iOS Forensics:
Overcoming iPhone Data
Protection

Andrey Belenko
Chief Security Researcher
Elcomsoft Co. Ltd.

® iOS Forensics |01
® iOS Data Protection
® iOS Forensics

® Passcode

® Keychain

® Storage

Forensics |01

Acquisition =» Analysis =¥ Reporting

GOALS:

| . Assuming physical access to the device extract as much
information as practical

2. Leave as little traces/artifacts as practical

iOS Forensics 101

® Passcode
® Prevents unauthorized access to the device
® Bypassing passcode is usually enough

® Keychain
® System-wide storage for sensitive data
® Encrypted

® Storage encryption
® iPhone 3GS and later can encrypt disk data

iOS Forensics 101

® iOS is modified version of Mac OS X
® Familiar environment

® iOS enforces additional security
® (Code signing: can’t run unsigned executables
® Sandboxing: access to system is limited

® Acquisition options:
® Via exposed interfaces (i.e. Sync, Backup)
® Via circumventing security and running own code

iOS Forensics 101

Logical: iOS Backup
® Ask device to produce a backup
® Device must be unlocked
® Device may produce encrypted backup
® |imited amount of information

® Physical: filesystem acquisition
® Boot-time exploit to run unsigned code
® Device lock state isn’t relevant
® (Can get all information from the device
® Since iOS 4 filesystem is encrypted

Pre-iOS 4 Forensics

® Device passcode can be bypassed

® Storage is effectively not encrypted
® Device transparently decrypts data

® Keychain data is encrypted
® One can either decrypt all or nothing. Usually all.

Once you have code execution, the rest is easy

New in iOS 4

Passcode protection is much more robust

Storage is encrypted
® Metadata is not encrypted
® Contents of (almost) every file is encrypted

New (and better) Keychain encryption

New (and better) iTunes backup format

All these are part of iOS Data Protection

AES Keys

® AlliOS devices have built-in AES processor with 2
hardcoded keys:
® GID Key is shared by all devices of the same kind
e UID Key is unique to each and every device
(hardware key)

® More keys are computed during startup:
® Key Ox835 =AES_encrypt (UID,0101..01)
(device key)
® Derived keys depend solely on GID or UID and
thus are fixed for the particular device

Protection Classes

Content is grouped into protection classes:

® Available only when device is unlocked

® Available after first device unlock (and until off)
® Always available

Each protection class assighed a master encryption key
Master keys are protected by device key and passcode

Protected master keys form system keybag
® New keys created during device restore

System Keybag

Stores protected (encrypted) master keys
Keybag payload is encrypted before writing to disk
Stored in /private/var/keybags/systembag.kb

File has NSProtectionNone protection class
® Meaning it is encrypted

| | protection classes in total
® All but NSProtectionNone are stored in
systembag.kb
® NSProtectionNone is stored in Effaceable Storage

Effaceable Storage

Region of flash memory

Facilitates storage of small amounts of data with
ability to quickly erase them

Items within effaceable storage are called lockers

As of iOS 4: 960 bytes capacity, 3 lockers:

® ‘BAGI’ — systembag.kb payload key and IV

® ‘Dkey’ — NSProtectionNone class master key
® ‘EMF! — Filesystem encryption key

In iOS 5 ‘EMF! locker is replaced with ‘LwVM’,
conceptually the same.

Unlocking Keybag

Passcode Key Device Key
1 11l
if (WRAP & 0x2) if (WRAP & 0xl)

Keybag (locked) J‘H Keybag (unlocked)

Protected Key
WRAP = | DECRYPT Key
v

Protected Key
WRAP = 2 UNV;/IRAP Key
V

Protected Key
WRAP = 3 UNWRAP DEC:IYPT Key

Protected Key
WRAP = | DECRYPT Key
v ¥

Protected Key
WRAP = 3 UNWRAP DECRYPT Key

Escrow Keybag

“Usability feature” to allows iTunes to unlock the
device

Contains same master keys as system keybag
Stored on the computer side

Protected by 256 bit random “passcode” stored on
the device

With iOS 4, escrow keybag gives same powers as
knowing the passcode

iOS 5 fixed this issue: device can read escrow
keybag only if it has been unlocked

IOS 4/5 Key Hierarchy

[| Must be done on the device Passcode
Required to decrypt files/keychain l

Sufficient for key reconstruction >‘

/ |

FS Key 4—4— Passcode Key

Effaceable Storage /
‘EMF! /‘LwVM’

‘Dkey’
‘BAGI’

System Keybag (locked)

Class A Key (#1)
Class B Key (#2)
Class C Key (#3)

» Class D Key (#4) ~__—

Class Key #5
systembag.kb System Keybag

(unlocked)

Class Key #1 |

Pre-iOS 4 Passcode

® | ockscreen (i.e. Ul) is the only protection

® Passcode is stored in the keychain
® Passcode itself, not its hash

® Can be recovered or removed instantly
® Remove record from the keychain
® And/or remove setting telling Ul to ask for the
passcode

“~ -
-
-
.)
c. ‘.
— .
: —
] ;
. -~
. -
& d
— bt e— " :
‘1-\- . .-
. s :
g - :
'y
; :
3
- " -
m » \
- - 4 "N .
» - y . '
4 -
: 1 g g 2,
- 5 . »
: LAAS

" !
v .
! :
.
e
Nl r B
i N\ e
b - - 'b_l
: ’ "
- ’ E o
S 3 m
- B L. s st
S pee o .
- . O
I o Ly _ .
. o.. \”l . B \\ .
L - -t L
: X L

iOS 4/5 Passcode

® Passcode is used to compute passcode key
e Computation tied to hardware key
® Same passcode will yield different passcode keys
on different devices!

® Passcode key is required to unlock all but 3 master
keys in system keybag

® Most files are NSProtectionNone thus don’t

need passcode
® Most keychain items are accessible

WhenUnlocked or AfterFirstUnlock thus DO
require passcode

iOS 4/5 Passcode

Passcode-to-Key transformation is slow

Offline bruteforce currently is not possible
® Requires extracting hardware key

On-device bruteforce is slow
® 2 p/s oniPhone 3G, 7 p/s on iPad

System keybag contains hint on password
complexity

iOS 4/5 Passcode

® (O — digits only, length = 4 (simple passcode)

iOS 4/5 Passcode

- = a 100% E3

Enter Passcode
® (O — digits only, length = 4 (simple passcode)

® | —digits only, length != 4

o™ e o - T o
. Ll 5 Pos g s > . J
- w L~ o - .
- r V' - ~ - o
j & - - - 0
-’ - : <l - " A .
o — ¢ S S N -~ -
- ™ - y -
N - A ey - i
- Sl e, T - Zam = :

DEF
INO

N

|

Emergency
Call

iOS 4/5 Passcode

P P T

Enter Passcode
® (O — digits only, length = 4 (simple passcode)

® | —digits only, length != 4

® 2 — contains non-digits, any length

ofw[e[a][] [o]e
Wl LT
= BOONOnT =

iOS 4/5 Passcode

® (O — digits only, length = 4 (simple passcode)
® | —digits only, length != 4

® 2 — contains non-digits, any length
o|w[e[r]T]v]u]i]o]P

Can at least identify Als|o]Ffa]H]fxfL

o -
weak passcodes Jzlxclvisnvi

Pre-iOS 4 Keychain

SQLite3 Database, only passwords are encrypted

All items are encrypted with the device key (0x835)
and random |V

Key is unique for each device and is fixed for lifetime
of the device

Key can be extracted (computed) for offline use

All past and future keychain items from the device can
be decrypted using that key

SHA-1 (Data)

iOS 4 Keychain

SQLite3 Database, only passwords are encrypted

Available protection classes:

® kSecAttrAccessib
® kSecAttrAccessib
® kSecAttrAccessib

eWhenUnlocked (+ ...ThisDeviceOnly)
eAfterFirstUnlock (+ ...ThisDeviceOnly)
eAlways (+ ...ThisDeviceOnly)

Random key for each item, AES-CBC

Item key is protected with corresponding
protection class master key

Wrapped ltem Key Encrypted Item

iOS 5 Keychain

Almost the same as iOS 4,

but...

® All attributes are encrypted (not only password)
® AES-GCM is used instead of AES-CBC

® Allows to verify integrity

Wrapped Key Length

Wrapped Key

Encrypted Data (+Integrity Tag)

8

12

Pre-iOS 4 Storage

® No encryption before iPhone 3GS

® Starting with iPhone 3GS:
® Encryption uses EMF key for everything
® Provides fast wipe, not confidentiality
® Transparent to applications
® Filesystem acquisition is not affected

IOS 4 Storage

® Available protection classes:
® NSProtectionNone
® NSProtectionComplete

® |f no protection class is specified, EMF key is used
® Filesystem metadata and unprotected files
® Transparent encryption and decryption (same as pre-iOS 4)

® |f protection class is specified, per-file random key is used
® Key protected with master key is stored
com.apple.system.cprotect extended attribute

iIOS 5 Storage

Almost the same as iOS 4, but...

® New protection classes:

® NSFileProtectionCompleteUntilFirstUserAuthentication
® NSFileProtectionCompleteUnlessOpen

e |V for file encryption is computed differently

iOS 4/5 Forensics

® Acquiring disk image is not enough for iOS 4+
® Content protection keys must also be extracted
from the device during acquisition
® [Effaceable Storage contents are also needed to

decrypt dd images.
® Passcode er-eserow-keybag is needed for a

complete set of master keys

® |n real world it might be a good idea to extract
source data and compute protection keys offline

iOS 4/5 Forensics

- Must be done on the device
Required to decrypt files/keychain

Effaceable Storage

FS Key <—<—

‘EMF! / ‘LwVM’

/

‘Dkey’

Sufficient for offline key reconstruction

Passcode

!

/

Key 89B

‘BAGI’

systembag.kb

System Keybag (locked)

Class A Key (#1)

Class B Key (#2)

@

!

Passcode Key

Class C Key (#3)

» Class D Key (#4)

Class Key #5

Class Key #1 |

)

v

System Keybag
(unlocked)

Conclusion

iPhone physical analysis is possible
Physical acquisition requires boot-time exploit
Passcode is usually not a problem

Both proprietary and open-source tools for iOS
4/5 forensics are available

Questions!

iOS Forensics:
Overcoming iPhone Data
Protection

A

" _| a.belenko@elcomsoft.com

~ (@andreybelenko

/

5% www.elcomsoft.com

http://www.elcomsoft.com
http://www.elcomsoft.com
mailto:a.belenko@elcomsoft.com
mailto:a.belenko@elcomsoft.com

