Dynamic malware analysis - or: The ~five deadly (anti-)venoms - or: Is this software talking to Asia?

SECURITY MADE IN LETZEBUERG

Team CIRCL

December 2, 2011

Agenda

- CIRCL Introduction
- Dynamic Malware analysis
 - \circ Introduction
 - Different methods
 - $\circ \ \mathsf{Examples}$
- Conclusion

CIRCL Mission Statement

- CIRCL is the national Computer Security Incident Response Team (CSIRT) for the Grand-Duchy of Luxembourg.
- CIRCL is a team composed of 5 FTEs doing security incident coordination, response and research.
- CIRCL is operated by SMILE ("security made in L\u00e9tzebuerg"), a State funded "groupement d'int\u00e9r\u00e9t \u00e9comon commique" (GIE), designed to improve information security and create new opportunities for Luxembourg started in September 2010.

CIRCL - in plain english

- We help you in the (not so unlikely) case of an incident:
 - $\circ~$ We do forensic analysis
 - We analyse malware
 - $\circ~$ We help you to recover from an incident
 - $\circ~$ We give advise for the future
- We do research
- We share our knowledge

Introduction

- Who's behind the attacks?
- What's the motivation?
- What does the malware do?

- Who's behind the attacks?
- \rightarrow The usual cyber criminal
- \rightarrow Motivation: money

- Who's behind the attacks?
- \rightarrow Governments or governmental organizations
- \rightarrow Motivation: intelligence, sabotage

- Who's behind the attacks?
- \rightarrow Hacktivists: Anonymous, Lulzsec, ...
- \rightarrow Motivations: political, 'for the lulz'

- What does the malware do?
 - $\circ~$ Understanding changes on a system:
 - New / changed files, registry
 - Launch / autostart
 - Malicious activity
 - $\circ~$ Understanding network activity
 - Communication methods
 - Exfiltration techniques
- \rightarrow Necessary for detection and removal

Why should you be concerned?

- It might be your compromised server / datacenter that is
 - \rightarrow hosting malware to be downloaded / installed by others
 - \rightarrow acting as a C&C server
 - \rightarrow abused as proxy servers
- It might be your customer's computer that is
 → infected and sending information to the attacker

You, your company or your users might be directly or indirectly a victim Different methods: Static vs. dynamic analysis

Dynamic malware analysis - Methods

Static analysis

- Looking at a file and concluding about runtime behavior without actually running it
 - File characteristics (GNU strings, meta information, embedded scripts)
 - Result of (multiple) Virus scanners
 - Disassembler
 - Memory forensics
- Problems/Limitations
 - Packers
 - $\circ \ \ \text{Obfuscated code}$
 - \circ Encryption
 - \circ Unused code
- \rightarrow Necessary step because you cannot trust what you see

Static malware analysis examples 1. A current malware variant 2. A 'Screensaver' file

Dynamic malware analysis - Methods

Dynamic analysis

- Running malware in a controlled environment to understand the behavior during runtime
 - Basic training: Mastering the network
 - Drunken boxing: Emulation and shellcode detection
 - $\circ~$ Crane technique: Logging API calls, live process information
 - The 36th chamber of Shaolin: Debugger
 - $\circ~$ Grand master fight: Virtual machines / sandboxes
- Problems/Limitations
 - $\circ \ \, \text{Anti-VM}$
 - \circ Anti-Debugging
 - Turing's Halting problem
 - Need to duplicate the target environment else exploits will not work (OS, patch level, targeted software, mitigation software)

Basic training: Mastering the network

- Listening on the network
 - Packet capture
- Faking network services
 - Fake DNS service
 - $\circ~$ Accepting and recording traffic on all ports/protocols
- \rightarrow Control what kind of data you want to reveal
- \rightarrow Don't inform the attacker about your tests

Dynamic malware analysis - Example

Basic training: Mastering the network Fake-DNS Socat Forwarding with IPFW

Drunken boxing: Emulation and shellcode detection

- libemu / sctest
 - $\circ~$ Detect shellcode by executing code on an emulated x86 processor
- OfficeMalScanner (Frank Boldewin)
 - Dissect MS Office files (Word, Excel, Powerpoint)
 - \circ Find shellcode
 - Build executable containing shell code and payload (works even in cases where an exploit matching environment is not available)
 - Run executable and watch behavior

Drunken boxing: Emulation and shellcode detection Libemu sctest on a Word document OfficeMalScanner on the same Word document

Crane technique: Logging API calls, live process information with MS Sysinternals tools

- Process Explorer
 - $\circ~$ Shows detailed information about a running process
 - e.g. icon, command-line, full image path, memory statistics, user account, security attributes, loaded DLLs, operating system resource handles
- Process Monitor
 - API (user-land) monitoring tool
 - Shows real-time file system, registry and process/thread activity, combined with filters

Crane technique: Logging API calls, live process information with MS Sysinternal tools MS Office file from previous example

The 36th chamber of Shaolin: Debugger

- OllyDbg, WinDbg, Softice (now Syser), Immunity Debugger
 - $\circ~$ Stepping, tracing during execution of a binary
 - Showing all processor registers

Dynamic malware analysis - Example

The 36th chamber of Shaolin: Debugger

Grand master fight: Virtual machines / sandboxes

- Putting it all together
 - Virtual machine
 - Host-only networking
 - IP forwarding
 - $\circ \ \, \mathsf{Fake} \ \, \mathsf{DNS}$
- Extend it with
 - Transparent proxy
 - OWASP ZAP
- Capture and control HTTP(S) requests/responses
- Identify Non-HTTP traffic
- Capture all remaining traffic

Grand master fight: Virtual machines / sandboxes Worm.Win32.VBNA.b

Conclusion

- Malware analysis is fun
- Try it out
- Protect yourself
 - Don't be careless during analysis
 - $\circ~$ You control what you send out and what you accept back
 - Feed your blacklists with your results!
 - $\circ~$ Take care of your servers and applications

Q and A - discussion

- Thank you
- info@circl.lu
- http://www.circl.lu/
- CA57 2205 C002 4E06 BA70 BE89 EAAD CFFC 22BD 4CD5