
Nahuel Grisolía

Cinta Infinita, Founder / CEO

@cintainfinita  

nahuel@cintainfinita.com.ar

Breaking Authentication and Segregation of

Production and Non-Production Environments

Knocking Down the Big Door

Buenos Aires, 27 de Abril 2018

§ Cinta Infinita Founder and CEO

§ (Web) Application Security specialist & enthusiast

§ Many vulnerabilities discovered in Open Source and
Commercial software: Vmware,Websense, OSSIM,Cacti, McAfee,
OracleVM,etc.

§ Gadgets and Electronics Lover (RFID!)

§ http://ar.linkedin.com/in/nahuelgrisolia

§ http://cintainfinita.com

§ http://www.exploit-db.com/author/?a=2008

§ http://www.proxmark.org/forum/profile.php?id=3000

“The highest goal in life is to inquire and create”

“Education is really aimed at helping students get to the point where they

can learn on their own”

“It’s you the learner who is going to achieve in the course of education and

it’s really up to you to determine how you’re going to master and use it.”

- Noam Chomsky

MOTIVATION
“The Purpose of Education” - Enlightenment Sense

“The highest goal in life is to inquire and create”

“Education is really aimed at helping students get to the point where they

can learn on their own”

“It’s you the learner who is going to achieve in the course of education and

it’s really up to you to determine how you’re going to master and use it.”

- Noam Chomsky

MOTIVATION
“The Purpose of Education” - Enlightenment Sense

“The highest goal in life is to inquire and create”

“Education is really aimed at helping students get to the point where they

can learn on their own”

“It’s you the learner who is going to achieve in the course of education and

it’s really up to you to determine how you’re going to master and use it.”

- Noam Chomsky

MOTIVATION
“The Purpose of Education” - Enlightenment Sense

Introduction (boring but necessary)

Introduction (boring but necessary)

Case 1: Be careful while

impersonating users. Seriously

Introduction (boring but necessary)

Case 1: Be careful while

impersonating users. Seriously

Case 2: Authentication Bypass

vulnerability in the Auth0 platform

Introduction (boring but necessary)

Case 1: Be careful while

impersonating users. Seriously

Case 2: Authentication Bypass

vulnerability in the Auth0 platform

Case 3: Observations in MS Azure and

IIS installations running .NET Web

Applications using SAML

Authentication

Machine Keys? Is that a new rock

band?

Introduction (boring but necessary)

Case 1: Be careful while

impersonating users. Seriously

Case 2: Authentication Bypass

vulnerability in the Auth0 platform

Case 3: Observations in MS Azure and

IIS installations running .NET Web

Applications using SAML

Authentication

Machine Keys? Is that a new rock

band?

Final Conclusions & Recommendations

Introduction (boring but necessary)

Case 1: Be careful while

impersonating users. Seriously

Case 2: Authentication Bypass

vulnerability in the Auth0 platform

Case 3: Observations in MS Azure and

IIS installations running .NET Web

Applications using SAML

Authentication

Machine Keys? Is that a new rock

band?

Final Conclusions & Recommendations

Authentication (AuthN)

Restrictions on Who (or What) can Access a System

Authentication (AuthN)

Restrictions on Who (or What) can Access a System

Authorization (AuthZ)

Restrictions on Actions of Authenticated Users

We usually Pentest in  

Staging / Development

Environments

Shared Secrets? Which secrets exactly?

Shared Databases? 

Full Isolation / Complete Segregation

 between Environments?

We usually Pentest in  

Staging / Development

Environments

Shared Secrets? Which secrets exactly?

Shared Databases? 

Full Isolation / Complete Segregation

 between Environments?

https://docs.microsoft.com/en-us/azure/architecture/patterns/federated-identity

Federated Identity pattern
“Delegate authentication to an external identity provider”

https://jwt.io

Security Assertion Markup Language (SAML)

Signed

Audience

“XML-based framework for communicating user authentication, entitlement, and attribute information”

And more…

User Impersonation

Case Number One (1/3)

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

No password reset (or password sharing ;-) is

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

No password reset (or password sharing ;-) is

required to “act” as the target user

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

No password reset (or password sharing ;-) is

required to “act” as the target user

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

No password reset (or password sharing ;-) is

required to “act” as the target user

Very sensitive functionality (Broken Authorization?)

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

No password reset (or password sharing ;-) is

required to “act” as the target user

Very sensitive functionality (Broken Authorization?)

User Impersonation

Case Number One (1/3)

Usually only for Super Users or Full Site Administrators

No password reset (or password sharing ;-) is

required to “act” as the target user

Very sensitive functionality (Broken Authorization?)

No “common strategy”

User Impersonation

Case Number One (2/3)

User Impersonation

Case Number One (2/3)

Request:
POST /api/user/1753/impersonate HTTP1.1

Host: test.crazy.net

[…]

Response:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 16 Jan 2018 15:28:17 GMT

Connection: close

Content-Length: 245

{“username":"1753_user","passkey":"OMRDSPWTM
2X6KNM3KYHINET6MHL3XHNLYORN3VOK7EFJBFWXHX54H
FLQRF7XSVEGOJGZ6G4YHTMPNEBTKKIEGLSC4WUCTVDV[
redacted]"}

User Impersonation

Case Number One (2/3)

Request:
POST /api/user/1753/impersonate HTTP1.1

Host: test.crazy.net

[…]

Response:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 16 Jan 2018 15:28:17 GMT

Connection: close

Content-Length: 245

{“username":"1753_user","passkey":"OMRDSPWTM
2X6KNM3KYHINET6MHL3XHNLYORN3VOK7EFJBFWXHX54H
FLQRF7XSVEGOJGZ6G4YHTMPNEBTKKIEGLSC4WUCTVDV[
redacted]"}

Request II:
POST /api/authentication/token HTTP/1.1

Host: test.crazy.net

[…]grant_type=password&username=admin&passw
ord=OMRDSPWTM2X6KNM3KYHINET6MHL3XHNLYORN3VO
K7EFJBFWXHX54HFLQRF7XSVEGOJGZ6G4YHTMPNEBTKK
IEGLSC4WUCTVDV[redacted]

Response II:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 16 Jan 2018 15:31:12 GMT

Connection: close

Content-Length: 1169

{"access_token":"dxjPlvTBeSg9ztuzMq8Ja_FKcg
NaSV-SVHCt49OXxL2FOkALjeD-
Aq3dOEH4fnOgADjfiHgmmOsChuAkXY2OQbrlUnZfotf
KePcLhcY8BJxcJukPlHuJCwtUo6kj_7IR81-
MQ4cbOARDG9N81FUaP45VHcYxexLGS8JMzEscPJBe[r
edacted]
","token_type":"bearer","expires_in":
1209599,"userName":"admin",".issued":"Tue,
16 Jan 2018 15:31:12 GMT",".expires":"Tue,
30 Jan 2018 15:31:12 GMT"}

User Impersonation

Case Number One (2/3)

Request:
POST /api/user/1753/impersonate HTTP1.1

Host: test.crazy.net

[…]

Response:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 16 Jan 2018 15:28:17 GMT

Connection: close

Content-Length: 245

{“username":"1753_user","passkey":"OMRDSPWTM
2X6KNM3KYHINET6MHL3XHNLYORN3VOK7EFJBFWXHX54H
FLQRF7XSVEGOJGZ6G4YHTMPNEBTKKIEGLSC4WUCTVDV[
redacted]"}

Request II:
POST /api/authentication/token HTTP/1.1

Host: test.crazy.net

[…]grant_type=password&username=admin&passw
ord=OMRDSPWTM2X6KNM3KYHINET6MHL3XHNLYORN3VO
K7EFJBFWXHX54HFLQRF7XSVEGOJGZ6G4YHTMPNEBTKK
IEGLSC4WUCTVDV[redacted]

Response II:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 16 Jan 2018 15:31:12 GMT

Connection: close

Content-Length: 1169

{"access_token":"dxjPlvTBeSg9ztuzMq8Ja_FKcg
NaSV-SVHCt49OXxL2FOkALjeD-
Aq3dOEH4fnOgADjfiHgmmOsChuAkXY2OQbrlUnZfotf
KePcLhcY8BJxcJukPlHuJCwtUo6kj_7IR81-
MQ4cbOARDG9N81FUaP45VHcYxexLGS8JMzEscPJBe[r
edacted]
","token_type":"bearer","expires_in":
1209599,"userName":"admin",".issued":"Tue,
16 Jan 2018 15:31:12 GMT",".expires":"Tue,
30 Jan 2018 15:31:12 GMT"}

OK, this is bad, but…

User Impersonation

Case Number One (2/3)

Request:
POST /api/user/1753/impersonate HTTP1.1

Host: test.crazy.net

[…]

Response:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 16 Jan 2018 15:28:17 GMT

Connection: close

Content-Length: 245

{“username":"1753_user","passkey":"OMRDSPWTM
2X6KNM3KYHINET6MHL3XHNLYORN3VOK7EFJBFWXHX54H
FLQRF7XSVEGOJGZ6G4YHTMPNEBTKKIEGLSC4WUCTVDV[
redacted]"}

Request II:
POST /api/authentication/token HTTP/1.1

Host: test.crazy.net

[…]grant_type=password&username=admin&passw
ord=OMRDSPWTM2X6KNM3KYHINET6MHL3XHNLYORN3VO
K7EFJBFWXHX54HFLQRF7XSVEGOJGZ6G4YHTMPNEBTKK
IEGLSC4WUCTVDV[redacted]

Response II:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 16 Jan 2018 15:31:12 GMT

Connection: close

Content-Length: 1169

{"access_token":"dxjPlvTBeSg9ztuzMq8Ja_FKcg
NaSV-SVHCt49OXxL2FOkALjeD-
Aq3dOEH4fnOgADjfiHgmmOsChuAkXY2OQbrlUnZfotf
KePcLhcY8BJxcJukPlHuJCwtUo6kj_7IR81-
MQ4cbOARDG9N81FUaP45VHcYxexLGS8JMzEscPJBe[r
edacted]
","token_type":"bearer","expires_in":
1209599,"userName":"admin",".issued":"Tue,
16 Jan 2018 15:31:12 GMT",".expires":"Tue,
30 Jan 2018 15:31:12 GMT"}

OK, this is bad, but…

W
HAT IF

…

User Impersonation

Case Number One (3/3)

User Impersonation

Case Number One (3/3)

Request III:
POST /api/authentication/token HTTP/1.1

Host: prod.crazy.net

[…]grant_type=password&username=admin&password=OMRDSPWTM2X6KNM3KYHINET6MHL3XHN
LYORN3VOK7EFJBFWXHX54HFLQRF7XSVEGOJGZ6G4YHTMPNEBTKKIEGLSC4WUCTVDV[redacted]

Response III:
HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Connection: close

Content-Length: 1169

{"access_token":"RssDFG44gGfDs6548Ja_FKcgNaSV-SVHCt49OXxL2FOkALjeD-
Aq3dOEH4ffdsfdRFCGU5456DDDuJCwtUo6kj_7IR81-
MQ4cbOARDDdfGER345VHcYxexLGS8JMzEscPJBe[redacted]
“,”token_type”:”bearer”,"expires_in":1209599,"userName":"admin",".issued":[…]

User Impersonation

Case Number One - Conclusion

Passkey WTF?

Not Bound to the User for whom

it was generated

Testing and Production are Sharing

The Decryption Keys

Code will grant access if Password

Or Passkey are correct

(same parameter name)

Bypassing the Auth0 Authentication Process

Case Number Two (0/5)

With more than 2000 enterprise customers and managing 42 million logins

every single day, Auth0 is one of the biggest Identity Platforms (auth0.com)

I found an Authentication Bypass vulnerability that affected any

application using Auth0 in the context of an independent non-profitable

research

The described vulnerability would allow malicious users to run cross-

company attacks, allowing them to access any portal / application

protected with Auth0 with minimum knowledge

I will demonstrate the flaw attacking the Auth0 Management Console

(used as one exploitable example application)

Bypassing the Auth0 Authentication Process

Case Number Two (1/5)

The story begins in September 2017, while I was pentesting an application which we will call “SecureApp”.  

The application was already in production but we were testing in a DEV environment, and it used Auth0 for

authentication.

The authentication flow looked like the following:

Bypassing the Auth0 Authentication Process

Case Number Two (1/5)

The story begins in September 2017, while I was pentesting an application which we will call “SecureApp”.  

The application was already in production but we were testing in a DEV environment, and it used Auth0 for

authentication.

The authentication flow looked like the following:

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

So, armed with a proxy, we captured a valid “wresult” JWT from the
DEV environment and injected it into a login flow in PROD, and it
worked! We were able to access the account for that user in the
production environment.

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

So, armed with a proxy, we captured a valid “wresult” JWT from the
DEV environment and injected it into a login flow in PROD, and it
worked! We were able to access the account for that user in the
production environment.

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

So, armed with a proxy, we captured a valid “wresult” JWT from the
DEV environment and injected it into a login flow in PROD, and it
worked! We were able to access the account for that user in the
production environment.

The question is then, are DEV and PROD environments using
the same signing keys / certificates? What else is wrong?

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

So, armed with a proxy, we captured a valid “wresult” JWT from the
DEV environment and injected it into a login flow in PROD, and it
worked! We were able to access the account for that user in the
production environment.

The question is then, are DEV and PROD environments using
the same signing keys / certificates? What else is wrong?

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

So, armed with a proxy, we captured a valid “wresult” JWT from the
DEV environment and injected it into a login flow in PROD, and it
worked! We were able to access the account for that user in the
production environment.

The question is then, are DEV and PROD environments using
the same signing keys / certificates? What else is wrong?

Jump through different apps/envs within the organization?????!!!!!

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

So, armed with a proxy, we captured a valid “wresult” JWT from the
DEV environment and injected it into a login flow in PROD, and it
worked! We were able to access the account for that user in the
production environment.

The question is then, are DEV and PROD environments using
the same signing keys / certificates? What else is wrong?

Jump through different apps/envs within the organization?????!!!!!

Think of a “user_id” value that identifies an internal user, and multiple
applications that rely on that identifier.

Bypassing the Auth0 Authentication Process

Case Number Two (2/5)

We couldn’t modify this payload because it had been signed, but we could
try to reuse it.

So, armed with a proxy, we captured a valid “wresult” JWT from the
DEV environment and injected it into a login flow in PROD, and it
worked! We were able to access the account for that user in the
production environment.

The question is then, are DEV and PROD environments using
the same signing keys / certificates? What else is wrong?

Jump through different apps/envs within the organization?????!!!!!

Think of a “user_id” value that identifies an internal user, and multiple
applications that rely on that identifier.

We could now access all of them even when without valid credentials.

What else can go wrong?

Bypassing the Auth0 Authentication Process - Attacking the Auth Management Console

Case Number Two (3/5)

“wresult” parameter

In order to hijack an account, we would need to forge a valid JWT with that user’s information.

We don’t have access to:

1. the “user_id” (not trivial like an email address or an incremental integer, but for other

applications this could be the case) —> TENANT INVITE, ACCEPT, DELETE

2.the signing key (or private certificate)

Case Number Two (4/5)

We found a functionality that could be used (or abused) as an oracle to generate valid

JWTs with arbitrary payloads

The Management Console allows you to create Database Action Scripts that are executed

every time a user logs in. We created a simple “Database Action Script” that returned the

needed values for the profile, signed ;-))

Bypassing the Auth0 Authentication Process - Attacking the Auth Management Console

So, now we had the ability to forge a valid signed JWT with

the “email” and “user_id” of the victim.

What about the AUD?

?

Case Number Two (5/5)
Bypassing the Auth0 Authentication Process - Attacking the Auth Management Console

Case Number Two - Conclusion
Bypassing the Auth0 Authentication Process - Attacking the Auth Management Console

Case Number Two - Conclusion
Bypassing the Auth0 Authentication Process - Attacking the Auth Management Console

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (0/6)

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (0/6)

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (0/6)

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (0/6)

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (1/6)

Machine Keys?

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (1/6)

Machine Keys?

Slot swapping?

Staging Production

Case Number Three (2/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Web Application written in .NET on MS Azure
(ASP.NET_SessionId + .ASPXAUTH + FedAuth cookies)

Identity Provider for the above (using SAML)

Staging + Production SLOTS
(Swapping is easy my friend…, by default they share the same secrets  

-MachineKeys-, and they have to!?)

Common Certificates, easier, faster

This concept also works in WebApps not Running on MS Azure

(Standard MS IIS Installation)

Case Number Three (2/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Web Application written in .NET on MS Azure
(ASP.NET_SessionId + .ASPXAUTH + FedAuth cookies)

Identity Provider for the above (using SAML)

Staging + Production SLOTS
(Swapping is easy my friend…, by default they share the same secrets  

-MachineKeys-, and they have to!?)

Common Certificates, easier, faster

This concept also works in WebApps not Running on MS Azure

(Standard MS IIS Installation)

Case Number Three (2/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Web Application written in .NET on MS Azure
(ASP.NET_SessionId + .ASPXAUTH + FedAuth cookies)

Identity Provider for the above (using SAML)

Staging + Production SLOTS
(Swapping is easy my friend…, by default they share the same secrets  

-MachineKeys-, and they have to!?)

Common Certificates, easier, faster

This concept also works in WebApps not Running on MS Azure

(Standard MS IIS Installation)

Case Number Three (2/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Web Application written in .NET on MS Azure
(ASP.NET_SessionId + .ASPXAUTH + FedAuth cookies)

Identity Provider for the above (using SAML)

Staging + Production SLOTS
(Swapping is easy my friend…, by default they share the same secrets  

-MachineKeys-, and they have to!?)

Common Certificates, easier, faster

This concept also works in WebApps not Running on MS Azure

(Standard MS IIS Installation)

Case Number Three (2/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Web Application written in .NET on MS Azure
(ASP.NET_SessionId + .ASPXAUTH + FedAuth cookies)

Identity Provider for the above (using SAML)

Staging + Production SLOTS
(Swapping is easy my friend…, by default they share the same secrets  

-MachineKeys-, and they have to!?)

Common Certificates, easier, faster

This concept also works in WebApps not Running on MS Azure

(Standard MS IIS Installation)

Case Number Three (2/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Web Application written in .NET on MS Azure
(ASP.NET_SessionId + .ASPXAUTH + FedAuth cookies)

Identity Provider for the above (using SAML)

Staging + Production SLOTS
(Swapping is easy my friend…, by default they share the same secrets  

-MachineKeys-, and they have to!?)

Common Certificates, easier, faster

This concept also works in WebApps not Running on MS Azure

(Standard MS IIS Installation)

Case Number Three (3/6)
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

MS Azure

All WebApps Deployed in App Services, with No specific configuration
(Web.config), within the Same Resource Group (Slots config!)

=
Will Share Machine Keys

IIS

All WebApps Deployed, with No specific configuration (Web.config),
Same or Different Application Pool

=
Will Share Machine Keys

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (4/6)

Standard Authentication Flow

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (5/6)

Modified Authentication Flow Try 1

Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

Case Number Three (6/6)

Modified Authentication Flow Try 2

 <audienceUris>

 <add value=“http://PROD:port/“ />

 </audienceUris>

Injected “wtrealm”

here

Case Number Three - Conclusion
Observations in MS Azure (and Standard IIS) running .NET Apps & SAML AuthN

https://msdn.microsoft.com/en-us/library/w8h3skw9(v=vs.85).aspx

<machineKey

validationKey="AutoGenerate,IsolateApps"

decryptionKey="AutoGenerate,IsolateApps"

validation="SHA1"

/>

Resource Groups?

No Slot Swapping?

Conclusions

★ Isolate and Segregate Environments

★ DO NOT share Secrets

★ Verify the Audience of Claims

★ Educate Developers and SysAdmins

about Security (crypto, unicorns, etc.)

★ Understand what you are doing in the

“Cloud” (eg. Azure Governance)

★ Run Penetration Tests

https://docs.microsoft.com/en-us/azure/security/governance-in-azure

Shoot your Question!Shoot your Question!

Shoot your Question!Shoot your Question!

Nahuel Grisolía

Cinta Infinita Founder / CEO

@cintainfinita

Breaking Authentication and Segregation of

Production and Non-Production Environments

Knocking Down the Big Door

