

Client-Side Cross-Domain Requests in the Web Browser: Techniques, Policies and Security Pitfalls

OWASP 17.11.2011 Sebastian Lekies — Walter Tighzert SAP Research - Security and Trust

sebastian.lekies@sap.com
walter.tighzert@sap.com

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org

Agenda

1. Technical Backgrounds

- Client-Side Cross-Domain HTTP Requests
- Security Implications

2. The State of the Cross-Domain Nation

- Methodology
- Results

3. Deploying a Policy File correctly

4. DeMaCro: Defense against Malicious Cross-Domain Requests

- Methodology
- Evaluation

5. Conclusion

Client-Side Cross-Domain HTTP Requests

Security Implications

http://kittypics.org

http://webmail.com

Server

Leakage of sensitive information

Circumvention of CSRF protection

Session Hijacking Vulnerability

Secure Client-Side Cross-Domain Requests

Insecure Conditions

```
<cross-domain-policy>
<allow-access-from domain="a.net" />
</cross-domain-policy>
```

```
<cross-domain-policy>
  <allow-access-from domain="*" />
</cross-domain-policy>
```

Wildcard policies

- "*"
- Whitelists all existing domains
- Giving up the protection capabilities implied by the Same-Origin Policy

Further Insecurities

- Transitivity of vulnerabilities
- Vulnerabilities in client-side cross-domain Flash proxies

Methodology

The State of the Cross-Domain Nation Methodology

Shallow crawl of the top 1,000,000 sites in the Alexa index Collect Flash, Silverlight and CORS Policies

(R1) Penetration

How prevalent are cross-domain policies?

Which technologies are used for this purpose?

What kind of sites issue cross-domain policies?

(R2) Security

How high is the ratio of potentially insecure policies?

What is the relationship between (in)security and site category?

Is there a correlation between (in)security and site popularity?

Identifying insecure Policies

Observation: a wildcard alone does not cause insecurities

A necessary condition is that the permissive site indeed conducts authentication tracking

Approach:

- Check for evidence indicating that an authentication state can be provided by the site
 - Login forms (password fields)
 - Session identifiers (HTTP-only cookies, naming conventions)
- If authentication forms pointed to different (sub)domains, we also checked the policy file for the form's target domain

Results

Results - Penetration

1,093,127 domains scanned

	Total	Percentage
Flash	82,052	8%
Silverlight	995	0.09%
Cors	215	0.02%

Results – Penetration: Comparison to 2008

Grossman study in 2008

- Alexa Top 500 and Fortune 500
 - 28% providing a crossdomain.xml policy
 - 7% with a wildcard policy

Our results (2011)

- Alexa Top 1000
 - 48% providing a crossdomain.xml policy
 - 12% with a wildcard policy
- → Indicator that the adoption of the technology is increasing

Results

Penetration / Security - Flash

Wildcard policy

31,011 files (37.7% of all crossdomain.xml) resulting in 2,8% potentially insecure sites

When checking for authentication

15,060 sites (1.3% of all analyzed sites)

Collected crossdomain.xml files

Results

Penetration / Security - Flash

Mapping policy files to the top categories

Goal

- Share public data via cross-domain requests
- Protect **private** data from being stolen

Important Guideline

Never combine cross-domain access with private data

Using distinct Domains

static.example.org/crossdomain.xml

```
<cross-domain-policy>
  <allow-access-from domain="*" />
  </cross-domain-policy>
```

private.example.org/crossdomain.xml

```
<cross-domain-policy>
  <site-control permitted-cross-domain-policies="none" />
  </cross-domain-policy>
```


Using Subfolders

Flash and Silverlight have the option of defining policies for specific subfolders

```
<access-policy>
 <cross-domain-access>
  <pol><policy>
   <allow-from>
    <domain uri="*"/>
   </allow-from>
   <grant-to>
    <resource path="/static/" include-subpaths="true" />
   </grant-to>
  </policy>
 </cross-domain-access>
</access-policy>
```


Defense against malicious Cross-Domain Requests

Methodology

Methodology

DeMaCro: Defense against Malicious Cross-Domain Requests

Evaluation

Security Evaluation

- DeMaCro was evaluated against malaRIA¹, a real-world exploitation tool
- Additionally it was tested against three real-world use cases (domains from the Alexa Top 500)
- Additional generic test cases

DeMaCro prevented any attack that was possible without the extension

Evaluation

Performance Evaluation

- Overhead of about 0,82 ms in the best case (no plugin-based crossdomain requests at all)
- Overhead of about 17 ms in the worst case (only plugin-based cross-domain requests on a page)

Flash-based image gallery http://www.flash-gallery.org

Evaluation

Functional Evaluation

Crawling the Alexa Top 500 websites with DeMaCro

	Total Numbers	Percentage
Total requests	33,260	100%
Cross-domain	366	1.1%
Wildcard requests	176	0.5%

Cookies were stripped from wildcard requests

Do we break any **legitimate** functionality by doing so?

Evaluation

Do we break any **legitimate** functionality by doing so?

Manual checks of the 42 webpages that were involved in creating these requests

60% of the cross-domain requests are ad related, the others are used in flash-based video players or image galleries

No indication found that DeMaCro breaks legitimate functionality, but ad tracking may be affected

Key facts

- 15,060 insecure sites
- Legitimate to use wildcard policies

State of the Cross-Domain Nation

DeMaCro

Never again... =)

The classical * + x

with more than 950 entries!

Never again... =)

The "I tell you what my network looks like"

```
http://www.
                   crossdomain.xml
 <?xml version="1.0" ?>
 <!-- http://www.adobe.com/crossdomain.xml -->
  <!-- Wildcards are not allowed in IP domain specifications.
- <cross-domain-policy>
   <allow-access-from domain="*.
                                       de" />
   <allow-access-from domain="angebote.t-online.de" />
   <allow-access-from domain="*.
                                       com" />
   <allow-access-from domain="localnost" />
   <!-- Test-Server -->
   <allow-access-from domain="kda-office.dyndns.org" />
   <allow-access-from domain="192.168.160.144" />
   <allow-access-from domain="192.168.160.145" />
   <allow-access-from domain="192.168.160.146" />
   <!-- office dev ips
   <allow-access-from domain="192.168.160.5" />
   <allow-access-from domain="192.168.160.6" />
   <allow-access-from domain="192.168.160.10" />
   <allow-access-from domain="192.168.160.11" />
   <allow-access-from domain="192.168.160.12" />
   <allow-access-from domain="192.168.160.18" />
   <allow-access-from domain="192.168.160.13" />
   <allow-access-from domain="192.168.160.15" />
```

```
<allow-access-from domain="192.168.160.27" />
 <allow-access-from domain="192.168.160.28" />
 <allow-access-from domain="192.168.160.29" />
 <allow-access-from domain="192.168.160.30" />
 <allow-access-from domain="192.168.160.31" />
 <allow-access-from domain="192.168.160.32" />
 <allow-access-from domain="192.168.160.33" />
 <allow-access-from domain="192.168.160.34" />
 <allow-access-from domain="192.168.160.35" />
 <allow-access-from domain="192.168.160.36" />
 <allow-access-from domain="192.168.160.37" />
 <allow-access-from domain="192.168.160.38" />
 <allow-access-from domain="192.168.160.39" />
 <allow-access-from domain="192.168.160.42" />
 <allow-access-from domain="192.168.160.66" />
 <allow-access-from domain="192.168.160.70" />
  <allow-access-from domain="192_168.160.73" />
  <!-- Thomas dev (home)
 <allow-access-from domain="192.168.161.63" />
  <!-- Flash Dev -->
 <allow-access-from domain="*.media-artwork.com" />
</cross-domain-policy>
```


Literature

- S. Lekies & M.Johns & W. Tighzert: "*The State of the Cross-Domain Nation*", In Proceedings of the 5th Workshop on Web 2.0 Security and Privacy (W2SP), 2011.
- S. Lekies & N.Nikiforakis & F. Piessens & W. Tighzert & M.Johns: "DeMaCro: Defense against malicious Cross-Domain Requests", (under submission).

M.Johns & S. Lekies: "Biting the hand that serves you: A closer look at client-side Flash proxies for cross-domain requests", in the proceedings of the 8th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2011)

Thank you!

OWASP

sebastian.lekies@sap.com

walter.tighzert@sap.com

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org