
Fachbereich Informatik
SVS – Sicherheit in Verteilten Systemen

Universität Hamburg

Scanstud
Evaluating Static Analysis Tools

OWASP Europe 2008 / Gent
22.05.2008

Martin Johns, Moritz Jodeit
University of Hamburg, Germany

Wolfgang Koeppl, Martin Wimmer
Siemens CERT, Germany

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 2

ScanStud: Project overview

Mission statement
 Investigating the state of the art in static analysis

Project overview
 Practical evaluation of commercial static analysis tools for

security
 Focus on C and Java
 09/07 – 02/08
 Joint work of University of Hamburg and Siemens CERT

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 3

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 4

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 5

The disappointing slide

What we WON’T tell you:
 The actual outcome of the evaluation
 Even if we wanted, we were not allowed (NDAs and such)

But:
 We do not consider the precise results to be too interesting

 An evaluation as ours only documents a snapshot
 and is outdated almost immediately

However:
 We hopefully will give you a general feel in respect to the

current capabilities of static analysis

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 6

So, what will we tell you

This talk is mainly about our evaluation methodology
 How we did it
 Why we did it this specific way
 General infos on the outcome
 Things we stumbled over

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 7

What makes a static analysis tool good?

It should find security problems
 Knowledge of different types of code based security

problems
 E.g., XSS, SQLi, Buffer Overflow, Format String problems...

 Language/Framework coverage
 E.g., J2EE servlet semantics, <string.h>,...

 Understanding of flows
 Control flow analysis (Loops invariants, integer ranges)
 Data flow analysis (pathes from source to sink)

Control flow graph Call graph

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 8

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 9

General approaches towards benchmarking

Approaches
1. Use real world vulnerable software
2. Use existing or selfmade vulnerable application

 Hacme, Web Goat, etc...
3. Create specific benchmarking suite

Our goal and how to reach it
 We want to learn a tool’s specific capabilities

 E.g., does it understand Arrays? Does it calculate loop
invariants? Does it understand inheritance, scoping,...?

 Approaches 1. + 2. are not suitable
 Potential side effects
 more than one non-trivial operation in every execution path

 Writing custom testcode gives us the control that we need

However the other approaches are valuable too (SAMTE)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 10

Mission Statement

Objectives
 Easy, reliable, correct, and iterative testcase creation

 The actual test code should be
short
manual tested
as human readable as possible

 Defined scope of testcases
 A single testcase should test only for one specific characteristic

 Automatic test-execution and -evaluation
 Allows repeated testing and iterative testcase development
 “neutral” evaluation

[Let’s start at the bottom]

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 11

Automatic test-execution

Approach
 Test-execution via batch-processing

Problem
 All tools behave differently

Solution
 Wrapper applications

 Unified call interface
 Unified XML-result format

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 12

Automatic test-evaluation

Required
 Reliable mapping between alert and testcode

Approach
 One single vulnerability (or FP) per testcase
 Every testcase is hosted in an application of its own
 The rest of the application should otherwise be clean

Benefits
 Clear relation between alerts and testcases

 Alert => the case was found / the FP triggerd
 No alert => the case was missed

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 13

Real world problem

Noise
 Even completely clean code can trigger warnings

 The host-program may cause additional alerts
 How do we deterministically correlate scan-results to test-

cases?
 Line numbers are not always applicable.

Solution
 Result-Diff

 Given two scan results it extracts the additional alerts
 Scan the host-program only (== the noise)
 Scan the host-program with injected testcase (== signal +

noise)
 Diff the results (== signal)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 14

Testcase creation

Approach
 Separation between

 general support code and
 test-specific code (the actual vulnerabilities)

Benefit
 Support code is static for all testcases
 The actual testcase-code is reduced to the core of the tested

property
 Minimizes the code, reduces error-rate, increases confidentiality
 Allows rapid testcase creation
 Enables clear readability

Implementation
 Code generation

 Host-program with defined insertion points
 Testcode is inserted in the host-program

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 15

Testcode assembly

Insertion points in the host program
 Library includes, Global structures/data, function-call to the test

function

The test-case is divided in several portions
 Each portion corresponds to one of the insertion points

A script merges the two files into one testcase

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 16

Example testcase(s): Buffer overflow

DESCRIPTION: Simple strcpy() overflow
ANNOTATION: Buffer Overflow [controlflow] []

EXTERNAL_HEADER:
#include <string.h>

VULNERABLE_CALL: %NAME(v)%(p);

VULNERABLE_EXTERNAL_CODE:
/* %DESCRIPTION(v)% */
void %NAME(v)%(char *p) {

char buf[1024];
strcpy(buf, p); /* %ANNOTATION(v)% */

}

SAFE_CALL: %NAME(s)%(p);

SAFE_EXTERNAL_CODE:
/* %DESCRIPTION(s)% */
void %NAME(s)%(char *p) {

char buf[1024];
if (strlen(p) >= sizeof(buf))

return;
strcpy(buf, p); /* %ANNOTATION(s)% */

}

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 17

Final testing infrastructure

Components
 Tool wrappers
 Host-program
 Test-cases
 Assembly script
 Result differ
 Evaluator

Putting it all together
 Creates test-code with

the assembly-script
 Causes the wrapped tool

to access the test-case
 Passes the test-result to

result differ
 Diffed-result and meta-data

are finally provided to
the Evaluator

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 18

Conclusion: Test-code generation

Summary
 Applicable for all potential languages
 Applicable for all tools that provide a command-line interface
 Flexible
 Allows deterministic mapping code <--> findings

Fallback: Combined suite
 For cases where the tool cannot be wrapped
 All testcases are joined in one big application

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 19

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 20

Testcases versus Tests

A testcase is the smallest unit in our approach
 Contains code which should probe for exactly one result
 Either “true vulnerability” or “false positive”

A test usually consists of two testcases
 a true vulnerability and
 a false positive
 Both testing the same characteristic

A test passed only if BOTH associated testcases have been
identified correctly

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 21

Testcase design

Language features and control/data flow
 Two variables (“good”, “bad”) ⇒ The sources

 Both are filled with user provided data
 The “good” variable is properly sanitized

 One sink variable (“result”)
 This variable is used to execute a security sensitive action

 Both variables are piped through a crafted control flow
 One of them is assigned to the result variable

Memory corruption
 Similar approach
 Instead of variables different sized memory regions are used

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 22

C test cases

Host program
 All C test cases are hosted in a simple TCP server
 Listens on a port and waits for new clients
 Reads data from socket and passes pointer to test case
 Less than 100 LOC

The suite
 Emphasis on vulnerability types
 Around 116 single C test cases in total

Tests for, e.g.,
 Buffer overflows, unlimited/Off-by-one pointer loop overflows,

integer overflows/underflows, signedness bugs, NULL pointer
dereferences

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 23

The Java suite

Host program
 J2EE application with only one servlet

 Provides: DB connection, framing HTML content, sanitizing,...

Vulnerability classes
 XSS, SQLi, Code Injection, Path Traversal, Response Splitting

⇒ Emphasis on testing dataflow capabilities
 ~ 85 Java testcases in total

 Ben Livshit’s Stanford SecuriBench Micro was very helpful

Language features
 Library, inheritance, scoping, reflection, session storage

Tests
 Global buffers, array semantics, boolean logic, second order

code injection, ...

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 24

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 25

Tool selection

Market research: 12 potential candidates
 Selection criteria:

 Maturity
 Is security a core-competence of the tool?
 Language support

⇒ Selection of 10 tools

⇒ After pre-tests 6 tools were chosen for further
investigation
 (no, we can’t tell you which)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 26

Scoring

We have ~ 200 unique testcases
 How should the results be counted?

Observation
 If it aids the detection reliability, false positives are tolerable

Resulting quantification of the results
 Test passed: 3 Points
 False positive: 1 Point
 False negative: 0 Points

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 27

Result overview

C Suite

Java Suite

Rank Tool Points

1. Tool a. 72 / 168

2. Tool b. 58 / 168

3. Tool c. 56 / 168

4. Tool d. 53 / 168

5. Tool e. 50 / 168

Rank Tool Points

1. Tool x. 89 / 147

2. Tool y. 66 / 147

3. Tool z. 58 / 147

4. Tool v. 53 / 147

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 28

Static analysis: C capabilities

Categories covered by almost all tools:
 NULL pointer dereferences
 Double free’s

Problem areas of most tools:
 Integer related bugs

 Integer underflows / overflows leading to buffer overflows
 Sign extension bugs

 Race conditions
 Signals
 setjmp() / longjmp()

 Non-implementation bugs
 Authentication, Crypto, Privilege management, Truncation, …

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 29

Static analysis: Java Capabilities

Strengths
 Within a function all tools possess good capabilities to track

dataflows
 Besides that, the behaviour/capabilities are rather

heterogeneous

Problem areas of most tools
 Global buffers

 Especially if they are contained within a custom class
 Dataflow in and out of custom objects

 E.g., our own linked list was too difficult for all tools

 Second order code injection

class Node {
 public String value;
 public Node next;
}

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 30

Static analysis: Anecdotes

Buffer overflows 101:
 Most basic buffer overflow case?

 To our surprise, 3 out of 5 tools didn’t report this!
 Too obvious to report?

 One vendor was provided with this sample:

 Vendor response:
“argc/argv are not modeled to contain anything sensible.
 We will eventually change that in the future.”

int main(int argc, char **argv) {
 char buf[16];
 strcpy(buf, argv[1])
}

strcpy()

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 31

Static analysis: Anecdotes

Buffer overflows 101:
 Another easy one:

 Every tool must be finding that one!
 Actually one tool didn’t

 Vendor response:

“Ooops, this is a bug in our tool.”

gets(buf);

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 32

Static analysis: Anecdotes

More bugs:
 One tool didn’t find anything in our “combined test case”:

 Vendor response:

“#include’ed files are not analyzed completely.
 Will be fixed in a future version.”

#include "testcase1.c"
#include "testcase2.c"
#include "testcase3.c"

int main(int argc, char **argv) {
call_testcase1();
call_testcase2();
call_testcase3();
return 0;

}

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 33

Fun stuff

Let’s sanitize some integers
 All tools allow the specification of sanitation functions
 So did Tool Y
 However the parameter for this function could only be

 Int, float, ...
 But not STRING!

Don’t trust the servlet engine
 The J2EE host program writes some static HTML to the

servlet response

 Tool X warned “Validation needed”
 (are you really sure you want your data there?)

PrintWriter writer = resp.getWriter();
writer.println("<h3>ScanStud</h3>");

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 34

More fun and bugs

One of the tools did not find a single XSS problem
 This surprised us, as the tool otherwise showed decent

results
 Reason: We used the following code

 But the tool did not know “getWriter()”
 After replacing it with “getOutputStream()” XSS was found

Somewhat overeager
 Our SQLi tests exclusively used SELECT statements
 While detecting the vulnerability, the tool Z also warned

 “stored XSS vulnerability”

PrintWriter writer = resp.getWriter();

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 35

A special price: The noisiest tool

We had a tool in round one that did not understood neither
C nor Java
 Therefore we started a C# benchmarking suite
 After three written testcases we did a first check

 2 XSS (vulnerable/safe), 1 SQLi (vulnerable)

484 Vulnerabilities!
 The tool was not included in the second evaluation round

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 36

The end

Questions?

The testing-framework and -code will be published on
the SANS website
 Drop me a line, if you want to be notified

(johns@informatik.uni-hamburg.de)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 37

 Appendix

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 38

Potential pitfall

Pitfall
 Unbalanced creation/selection of testcases can introduce

unsound results

Example
 Tool X is great but does not understand language feature Y
 Therefore all tests involving Y fail
 If there is an unbalanced amount of tests involving Y tool X

has an unfair disadvantage

Solution: Categories and tags
 Categories: “controlflow”, “dataflow”, “language”,...
 Tags: All significant techniques within the testcase

 Example: [cookies,conditional,loops]
 The it would be possible to see, that X allways fails with Y

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 39

Interesting point

Vendor X:
 When there is a single path which includes an Array into a

vulnerable data-flow, then the whole Array is tainted (even the
safe values)

 Underlying assumption: All elements of a linear data structure
are on the same semantic level

 This approach obviously breaks our test, to examine wether a
tool understands Array semantics

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 40

C suite

Host program
 All C test cases are hosted in a simple TCP server
 Listens on a port and waits for new clients
 Accepts client connections
 Reads data from socket and passes pointer to test case
 Less than 100 LOC

Test cases
 Around 116 single C test cases in total
 10 tests to determine the general performance of each tool

 Arrays, loop constructs, structures, pointers, …
 Rest of the test cases represent real vulnerabilities, which

could be found in the wild

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 41

C suite (2)

 Buffer overflows using simple unbounded string functions
 strcpy, strcat, gets, fgets, sprintf, strvis, sscanf

 Buffer overflows using bounded string functions
 snprintf, strncpy, strncat, memcpy

 Unlimited/Off-by-one pointer loop overflows
 Integer related bugs

 Integer overflows / underflows
 Sign extension

 Race conditions
 Signals
 setjmp()
 TOCTTOU

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 42

C suite (3)

 C operator misuse
 sizeof(), assignment operator, octal numbers

 Format string issues
 NULL pointer derefs
 Memory management

 Memory leaks
 Double free’s

 Privilege management
 Command injection

 popen(), system()

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 43

SATEC – Test files

The SATEC file format
 Each test is kept in a separate file
 The test is described using the following keywords

 NAME (automatically generated from filename)
 DESCRIPTION
 ANNOTATION

 Two code blocks
 VULNERABLE_EXTERNAL_CODE
 SAFE_EXTERNAL_CODE

 Two calls, into the code blocks
 VULNERABLE_CALL
 SAFE_CALL

 Keyword expansion is possible

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 44

Example: T_001_C_XSS.java

DESCRIPTION: Very basic XSS
ANNOTATION: XSS [basic] []

VULNERABLE_CALL:
new %NAME(v)%().doTest(req, resp); // inserted by satec

SAFE_CALL:
new %NAME(s)%().doTest(req, resp); // inserted by satec

VULNERABLE_EXTERNAL_CODE:
class %NAME(v)% extends scanstudTestcase {

public void doTest(HttpServletRequest req, HttpServletResponse resp){

PrintWriter writer = resp.getWriter();
 String value = req.getParameter("testpar");
 writer.println("<h3>" + value + "</h3>"); // %ANNOTATION(v)%
}

}

SAFE_EXTERNAL_CODE:
class %NAME(s)% extends scanstudTestcase {

public void doTest(HttpServletRequest req, HttpServletResponse resp){

PrintWriter writer = resp.getWriter();
String value = HTMLEncode(req.getParameter("testpar"));

 writer.println("<h3>" + value + "</h3>"); // %ANNOTATION(s)%
}

}

