightest input validation can’t completely defeat XSS, as some input fields require the same
characters that are significant in HTML.

?name=0"'Connell&comment=I "like" your website; it's great!

You’ll also have to canonicalize the data before you validate. Attackers will use tricks to attempt to
bypass your validation. By using various kinds of encoding, either alone or in combination, they hide
code inside data. You have to decode this data to its simplest form (“canonicalize”) before validating, or

182

OWASP ESAPI | 2008

you may allow code to reach some backend system that decodes it and enables the attack. But
canonicalizing is easier said than done. Take a string that’s been doubly encoded using multiple different
(possibly unknown) encoding schemes, add any number of backend parsers, consider the browser’s
permissive parsing, and you have a real mess:

?input=test%2522%2Bonblur%253D%26quotalert&%23x28document.cookie’%2529

You can use encoding to tell the browser that data shouldn’t be run as code. “Whitelist output
encoding” is simply replacing everything except a small list of safe characters (such as alphanumerics)
with HTML entities before sending to the browser. The browser will render these entities instead of
interpreting them, which defuses XSS attacks. Except that it doesn’t always work. First, many
frameworks and libraries use “blacklist” encoding where only a very small set of characters is encoded.
Also, there are some places in HTML, such as href and src attributes, which allow HTML entities to be
executed. So this insane URL is actually executed by browsers:

test

Don’t forget to assign the proper character set: Even if you’re doing great input validation and output
encoding, attackers may try to trick the browser into using the wrong character set to interpret the data.
An innocuous string in one character set may be interpreted as a dangerous string in a different
character set. Many browsers will attempt to guess the character set if one is not specified. So, the
harmless-looking string +ADw- will be interpreted as a < character if the browser decides to use UTF-7.
This is why you should always be careful to set a sane character set like UTF-8.

Content-Type: text/html; charset=UTF-8

As web applications and web services share more and more data, XSS is getting worse. Many
frameworks and libraries are encoding, decoding, and re-encoding with all kinds of schemes and sending
data through new protocols. Ajax and other “rich” applications are complicating this situation. One thing
is for sure, XSS isn’t going away any time soon.

Contexts

Understanding the context for where user data will land is critically important. If you’re sending to a
simple interpreter, then you just need to understand where in the command string the user data will
end up. Isitinside a quoted string? A filename? A parameter name? Frequently, the rules are different

183

OWASP ESAPI | 2008

depending on the context. Nowhere is this problem more obvious than in HTML, which contains
multiple parsers and dozens of contexts. Here are just a few.

8 tiar Page - Windows et Gplorer

o et \any \xHH \uHHHH \00O (octal)

‘ CSsSsS \specials \xHH \uHHHH
‘ JavaScript
&#DD &#xHH &entity;
‘ HTML Elements { E——
‘ HTML Attributes " ' &#DD &#xHH
Event Handlers
" ' \specials \xHH \uHHHH
| URI Attributes
@ Itemet | Protecied Mode: On
%HH
Output encoding

In many applications, any text that you put in a form field can become a part of the webpage.

String name = request.getParameter("name");

<p>Hello, <%=name></p>

Notice that the input will show up in the text of the page right after the word "Hello." If you enter a
script in the field, it will become a part of the page and will run. This is a textbook example of reflected
XSS.

To fix the problem, we can wrap the user input contained in the "name" parameter with a call to the
ESAPI Encoder.encodeForHTML() method. The encodeForHTML() method uses a "whitelist" HTML entity
encoding algorithm to ensure that they cannot be interpreted as script. The Encoder ensures that there
are no double-encoded characters in the input. This call should be used to wrap any user input being
rendered in HTML element content.

184

OWASP ESAPI | 2008

<p>Hello, <%=ESAPI.encoder().encodeForHTML(name)%></p>

For the HTML attribute, the updated page uses ESAPl.encoder().encodeForHTMLAttribute(name). This
call does a slightly different encoding that is more effective with attributes.

<form action="main?function=OutputUserInput&secure" method="POST">
<p>Enter your name:</p>
<input name='name' value='<%=ESAPI.encoder().encodeForHTMLAttribute(name) %>'>
<input type='submit' value='submit'>

</form>

185

OWASP ESAPI

2008

Interface Encoder

org.owasp.esapi

All Known Implementing Classes:
DefaultEncoder

public interface Encoder

The Encoder interface contains a number of methods related to encoding input so that it will be safe for

a variety of interpreters. To prevent double-encoding, all encoding methods should first check to see

that the input does not already contain encoded characters. There are a few methods related to

decoding that are used for canonicalization purposes. See the Validator class for more information.

All of the methods here must use a "whitelist" or "positive" security model, meaning that all characters

should be encoded, except for a specific list of "immune" characters that are known to be safe.

Field Summary

char[]

CHAR ALPHANUMERICS

char[]

CHAR DIGITS

char[]

CHAR LETTERS

char[]

CHAR_ LOWERS

Standard character sets

char[]

CHAR_PASSWORD_DIGITS

char[]

CHAR PASSWORD_LETTERS

char[]

CHAR_PASSWORD_LOWERS

Password character set, is alphanumerics (without |, i, I, 0, O, and 0) selected
specials like + (bad for URL encoding, | is like i and 1, etc...)

char[]

CHAR PASSWORD_SPECIALS

char[]

CHAR_ PASSWORD_UPPERS

char[]

CHAR_SPECIALS

char[]

CHAR_UPPERS

186

OWASP ESAPI | 2008

Method Summary

String |canonicalize (String input)
This method performs canonicalization on data received to ensure that it has been
reduced to its most basic form before validation.
String |canonicalize (String input, boolean strict)
byte[] |decodeFromBase64 (String input)
Decode data encoded with BASE-64 encoding.
String |decodeFromURL (String input)
Decode from URL.
String |encodeForBase64 (byte[] input, boolean wrap)
Encode for Base64.
String |encodeForCSS (String input)
Encode data for use in Cascading Style Sheets (CSS) content.
String |encodeForDN (String input)
Encode data for use in an LDAP distinguished name.
String |encodeForHTML (String input)
Encode data for use in HTML content.
String |encodeForHTMLAttribute (String input)
Encode data for use in HTML attributes.
String |encodeForJavaScript (String input)
Encode data for insertion inside a data value in JavaScript.
String |encodeForLDAP (String input)
Encode data for use in LDAP queries.
String |lencodeForOS (Codec codec, String input)
Encode for an operating system command shell according to the selected codec
(appropriate codecs include the WindowsCodec and UnixCodec).
String | encodeForSQL (Codec codec, String input)
Encode input for use in a SQL query (this method is not recommended), according
to the selected codec (appropriate codecs include the MySQLCodec and OracleCodec).

187

OWASP ESAPI | 2008

String

encodeForURL (String input)

Encode for use in a URL.

String

encodeForVBScript (String input)

Encode data for insertion inside a data value in a visual basic script.

String

encodeForXML (String input)

Encode data for use in an XML element.

String

encodeForXMLAttribute (String input)

Encode data for use in an XML attribute.

String

encodeForXPath (String input)

Encode data for use in an XPath query.

String

normalize (String input)

Reduce all non-ascii characters to their ASCIl form so that simpler validation rules
can be applied.

Field Detail

CHAR_LOWERS

public static final char[] CHAR_LOWERS

Standard character sets

CHAR_UPPERS

public static final char[] CHAR_UPPERS

CHAR_DIGITS

public

static final char[] CHAR DIGITS

CHAR_SPECIALS

public

static final char[] CHAR_SPECIALS

188

OWASP ESAPI | 2008

CHAR_LETTERS

public static final char([] CHAR_LETTERS

CHAR_ALPHANUMERICS

public static final char[] CHAR_ALPHANUMERICS

CHAR_PASSWORD_LOWERS

public static final char[] CHAR_PASSWORD_LOWERS

Password character set, is alphanumerics (without |, i, I, 0, O, and 0) selected specials like + (bad
for URL encoding, | is like i and 1, etc...)

CHAR_PASSWORD_UPPERS

public static final char|[] CHAR_PASSWORD_UPPERS

CHAR_PASSWORD_DIGITS

public static final char[] CHAR_PASSWORD_DIGITS

CHAR_PASSWORD_SPECIALS

public static final char[] CHAR_PASSWORD_SPECIALS

CHAR_PASSWORD_LETTERS

public static final char[] CHAR_PASSWORD_LETTERS

Method Detail

canonicalize

String canonicalize(String input)
throws EncodingException

189

OWASP ESAPI | 2008

This method performs canonicalization on data received to ensure that it has been reduced to
its most basic form before validation. For example, URL-encoded data received from ordinary
"application/x-www-url-encoded" forms so that it may be validated properly.

Canonicalization is simply the operation of reducing a possibly encoded string down to its
simplest form. This is important, because attackers frequently use encoding to change their
input in a way that will bypass validation filters, but still be interpreted properly by the target of
the attack. Note that data encoded more than once is not something that a normal user would
generate and should be regarded as an attack.

For input that comes from an HTTP servlet request, there are generally two types of encoding to
be concerned with. The first is "applicaton/x-www-url-encoded" which is what is typically used
in most forms and URI's where characters are encoded in a %xy format. The other type of
common character encoding is HTML entity encoding, which uses several formats:

, and

:

Note that all of these formats may possibly render properly in a browser without the trailing
semicolon.

Double-encoding is a particularly thorny problem, as applying ordinary decoders may introduce
encoded characters, even characters encoded with a different encoding scheme. For example
%26lt; is a character which has been entity encoded and then the first character has been url-
encoded. Implementations should throw an IntrusionException when double-encoded
characters are detected.

Note that there is also "multipart/form" encoding, which allows files and other binary data to be
transmitted. Each part of a multipart form can itself be encoded according to a "Content-
Transfer-Encoding" header. See the HTTPUtilties.getSafeFileUploads() method.

For more information on form encoding, please refer to the W3C specifications.

190

OWASP ESAPI | 2008

Parameters:

input - the text to canonicalize

Returns:

a String containing the canonicalized text

Throws:

EncodingException - if canonicalization fails

canonicalize

String canonicalize (String input,
boolean strict)
throws EncodingException

Parameters:
input - the text to canonicalize

strict - true if checking for double encoding is desired, false otherwise

Returns:

a String containing the canonicalized text

Throws:

EncodingException - if canonicalization fails

normalize

String normalize (String input)
Reduce all non-ascii characters to their ASCIl form so that simpler validation rules can be
applied. For example, an accented-e character will be changed into a regular ASCIl e character.
Parameters:

input - the text to normalize

191

OWASP ESAPI | 2008

Returns:

a normalized String

encodeForCSS

String encodeForCSS (String input)
Encode data for use in Cascading Style Sheets (CSS) content.

Parameters:
input - the text to encode for CSS
Returns:

input encoded for CSS

encodeForHTML

String encodeForHTML (String input)
Encode data for use in HTML content.

Parameters:
input - the text to encode for HTML
Returns:

input encoded for HTML

encodeForHTMLAttribute

String encodeForHTMLAttribute (String input)

Encode data for use in HTML attributes.

192

OWASP ESAPI | 2008

Parameters:
input - the text to encode for an HTML attribute
Returns:

input encoded for use as an HTML attribute

encodeForJavaScript

String encodeForJavaScript (String input)

Encode data for insertion inside a data value in JavaScript. Putting user data directly inside a
script is quite dangerous. Great care must be taken to prevent putting user data directly into
script code itself, as no amount of encoding will prevent attacks there.

Parameters:
input - the text to encode for JavaScript
Returns:

input encoded for use in JavaScript

encodeForVBScript

String encodeForVBScript (String input)

Encode data for insertion inside a data value in a visual basic script. Putting user data directly
inside a script is quite dangerous. Great care must be taken to prevent putting user data directly
into script code itself, as no amount of encoding will prevent attacks there.

Parameters:
input - the text to encode for VBScript
Returns:

input encoded for use in VBScript

193

OWASP ESAPI | 2008

encodeForSQL

String encodeForSQL (Codec codec,

String input)

Encode input for use in a SQL query (this method is not recommended), according to the
selected codec (appropriate codecs include the MySQLCodec and OracleCodec). The use of the
PreparedStatement interface is and preferred approach. However, if for some reason this is
impossible, then this method is provided as a weaker alternative. The best approach is to make
sure any single-quotes are double-quoted. Another possible approach is to use the {escape}
syntax described in the JDBC specification in section 1.5.6 (see
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/statement.html). However, this syntax
does not work with all drivers, and requires modification of all queries.

Parameters:

codec - a Codec that declares which database 'input' is being encoded for (ie. MySQL,
Oracle, etc.)

input - the text to encode for SQL
Returns:

input encoded for use in SQL

encodeForo0OS

String encodeForOS (Codec codec,
String input)

Encode for an operating system command shell according to the selected codec (appropriate
codecs include the WindowsCodec and UnixCodec).

Parameters:

codec - a Codec that declares which database 'input' is being encoded for (ie. Windows,
Unix, etc.)

input - the text to encode for the command shell

194

OWASP ESAPI | 2008

Returns:

input encoded for use in command shell

encodeForLDAP

String encodeForLDAP (String input)
Encode data for use in LDAP queries.

Parameters:
input - the text to encode for LDAP
Returns:

input encoded for use in LDAP

encodeForDN

String encodeForDN(String input)
Encode data for use in an LDAP distinguished name.

Parameters:
input - the text to encode for an LDAP distinguished name
Returns:

input encoded for use in an LDAP distinguished name

encodeForXPath

String encodeForXPath (String input)

Encode data for use in an XPath query.

195

OWASP ESAPI | 2008

Parameters:
input - the text to encode for XPath
Returns:

input encoded for use in XPath

encodeForXML

String encodeForXML (String input)

Encode data for use in an XML element. The implementation should follow the XML Encoding
Standard from the W3C.

The use of a real XML parser is strongly encouraged. However, in the hopefully rare case that
you need to make sure that data is safe for inclusion in an XML document and cannot use a
parse, this method provides a safe mechanism to do so.

Parameters:
input - the text to encode for XML

Returns:

input encoded for use in XML

encodeForXMLAttribute

String encodeForXMLAttribute (String input)

Encode data for use in an XML attribute. The implementation should follow the XML Encoding
Standard from the W3C.

The use of a real XML parser is highly encouraged. However, in the hopefully rare case that you
need to make sure that data is safe for inclusion in an XML document and cannot use a parse,
this method provides a safe mechanism to do so.

196

OWASP ESAPI | 2008

Parameters:
input - the text to encode for use as an XML attribute
Returns:

input encoded for use in an XML attribute

encodeForURL

String encodeForURL (String input)
throws EncodingException

Encode for use in a URL. This method performs URL encoding" on the entire string.

Parameters:

input - the text to encode for use in a URL
Returns:

input encoded for use in a URL
Throws:

EncodingException - if encoding fails

decodeFromURL

String decodeFromURL (String input)
throws EncodingException

Decode from URL. Implementations should first canonicalize and detect any double-encoding. If
this check passes, then the data is decoded using URL decoding.

Parameters:
input - the text to decode from an encoded URL
Returns:

the decoded URL value

197

OWASP ESAPI | 2008

Throws:

EncodingException-ifdecodingfa”s

encodeForBase64

String encodeForBase64 (byte[] input,
boolean wrap)

Encode for Base64.
Parameters:
input - the text to encode for Base64

Returns:

input encoded for Base64

decodeFromBase64

byte[] decodeFromBase64 (String input)
throws IOException

Decode data encoded with BASE-64 encoding.

Parameters:

input - the Base64 text to decode
Returns:

input decoded from Base64

Throws:

IOException

198

OWASP ESAPI | 2008

Package org.owasp.esapi.codecs

Interface Summary

The Codec interface defines a set of methods for encoding and decoding application level
Codec| encoding schemes, such as HTML entity encoding and percent encoding (aka URL
encoding).

Class Summary

Base64 Encodes and decodes to and from Base64 notation.

Implementation of the Codec interface for backslash encoding used in
CSSCodec

Css.
HTMLEntityCodec Implementation of the Codec interface for HTML entity encoding.

) Implementation of the Codec interface for backslash encoding in
JavaScriptCodec

JavaScript.
MySQLCodec Implementation of the Codec interface for MySQL strings.
OracleCodec Implementation of the Codec interface for Oracle strings.

Implementation of the Codec interface for percent encoding (aka URL
PercentCodec]

encoding).

. The pushback string is used by Codecs to allow them to push decoded

PushbackString) .

characters back onto a string for further decoding.

. Implementation of the Codec interface for '\' encoding from Unix

UnixCodec

command shell.

Implementation of the Codec interface for 'quote’ encoding from

VBScriptCodec .
VBScript.

. Implementation of the Codec interface for 'A' encoding from Windows
WindowsCodec

command shell.

199

OWASP ESAPI | 2008

Interface Executor

org.owasp.esapi

All Known Implementing Classes:
DefaultExecutor

public interface Executor

The Executor interface is used to run an OS command with reduced security risk. Implementations
should do as much as possible to minimize the risk of injection into either the command or parameters.
In addition, implementations should timeout after a specified time period in order to help prevent
denial of service attacks. The class should perform logging and error handling as well. Finally,
implementation should handle errors and generate an ExecutorException with all the necessary
information.

Method Summary

String | executeSystemCommand (File executable, List params, File workdir, Codec

codec)

Executes a system command after checking that the executable exists and escaping
all the parameters to ensure that injection is impossible.

Method Detail

executeSystemCommand

String executeSystemCommand(File executable,
List params,
File workdir,
Codec codec)
throws ExecutorException

Executes a system command after checking that the executable exists and escaping all the
parameters to ensure that injection is impossible. Implementations must change to the specified
working directory before invoking the command.

Parameters:

executable - the command to execute

200

OWASP ESAPI | 2008

parans - the parameters of the command being executed
workdir - the working directory
codec - the codec to use to encode for the particular OS in use
Returns:
the output of the command being run
Throws:

ExecutorException - the service exception

201

OWASP ESAPI | 2008

Class SafeFile

org.owasp.esapi
java.lang.Object
L-java.io.File

L—org.owasp.esapi.SafeFile

All Implemented Interfaces:
Comparable, Serializable

public class SafeFile
extends File
Extension to java.io.File to prevent against null byte injections and other unforeseen problems resulting

from unprintable characters causing problems in path lookups. This does _not_ prevent against
directory traversal attacks.

Constructor Summary

SafeFile(File parent, String child)

SafeFile(String path)

SafeFile(String parent, String child)

SafeFile (URI uri)

Constructor Detail

SafeFile

public SafeFile(String path)
throws ValidationException

Throws:

ValidationException

202

OWASP ESAPI | 2008

SafeFile

public SafeFile (String parent,
String child)
throws ValidationException

Throws:

ValidationException

SafeFile

public SafeFile(File parent,
String child)
throws ValidationException

Throws:

ValidationException

SafeFile

public SafeFile (URI uri)
throws ValidationException

Throws:

ValidationException

203

OWASP ESAPI | 2008

Positive Error Handling, Logging, and Intrusion Detection

Today, most web applications will let you attack them forever without taking any action to stop you.

Most will have no idea that you are attacking them and will not even log the details necessary to let

someone know of the attack. It is a rare application today that logs the content of form fields in the

HTTP request, where many attacks can be found.

Design

ESAPI establishes a powerful infrastructure for detecting, handling, logging, and responding to attacks.

[Controller Business
— Functions

l'\' Presentation

‘[_ Layer L ﬁ

Data Layer

LS

FLE\Y

throw new ValidationException("User message”, “Log message”);

4

Enterprise Security

Exceptions — —

V Intrusion

Detector

TODO

oo [

Configurable Thresholds

x

Responses
*Log Intrusion

*Logout User
*Disable Account

204

OWASP ESAPI | 2008

Package org.owasp.esapi.errors

A set of exception classes designed to model the error conditions that frequently arise in enterprise web
applications and web services.

See:

Description

Exception Summary

An AccessControlException should be thrown when a user
AccessControlException attempts to access a resource that they are not authorized
for.

L. . An AuthenticationException should be thrown when
AuthenticationAccountsException

anything goes wrong during login or logout.

L. . . |An AuthenticationException should be thrown when
AuthenticationCredentialsException

anything goes wrong during login or logout.

An AuthenticationException should be thrown when

AuthenticationException . .]
anything goes wrong during login or logout.

An AuthenticationHostException should be thrown when

L. . there is a problem with the host involved with
AuthenticationHostException

authentication, particularly if the host changes
unexpectedly.

An AuthenticationException should be thrown when

AuthenticationLoginException .)]
anything goes wrong during login or logout.

L . An AvailabilityException should be thrown when the
AvailabilityException

availability of a limited resource is in jeopardy.

. . A CertificateException should be thrown for any problems
CertificateException

that arise during processing of digital certificates.

An ExecutorException should be thrown for any problems

EncodingException . .
that occur when encoding or decoding data.

An EncryptionException should be thrown for any problems

EncryptionException .] o .
related to encryption, hashing, or digital signatures.

205

OWASP ESAPI | 2008

. . . EnterpriseSecurityException is the base class for all security
EnterpriseSecurityException

related exceptions.

) An ExecutorException should be thrown for any problems
ExecutorException

that arise during the execution of a system executable.

An AvailabilityException should be thrown when the

IntegrityException I . L
availability of a limited resource is in jeopardy.

An IntrusionException should be thrown anytime an error
IntrusionException condition arises that is likely to be the result of an attack in

progress.

ValidationAvailabilityException

A ValidationException should be thrown to indicate that the
L . data provided by the user or from some other external

ValidationException o
source does not match the validation rules that have been

specified for that data.

ValidationUploadException

206

OWASP ESAPI | 2008

Class EnterpriseSecurityException

org.owasp.esapi.errors

java.lang.Object
L—java.lang.Throwable
L—java.lang.Exception

]
‘—org.owasp.esapi.errors.EnterpriseSecurityException

All Implemented Interfaces:
Serializable

Direct Known Subclasses:
AccessControlException, AuthenticationException, AvailabilityException, CertificateException,

EncodingException, EncryptionException, ExecutorException, IntegrityException,

ValidationException

public class EnterpriseSecurityException

extends Exception

EnterpriseSecurityException is the base class for all security related exceptions. You should pass in the
root cause exception where possible. Constructors for classes extending EnterpriseSecurityException
should be sure to call the appropriate super() method in order to ensure that logging and intrusion
detection occur properly.

All EnterpriseSecurityExceptions have two messages, one for the user and one for the log file. This way,
a message can be shown to the user that doesn't contain sensitive information or unnecessary
implementation details. Meanwhile, all the critical information can be included in the exception so that
it gets logged.

Note that the "logMessage" for ALL EnterpriseSecurityExceptions is logged in the log file. This feature
should be used extensively throughout ESAPI implementations and the result is a fairly complete set of
security log records. ALL EnterpriseSecurityExceptions are also sent to the IntrusionDetector for use in
detecting anomolous patterns of application usage.

207

OWASP ESAPI | 2008

Constructor Summary

EnterpriseSecurityException (String userMessage, String logMessage)

Creates a new instance of EnterpriseSecurityException.

EnterpriseSecurityException (String userMessage, String logMessage, Throwable

cause)

Creates a new instance of EnterpriseSecurityException that includes a root cause
Throwable.

Method Summary

String| getLogMessage ()

Returns a message that is safe to display in logs, but probably not to users

String | getUserMessage ()

Returns message that is safe to display to users

Constructor Detail

EnterpriseSecurityException

public EnterpriseSecurityException(String userMessage,
String logMessage)

Creates a new instance of EnterpriseSecurityException. This exception is automatically logged,
so that simply by using this API, applications will generate an extensive security log. In addition,
this exception is automatically registered with the IntrusionDetector, so that quotas can be
checked.

Parameters:
userMessage - the message displayed to the user

logMessage - the message logged

208

OWASP ESAPI | 2008

EnterpriseSecurityException

public EnterpriseSecurityException(String userMessage,
String logMessage,
Throwable cause)

Creates a new instance of EnterpriseSecurityException that includes a root cause Throwable.

Parameters:
userMessage - the message displayed to the user
logMessage - the message logged

cause - the cause

Method Detail

getUserMessage

public String getUserMessage ()
Returns message that is safe to display to users

Returns:

a String containing a message that is safe to display to users

getLogMessage

public String getLogMessage ()
Returns a message that is safe to display in logs, but probably not to users

Returns:

a String containing a message that is safe to display in logs, but probably not to users

209

OWASP ESAPI | 2008

Class IntrusionException

org.owasp.esapi.errors

java.lang.Object
L—java.lang.Throwable
L—java.lang.Exception
L—java.lang.RuntimeException

L—org.owasp.esapi.errors.IntrusionException

All Implemented Interfaces:
Serializable

public class IntrusionException

extends RuntimeException

An IntrusionException should be thrown anytime an error condition arises that is likely to be the result
of an attack in progress. IntrusionExceptions are handled specially by the IntrusionDetector, which is
equipped to respond by either specially logging the event, logging out the current user, or invalidating
the current user's account.

Unlike other exceptions in the ESAPI, the IntrusionException is a RuntimeException so that it can be
thrown from anywhere and will not require a lot of special exception handling.

Constructor Summary

IntrusionException (String userMessage, String logMessage)

Creates a new instance of IntrusionException.

IntrusionException (String userMessage, String logMessage, Throwable cause)

Instantiates a new intrusion exception.

210

OWASP ESAPI | 2008

Method Summary

String|getLogMessage ()

Returns a String that is safe to display in logs, but probably not to users

String | getUserMessage ()

Returns a String containing a message that is safe to display to users

Constructor Detail

IntrusionException

public IntrusionException(String userMessage,
String logMessage)

Creates a new instance of IntrusionException.
Parameters:

userMessage - the message to display to users

logMessage - the message logged

IntrusionException

public IntrusionException(String userMessage,
String logMessage,
Throwable cause)

Instantiates a new intrusion exception.

Parameters:
userMessage - the message to display to users
logMessage - the message logged

cause - the cause

211

OWASP ESAPI | 2008

Method Detail

getUserMessage

public String getUserMessage ()
Returns a String containing a message that is safe to display to users

Returns:

a String containing a message that is safe to display to users

getLogMessage

public String getLogMessage ()
Returns a String that is safe to display in logs, but probably not to users

Returns:

a String containing a message that is safe to display in logs, but probably not to users

212

OWASP ESAPI | 2008

Interface Logger

org.owasp.esapi

public interface Logger

The Logger interface defines a set of methods that can be used to log security events. Implementors
should use a well established logging library as it is quite difficult to create a high-performance logger.

Xl

The order of logging levels is:

® trace
e debug
* info

® warn
® error

e fatal (the most serious)

In the default implementation, this interface is implemented by JavalLogger.class, which is an inner class
in JavaLogFactory.java

Field Summary

String | FUNCTIONALITY

String | PERFORMANCE

String | SECURITY

String |USABILITY

Method Summary

void|debug(String type, String message)

Log debug.

void|debug (String type, String message, Throwable throwable)

Log debug.

213

OWASP ESAPI | 2008

void

error (String type, String message)

Log error.

void

error (String type, String message, Throwable throwable)

Log error.

void

fatal (String type, String message)

Log critical.

void

fatal (String type, String message, Throwable throwable)

Log critical.

void

info (String type, String message)

Log success.

void

info (String type, String message, Throwable throwable)

Log success.

boolean

isDebugEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to
avoid performing expensive processing

boolean

isErrorEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to
avoid performing expensive processing

boolean

isFatalEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to
avoid performing expensive processing

boolean

isInfoEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to
avoid performing expensive processing

boolean

isTraceEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to
avoid performing expensive processing

214

OWASP ESAPI | 2008

boolean |jisWarningEnabled ()
Allows the caller to determine if messages logged at this level will be discarded, to
avoid performing expensive processing
void|trace(String type, String message)
Log trace.
void|trace (String type, String message, Throwable throwable)
Log trace.
void|warning(String type, String message)
Log warning.
void |warning(String type, String message, Throwable throwable)
Log warning.
Field Detail
SECURITY
public static final String SECURITY
USABILITY
public static final String USABILITY
PERFORMANCE
public static final String PERFORMANCE
FUNCTIONALITY
public static final String FUNCTIONALITY
Method Detail
fatal

void fatal(String type,

String message)

215

OWASP ESAPI | 2008

Log critical.

Parameters:
type - the type of event

message - the message to log to log

fatal

void fatal(String type,
String message,
Throwable throwable)

Log critical.
Parameters:
type - the type of event of event

message - the message to log to log

throwable - the exception thrown

isFatalEnabled

boolean isFatalEnabled()

Allows the caller to determine if messages logged at this level will be discarded, to avoid
performing expensive processing

Returns:

true if fatal messages will be output to the log

debug

void debug(String type,
String message)

216

OWASP ESAPI | 2008

Log debug.

Parameters:
type - the type of event

message - the message to log

debug

void debug(String type,
String message,
Throwable throwable)

Log debug.

Parameters:
type - the type of event
message - the message to log

throwable - the exception thrown

isDebugEnabled

boolean isDebugEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to avoid
performing expensive processing

Returns:

true if debug messages will be output to the log

error

void error (String type,
String message)

217

OWASP ESAPI | 2008

Log error.

Parameters:
type - the type of event

message - the message to log

error

void error (String type,
String message,
Throwable throwable)

Log error.

Parameters:
type - the type of event
message - the message to log

throwable - the exception thrown

isErrorEnabled

boolean isErrorEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to avoid
performing expensive processing

Returns:

true if error messages will be output to the log

info

void info (String type,
String message)

218

OWASP ESAPI | 2008

Log success.

Parameters:
type - the type of event

message - the message to log

info
void info(String type,

String message,
Throwable throwable)

Log success.

Parameters:
type - the type of event
message - the message to log

throwable - the exception thrown

isInfoEnabled

boolean isInfoEnabled()

Allows the caller to determine if messages logged at this level will be discarded, to avoid
performing expensive processing

Returns:

true info if messages will be output to the log

trace

void trace(String type,
String message)

219

OWASP ESAPI | 2008

Log trace.

Parameters:
type - the type of event

message - the message to log

trace

void trace(String type,
String message,
Throwable throwable)

Log trace.

Parameters:
type - the type of event
message - the message to log

throwable - the exception thrown

isTraceEnabled

boolean isTraceEnabled ()

Allows the caller to determine if messages logged at this level will be discarded, to avoid
performing expensive processing

Returns:

true if trace messages will be output to the log

warning

void warning(String type,
String message)

220

OWASP ESAPI | 2008

Log warning.

Parameters:
type - the type of event

message - the message to log

warning

void warning(String type,
String message,
Throwable throwable)

Log warning.

Parameters:
type - the type of event
message - the message to log

throwable - the exception thrown

isWarningEnabled

boolean isWarningEnabled()

Allows the caller to determine if messages logged at this level will be discarded, to avoid
performing expensive processing

Returns:

true if warning messages will be output to the log

221

OWASP ESAPI | 2008

Interface IntrusionDetector

org.owasp.esapi

All Known Implementing Classes:
DefaultintrusionDetector

public interface IntrusionDetector

The IntrusionDetector interface is intended to track security relevant events and identify attack
behavior. The implementation can use as much state as necessary to detect attacks, but note that
storing too much state will burden your system.

The interface is currently designed to accept exceptions as well as custom events. Implementations can
use this stream of information to detect both normal and abnormal behavior.

Method Summary

void |addEvent (String eventName, String logMessage)

Adds the event to the IntrusionDetector.

void|addException (Exception exception)

Adds the exception to the IntrusionDetector.

Method Detail

addException

void addException (Exception exception)
throws IntrusionException

Adds the exception to the IntrusionDetector.

Parameters:
exception - the exception
Throws:

IntrusionException - the intrusion exception

222

OWASP ESAPI | 2008

addEvent

void addEvent (String eventName,
String logMessage)
throws IntrusionException

Adds the event to the IntrusionDetector.

Parameters:

eventName - the event

logMessage - the message to log with the event
Throws:

IntrusionException - the intrusion exception

223

OWASP ESAPI | 2008

Positive Encryption, Hashing, and Random Numbers

Design

TODO

Encrypted
Properties

Encrypto:

TODO

Using strong cryptography
TODO

224

OWASP ESAPI | 2008

Interface Encryptor

org.owasp.esapi

All Known Implementing Classes:
JavaEncryptor

public interface Encryptor

The Encryptor interface provides a set of methods for performing common encryption, random number,
and hashing operations. Implementations should rely on a strong cryptographic implementation, such as
JCE or BouncyCastle. Implementors should take care to ensure that they initialize their implementation
with a strong "master key", and that they protect this secret as much as possible.

xl

Possible future enhancements (depending on feedback) might include:

® encryptFile

Method Summary

String |decrypt (String ciphertext)

Decrypts the provided ciphertext string (encrypted with the encrypt method) and
returns a plaintext string.

String|encrypt (String plaintext)

Encrypts the provided plaintext and returns a ciphertext string.

long |getRelativeTimeStamp (long offset)

Gets an absolute timestamp representing an offset from the current time to be
used by other functions in the library.

long | getTimeStamp ()

Gets a timestamp representing the current date and time to be used by other
functions in the library.

String lhash (String plaintext, String salt)

Returns a string representation of the hash of the provided plaintext and salt.

225

OWASP ESAPI | 2008

String |seal (String data, long timestamp)

Creates a seal that binds a set of data and includes an expiration timestamp.

String|sign(String data)

Create a digital signature for the provided data and return it in a string.

String lunseal (String seal)

Unseals data (created with the seal method) and throws an exception describing
any of the various problems that could exist with a seal, such as an invalid seal format,
expired timestamp, or decryption error.

boolean |verifySeal (String seal)

Verifies a seal (created with the seal method) and throws an exception describing
any of the various problems that could exist with a seal, such as an invalid seal format,
expired timestamp, or data mismatch.

boolean |yerifySignature (String signature, String data)

Verifies a digital signature (created with the sign method) and returns the boolean
result.

Method Detail

hash

String hash(String plaintext,
String salt)
throws EncryptionException

Returns a string representation of the hash of the provided plaintext and salt. The salt helps to
protect against a rainbow table attack by mixing in some extra data with the plaintext. Some
good choices for a salt might be an account name or some other string that is known to the
application but not to an attacker. See this article for more information about hashing as it
pertains to password schemes.

Parameters:
plaintext - the plaintext String to encrypt

salt - the salt

226

OWASP ESAPI | 2008

Returns:
the encrypted hash of 'plaintext' stored as a String
Throws:

EncryptionException - the encryption exception

encrypt

String encrypt (String plaintext)
throws EncryptionException

Encrypts the provided plaintext and returns a ciphertext string.

Parameters:

plaintext - the plaintext String to encrypt
Returns:

the encrypted String
Throws:

EncryptionException - the encryption exception

decrypt

String decrypt (String ciphertext)
throws EncryptionException

Decrypts the provided ciphertext string (encrypted with the encrypt method) and returns a
plaintext string.

Parameters:
ciphertext - the ciphertext
Returns:

the decrypted ciphertext

227

OWASP ESAPI | 2008

Throws:

EncryptionException - the encryption exception

sign

String sign(String data)
throws EncryptionException

Create a digital signature for the provided data and return it in a string.

Parameters:

data - the data to sign
Returns:

the digital signature stored as a String
Throws:

EncryptionException - the encryption exception

verifySignature

boolean verifySignature(String signature,
String data)

Verifies a digital signature (created with the sign method) and returns the boolean result.

Parameters:
signature - the signature to verify
data - the data to verify

Returns:

true, if the signature is verified

228

OWASP ESAPI | 2008

Throws:

EncryptionException - the encryption exception

seal

String seal (String data,
long timestamp)
throws IntegrityException

Creates a seal that binds a set of data and includes an expiration timestamp.

Parameters:
data - the data to seal

timestamp - the absolute expiration date of the data, expressed as seconds since the
epoch

Returns:
the seal

Throws:

IntegrityException

EncryptionException - the encryption exception

unseal

String unseal (String seal)
throws EncryptionException

Unseals data (created with the seal method) and throws an exception describing any of the

various problems that could exist with a seal, such as an invalid seal format, expired timestamp,

or decryption error.

Parameters:

seal - the sealed data

229

OWASP ESAPI | 2008

Returns:
the original data

Throws:

EncryptionException

ExcryptionException - if the unsealed data cannot be retrieved for any reason

verifySeal

boolean verifySeal (String seal)

Verifies a seal (created with the seal method) and throws an exception describing any of the
various problems that could exist with a seal, such as an invalid seal format, expired timestamp,
or data mismatch.

Parameters:
seal - the seal
Returns:

true, if the seal is valid

getRelativeTimeStamp

long getRelativeTimeStamp (long offset)

Gets an absolute timestamp representing an offset from the current time to be used by other
functions in the library.

Parameters:
offset - the offset to add to the current time
Returns:

the absolute timestamp

230

OWASP ESAPI | 2008

getTimeStamp

long getTimeStamp ()

Gets a timestamp representing the current date and time to be used by other functions in the
library.

Returns:

the timestamp

231

OWASP ESAPI | 2008

Interface EncryptedProperties

org.owasp.esapi

All Known Implementing Classes:
DefaultEncryptedProperties

public interface EncryptedProperties

The EncryptedProperties interface represents a properties file where all the data is encrypted before it is
added, and decrypted when it retrieved. This interface can be implemented in a number of ways, the
simplest being extending Properties and overloading the getProperty and setProperty methods.

Method Summary

String|getProperty (String key)

Gets the property value from the encrypted store, decrypts it, and returns the
plaintext value to the caller.

Set | keySet ()

Key set.

void|load (InputStream in)

Load.

String | setProperty (String key, String value)

Encrypts the plaintext property value and stores the ciphertext value in the
encrypted store.

void|store (OutputStream out, String comments)

Store.

Method Detail

getProperty

String getProperty(String key)
throws EncryptionException

232

OWASP ESAPI | 2008

Gets the property value from the encrypted store, decrypts it, and returns the plaintext value to
the caller.

Parameters:

key - the key
Returns:

the decrypted property value
Throws:

EncryptionException - the encryption exception

setProperty

String setProperty(String key,
String value)
throws EncryptionException

Encrypts the plaintext property value and stores the ciphertext value in the encrypted store.

Parameters:

key - the key

value - the value
Returns:

the encrypted property value
Throws:

EncryptionException - the encryption exception

keySet

Set keySet ()

Key set.

233

OWASP ESAPI | 2008

Returns:

the set

load

void load(InputStream in)
throws IOException

Load.

Parameters:
in-thein
Throws:

IOException - Signals that an 1/0O exception has occurred.

store

void store (OutputStream out,
String comments)
throws IOException

Store.

Parameters:

out - the out

comments - the comments
Throws:

IOException - Signals that an I/O exception has occurred.

234

OWASP ESAPI | 2008

Interface Randomizer

org.owasp.esapi

All Known Implementing Classes:
DefaultRandomizer

public interface Randomizer

The IRandomizer interface defines a set of methods for creating cryptographically random numbers and
strings. Implementers should be sure to use a strong cryptographic implementation, such as the JCE or
BouncyCastle. Weak sources of randomness can undermine a wide variety of security mechanisms.

Method Summary

boolean | getRandomBoolean ()

Returns a random boolean.

String |getRandomFilename (String extension)

Returns an unguessable random filename with the specified extension.

String | getRandomGUID ()

Generates a random GUID.

int |getRandomInteger (int min, int max)

Gets the random integer.

long | getRandomLong ()

Gets the random long.

float |getRandomReal (float min, float max)

Gets the random real.

String |getRandomString (int length, char[] characterSet)

Gets a random string of a desired length and character set.

235

OWASP ESAPI

2008

Method Detail

getRandomString

String getRandomString(int length,
char[] characterSet)

Gets a random string of a desired length and character set.

Parameters:
length - the length of the string
characterset - the character set
Returns:

the random string

getRandomBoolean

boolean getRandomBoolean ()
Returns a random boolean.

Returns:

true or false, randomly

getRandomlinteger

int getRandomInteger (int min,
int max)

Gets the random integer.
Parameters:

min - the minimum integer that will be returned

max - the maximum integer that will be returned

236

OWASP ESAPI | 2008

Returns:

the random integer

getRandomLong

long getRandomLong ()
Gets the random long.

Returns:

the random long

getRandomFilename

String getRandomFilename (String extension)
Returns an unguessable random filename with the specified extension.

Parameters:
extension - extension to add to the random filename
Returns:

a random unguessable filename ending with the specified extension

getRandomReal

float getRandomReal (float min,
float max)

Gets the random real.
Parameters:

min - the minimum real number that will be returned

max - the maximum real number that will be returned

237

OWASP ESAPI | 2008

Returns:

the random real

getRandomGUID

String getRandomGUID ()
throws EncryptionException

Generates a random GUID.

Returns:

the GUID

Throws:

EncryptionException

238

OWASP ESAPI | 2008

Positive Communication Security

ESAPI does not provide much in the way of communication security. Unfortunately, the use of secure
connections is typically out of the reach of software developers.

ESAPI does provide a simple function to check whether the channel used is secure or not.

239

OWASP ESAPI | 2008

Positive HTTP Security

Service Challenges (pattern?)

240

OWASP ESAPI | 2008

Positive Security Configuration

TODO

241

OWASP ESAPI | 2008

Interface SecurityConfiguration

org.owasp.esapi

All Known Implementing Classes:
DefaultSecurityConfiguration

public interface SecurityConfiguration

The SecurityConfiguration interface stores all configuration information that directs the behavior of the
ESAPI implementation.

l

Protection of this configuration information is critical to the secure operation of the application using
the ESAPI. You should use operating system access controls to limit access to wherever the configuration
information is stored. Please note that adding another layer of encryption does not make the attackers
job much more difficult. Somewhere there must be a master "secret" that is stored unencrypted on the
application platform. Creating another layer of indirection doesn't provide any real additional security.

Nested Class Summary

static | SecurityConfiguration.Threshold
class

Models a simple threshold as a count and an interval, along with a set of actions
to take if the threshold is exceeded.

Method Summary

List |getAllowedFileExtensions ()

Gets the allowed file extensions.

int |getAllowedFileUploadSize ()

Gets the allowed file upload size.

int |getAllowedLoginAttempts ()

Gets the allowed login attempts.

242

OWASP ESAPI | 2008

String

getApplicationName ()

Gets the application name, used for logging

String

getCharacterEncoding ()

Gets the character encoding.

String

getDigitalSignatureAlgorithm()

Gets the digital signature algorithm.

String

getEncryptionAlgorithm()

Gets the encryption algorithm.

String

getHashAlgorithm()

Gets the hashing algorithm.

File

getKexstore()

Gets the keystore.

boolean

getLogEncodingRequired ()

Returns whether HTML entity encoding should be applied to

log entries.

char (]

getMasterPassword ()

Gets the master password.

bytel]

getMasterSalt ()

Gets the master salt.

int

getMaxOldPasswordHashes ()

Gets the max old password hashes.

String

getPasswordParameterName ()

Gets the password parameter name.

SecurityConfiguration.Threshold

getQuota(String eventName)

Gets an intrusion detection Quota.

String

getRandomAlgorithm ()

Gets the random number generation algorithm.

243

OWASP ESAPI | 2008

long

getRememberTokenDuration ()

Gets the time window allowed for the remember token in
milliseconds.

String

getResourceDirectory ()

Gets the ESAPI resource directory as a String.

String

getResponseContentType ()

Gets the content-type set for responses.

String

getUsernameParameterName ()

Gets the username parameter name.

void

setResourceDirectory (String dir)

Sets the ESAPI resource directory.

Method Detail

getApplicationName

String getApplicationName ()

Gets the application name, used for logging

Returns:

the application name

getMasterPassword

char[] getMasterPassword()

Gets the master password.

Returns:

the master password

244

OWASP ESAPI | 2008

getKeystore

File getKeystore()
Gets the keystore.

Returns:

the keystore

getMasterSalt

byte[] getMasterSalt ()
Gets the master salt.

Returns:

the master salt

getAllowedFileExtensions

List getAllowedFileExtensions ()
Gets the allowed file extensions.

Returns:

the allowed file extensions

getAllowedFileUploadSize

int getAllowedFileUploadSize ()
Gets the allowed file upload size.

Returns:

the allowed file upload size

245

OWASP ESAPI

2008

getPasswordParameterName

String getPasswordParameterName ()
Gets the password parameter name.

Returns:

the password parameter name

getUsernameParameterName

String getUsernameParameterName ()
Gets the username parameter name.

Returns:

the username parameter name

getEncryptionAlgorithm

String getEncryptionAlgorithm()
Gets the encryption algorithm.

Returns:

the encryption algorithm

getHashAlgorithm

String getHashAlgorithm()

Gets the hashing algorithm.

246

OWASP ESAPI | 2008

Returns:

the hashing algorithm

getCharacterEncoding

String getCharacterEncoding()
Gets the character encoding.

Returns:

encoding character name

getDigitalSignatureAlgorithm

String getDigitalSignatureAlgorithm()
Gets the digital signature algorithm.

Returns:

the digital signature algorithm

getRandomAlgorithm

String getRandomAlgorithm()
Gets the random number generation algorithm.

Returns:

random number generation algorithm

getAllowedLoginAttempts

int getAllowedLoginAttempts ()

247

OWASP ESAPI | 2008

Gets the allowed login attempts.

Returns:

the allowed login attempts

getMaxOldPasswordHashes

int getMaxOldPasswordHashes ()
Gets the max old password hashes.

Returns:

the max old password hashes

getQuota

SecurityConfiguration.Threshold getQuota (String eventName)

Gets an intrusion detection Quota.

Parameters:
eventName - the event whose quota is desired
Returns:

the matching Quota for eventName

getResourceDirectory

String getResourceDirectory ()
Gets the ESAPI resource directory as a String.

Returns:

the ESAPI resource directory

248

OWASP ESAPI | 2008

setResourceDirectory

void setResourceDirectory(String dir)
Sets the ESAPI resource directory.

Parameters:

dir - location of the resource directory

getResponseContentType

String getResponseContentType ()

Gets the content-type set for responses.

getRememberTokenDuration

long getRememberTokenDuration ()

Gets the time window allowed for the remember token in milliseconds.

getLogEncodingRequired

boolean getLogEncodingRequired()

Returns whether HTML entity encoding should be applied to log entries.

249

OWASP ESAPI | 2008

A Note on “Rich Internet Applications”

Most new applications are distributed over the Internet and have client and server portions. This makes
the term “Rich Internet Applications” a bit strange, but whatever we call them, this form of application
is here to stay. There are a number of interesting security challenges with RIA.

Introduction

“Rich Internet Application” or “RIA” is what we call applications that run inside your browser or on your
desktop that interact with web applications or web services. RIA platforms include Javascript (Ajax),
Adobe AIR, Microsoft Silverlight, Java applets, and Java JFX. They look pretty, but should we trust these
applications? These applications are downloaded from websites — some good, some bad, and some
already compromised. So what protects users and server applications from a renegade RIA?

To get a good picture of RIA security, think of your browser as a multi-user operating system that is
running your RIA along with many other hostile programs. There are two key security protections that
limit what an RIA can do. They are known as the “same origin policy” and the “sandbox.” Without these
protections, a rogue RIA could access anything you see on the web and could also ravage your
computer. Unfortunately, both policies have a long history of problems and they were never designed
to handle RIAs.

The “Same Origin Policy”

If two sites share the same protocol (“http”), domain (“www.foo.com”), and port (80), we say they are
from the “same origin.” Browsers are supposed to restrict RIA from accessing anything that is not from
the same origin. As the number of data structures and services in the browser increases, there’s an
explosion of places where the same origin policy must be applied. You can test it with “DOM Checker”
which runs almost 1,400 test cases. The latest Internet Explorer fails 13 of these checks and the latest
Firefox fails 25. But even if enforcement were perfect, we would still have to deal with “cross-site”
problems like cross-site request forgery (CSRF) and cross-site scripting (XSS) which bypass the policy.

The “Sandbox”

If the same origin policy is like walls within the browser, then the sandbox is the floor, protecting the
operating system from malicious RIAs. The sandbox is also absolutely critical for RIA. Without it,
malicious RIAs could compromise the entire operating system and all the data and applications on it.
The sandbox is also quite complex, as the browser does have legitimate need to access local files and
launch local executables.

250

OWASP ESAPI | 2008

Plugin Policy

Getting these policies implemented would be hard enough once. Unfortunately, each RIA framework
has its own environment that installs into the browser, and they can all communicate through the DOM.
Each plugin is responsible for enforcing its own version of the same origin and sandbox policies.

There is also quite a lot of pressure on the folks building RIA platforms to allow even more cross-domain
and cross-sandbox functionality. New use cases for sharing data and creating “mashups” are soon going
to finally stretch these policies that were never intended for anything more than Web 1.0 past the
breaking point.

Recommendations

First, be sure that you understand exactly what policies your RIA framework is trying to enforce. You
may find that it simply doesn’t provide the security controls you thought it did. There is absolutely no
way to create a secure application without understanding what security the environment provides.

For now, recognize that your RIA is going to be running in a hostile environment with sketchy walls and a
rotten floor. When you design your RIA, make sure that critical security decisions (particularly
authentication and access control) are not made in the client-side code. These decisions should be made
on the server side, where such decisions and code are safe from tampering. You should also minimize
the data that is stored on the client, and provide a way to clear out the data as soon as it is no longer
needed. Input validation and encoding are, as always, critical security controls that you will need to
implement carefully.

Remember, these RIA platforms and frameworks are still very new. They all have lots of parsers and
interpreters in them, and they have to enforce very complex security policies. The more you can
minimize the number of technologies you are using, the better for security.

Wrapup

Don't think of security as restricting what RIA can do. The same origin policy and the sandbox are the
security mechanisms that have allowed us to have such a diverse Internet available. We need to
continue to enhance security controls for RIA so that we can take advantage of their awesome features.
With so much demand for RIAs that can access multiple data sources, we need to bring the same origin
policy up to the application layer and make decisions based on the true “originator” of services and
data, not just the last “origin” they happened to come from.

AJAX

Fundamentally, there’s nothing terribly new about Ajax security, but we need to do some work to apply
all those good old security principles to this new technology. Unfortunately, there are an awful lot of
devils in the details.

251

OWASP ESAPI | 2008

One major security challenge for Ajax applications is that moving your code to the client involves a ton
of data formats, protocols, parsers, and interpreters. These include Javascript, VBScript, Flash, JSON,
XML, REST, XmlHttpRequest, XSLT, CSS, and HTML in addition to your existing server side technologies.
As if that wasn’t enough, each of the Ajax frameworks has its own data formats and custom framework
formats.

An application’s “attack surface” approximates the ways in which an attacker can cause damage to your
application or its users. The more technologies you use, the bigger your attack surface. To help hold the
line on your Ajax application’s attack surface, we offer the following rules.

Know what runs where

Ajax is making it increasingly difficult to be sure where your code is going to run. Take the Google Web
Toolkit (GWT) for example. You program in Java and the environment takes some of that code and
compiles it to Javascript that runs on the client. If you make a mistake and implement authentication,
access control, validation, or other security checks in the code that runs on the client, an attacker can
simply bypass them with Firebug.

Imagine you’ve carefully coded rules to be sure that administrative functions are never shown to
ordinary users. This sounds good, but you forgot that the user interface code is running on the client. So
the attacker uses Firebug to invoke the administrative functions. If the proper checks aren’t in place on
the server side, the attacker just gained administrative rights.

Many Rich Internet Application (RIA) frameworks also have this issue. The solution is to be very careful
about making the client-server boundary clear.

Keep data separate from code

Hackers frequently use a technique called “injection” to bury commands inside innocent-looking data
and getting interpreters to execute their commands for them. This simple trick is at the heart of many
security attacks including SQL injection, command injection, LDAP injection, XSS, and buffer overflows.
Preventing injection in a target rich environment like the modern browser takes discipline.

The key to stopping injection attacks is never executing data that might contain code. But with Ajax, lots
of data and code get passed around and mashed together in the DOM. There has never been a data
structure that mixes together code and data more than modern HTML. So be very careful with data that
might include user input. Assume it’s an attack unless you’ve carefully canonicalized, validated, and
properly encoded.

Imagine you’re invoking a REST interface and the request contains user data. The response you receive
is a JSON string that includes that user data. Don’t eval that string until you’re sure that there can’t be
anything but safe data in there. Even just adding that data to the DOM might be enough to get it to
execute if there’s Javascript code buried in there.

252

OWASP ESAPI | 2008

Beware encoding

Encoding makes everything more complicated. Attackers can hide their attacks inside innocent looking
data by encoding it. Backend systems may recognize the encoding used and execute the attack. Or they
may decode the attack and pass it on to a system that’s vulnerable to it.

Attackers may use multiple different encoding schemes, or even double encode to tunnel their attacks
through innocent systems. There are dozens and dozens of encoding schemes and no way to tell which
schemes will be recognized by the interpreters you’re using. This makes recognizing attacks very
difficult, if not impossible.

Every time you send or receive data both sides have to know the intended encoding. Never try to make
a “best effort” attempt to guess the right encoding. You can’t prevent an attacker from sending data
with some other encoding through the channel, but you don’t have to execute it. A few examples:

Set HTTP encoding in header:

Content-Type: text/xml, charset=utf-8

Or use a “meta” tag in the HTML:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

Set XML encoding in the first line of XML documents:

<?xml version="1.0" encoding="utf-8"?>

Remember

Your Ajax application’s attack surface is under your control. The choices you make can drastically affect
the size of your application’s attack surface. Be sure you ask questions about where your code runs,
what data formats and protocols are involved, and which parsers and interpreters get invoked. And
most importantly, be sure to nail down how you’re going to keep code and data separate.

253

THE ICONS BELOW REPRESENT WHAT OTHER
VERSIONS ARE AVAILABLE IN PRINT FOR
THIS BOOK TITLE.

ALPHA: "Alpha Quality" book content is a working draft.
Content is very rough and in development until the next
level of publishing.

BETA: "Beta Quality” book content is the next highest level.

Content is still in development until the next publishing.

RELEASE: “Release Quality"” book content is the
highest level of quality in a book title's lifecycle and
is a final product.

ALPHA BETA RELEASE

OWASP

The Open Web Application Security Project

YOU ARE FREE:

to Share — to copy, distribute
and transmit the work

to Remix — to adapt the work

®@

UNDER THE FOLLOWING CONDITIONS:

Attribution. You must attribute
the work in the manner specified
by the author or licensor (but
naot in any way that suggests that
they endorse you or your use of
the work).

Share Alike. If you alter, transform,
or build upon this work, you may
distribute the resulting work only
under the same, similar or a
compatible license.

© ©

The Open Web Application Security Project (OWASP) is a worldwide free and open community focused
on improving the security of application software. Our mission is to make application security "visible,”
so that people and organizations can make informed decisions about application security risks. Every-
one is free to participate in OWASP and all of our materials are available under a free and open software
license. The OWASP Foundation is a 501c3 not-for-profit charitable organization that ensures the ongoing

availability and support for our work.

