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it’s really up to you to determine how you’re going to master and use it.” 
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https://docs.microsoft.com/en-us/azure/architecture/patterns/federated-identity

Federated Identity pattern
“Delegate authentication to an external identity provider”



https://jwt.io



Security Assertion Markup Language (SAML)

Signed

Audience

“XML-based framework for communicating user authentication, entitlement, and attribute information”

And more…
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User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

No password reset (or password sharing ;-) is

required to “act” as the target user

Very sensitive functionality (Broken Authorization?)

No “common strategy”
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HAT IF

…
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Request III:
POST /api/authentication/token HTTP/1.1 

Host: prod.crazy.net 

[…]grant_type=password&username=admin&password=OMRDSPWTM2X6KNM3KYHINET6MHL3XHN
LYORN3VOK7EFJBFWXHX54HFLQRF7XSVEGOJGZ6G4YHTMPNEBTKKIEGLSC4WUCTVDV[redacted]

Response III:
HTTP/1.1 200 OK 

Server: Microsoft-IIS/8.5 

Connection: close 

Content-Length: 1169 

{"access_token":"RssDFG44gGfDs6548Ja_FKcgNaSV-SVHCt49OXxL2FOkALjeD-
Aq3dOEH4ffdsfdRFCGU5456DDDuJCwtUo6kj_7IR81-
MQ4cbOARDDdfGER345VHcYxexLGS8JMzEscPJBe[redacted] 
“,”token_type”:”bearer”,"expires_in":1209599,"userName":"admin",".issued":[…]



User Impersonation

Case Number One - Conclusion

Passkey WTF? 

Not Bound to the User for whom  

it was generated 

Testing and Production are Sharing 

The Decryption Keys 

Code will grant access if Password 

Or Passkey are correct  

(same parameter name)





Bypassing the Auth0 Authentication Process

Case Number Two (0/5)

With more than 2000 enterprise customers and managing 42 million logins 

every single day, Auth0 is one of the biggest Identity Platforms (auth0.com)

I found an Authentication Bypass vulnerability that affected any 

application using Auth0 in the context of an independent non-profitable 

research

The described vulnerability would allow malicious users to run cross-

company attacks, allowing them to access any portal / application 

protected with Auth0 with minimum knowledge

I will demonstrate the flaw attacking the Auth0 Management Console 

(used as one exploitable example application)
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We couldn’t modify this payload because it had been signed, but we could 
try to reuse it. 

So, armed with a proxy, we captured a valid “wresult” JWT from the 
DEV environment and injected it into a login flow in PROD, and it 
worked! We were able to access the account for that user in the 
production environment.

The question is then, are DEV and PROD environments using 
the same signing keys / certificates? What else is wrong?

Jump through different apps/envs within the organization?????!!!!!

Think of a “user_id” value that identifies an internal user, and multiple 
applications that rely on that identifier. 

We could now access all of them even when without valid credentials.



What else can go wrong?



Bypassing the Auth0 Authentication Process - Attacking the Auth Management Console

Case Number Two (3/5)

“wresult” parameter

In order to hijack an account, we would need to forge a valid JWT with that user’s information.

 

We don’t have access to:

1. the “user_id” (not trivial like an email address or an incremental integer, but for other 

applications this could be the case) —> TENANT INVITE, ACCEPT, DELETE 

2.the signing key (or private certificate)



Case Number Two (4/5)

We found a functionality that could be used (or abused) as an oracle to generate valid 

JWTs with arbitrary payloads

 

The Management Console allows you to create Database Action Scripts that are executed 

every time a user logs in. We created a simple “Database Action Script” that returned the 

needed values for the profile, signed ;-))

Bypassing the Auth0 Authentication Process - Attacking the Auth Management Console

So, now we had the ability to forge a valid signed JWT with 

the “email” and “user_id” of the victim.

What about the AUD?

?



Case Number Two (5/5)
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Machine Keys? 

Slot swapping?

Staging Production
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Case Number Three (3/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

MS Azure 

All WebApps Deployed in App Services, with No specific configuration 
(Web.config), within the Same Resource Group (Slots config!)  

=  
Will Share Machine Keys 

IIS 

All WebApps Deployed, with No specific configuration (Web.config), 
Same or Different Application Pool  

=  
Will Share Machine Keys 
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Case Number Three (4/6)

Standard Authentication Flow
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Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (6/6)

Modified Authentication Flow Try 2

  <audienceUris> 

        <add value=“http://PROD:port/“ /> 

      </audienceUris>

Injected “wtrealm” 

here



Case Number Three - Conclusion
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

https://msdn.microsoft.com/en-us/library/w8h3skw9(v=vs.85).aspx

<machineKey 

validationKey="AutoGenerate,IsolateApps" 

decryptionKey="AutoGenerate,IsolateApps" 

validation="SHA1" 

/>

Resource Groups?

No Slot Swapping?



Conclusions

★ Isolate and Segregate Environments


★ DO NOT share Secrets


★ Verify the Audience of Claims


★ Educate Developers and SysAdmins 

about Security (crypto, unicorns, etc.)


★ Understand what you are doing in the 

“Cloud” (eg. Azure Governance)


★ Run Penetration Tests

https://docs.microsoft.com/en-us/azure/security/governance-in-azure
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