

Searching and Analyzing HTTP Data with the
WASE Framework

Thomas Patzke
German OWASP Day 2016

Content

1.Why?

2.Introduction to WASE and the toolchain

3.Usage Examples
● Security Testing of web applications
● Mass-Scanning the Alexa Top 1M

4.Future Development & Ideas

What is the Problem?

Bad Performance!

Unflexible!

...or in Words

Try to do one of the following with your tool of choice:
● Search all POST requests that don‘t contain a CSRF token
● List all values of a parameter or cookie that encountered while a web

application security test
● List all values of a security header with its corresponding URL
● List all URLs where inferred content type is HTML while the server tells

something different about its content type
● Show all HTML responses without a doctype definition
● Find all external script references
● Discover unsafe or nonse HTTP security header values

Bonus points: try it without a coffee break :)

Elasticsearch, Kibana, WASE

● Elasticsearch: a search and analytics engine for
textual data

● Kibana: web frontend for Elasticsearch
● WASE: Web Audit Search Engine

– Definition of a data structure for HTTP
requests/responses for Elasticsearch

– Toolchain: ElasticBurp, WASEProxy, WASEQuery

WASE Framework

Elasticsearch

DocHTTPRequestResponse

ElasticBurp WASEProxyBurp Suite
Arbitrary

HTTP Client with
Proxy Support

WASEQueryKibana

DocHTTPRequestResponse
timestamp
protocol

host
port

request
response

method
url

parameternames
parameters

...
body

1

type
name
value

n

status
content_type

inferred_content_type
headernames

headers
cookienames

cookies

scripts
objects
frames

doctype

body
...

name
valuen

domain
path

expiration
name
value

n

1

Usage Examples

● Complex searches and analytics in web
application security tests

● Mass Scans of web sites
● Malware analysis (someones master thesis)

Searches

● All POSTs without CSRF-Token:
request.method:POST ­request.parameternames.raw:"csrftoken"

● 2xx Responses recognised as HTML without <!
DOCTYPE ...>:
response.status:[200 TO 299] AND
response.inferred_content_type:html ­doctype

● HTML Responses not declared as such ones:
response.inferred_content_type:html ­response.content_type:html

● Responses without XFO:
NOT response.headernames:"X­Frame­Options"

Searching with Kibana

Searching with WASEQuery

● Kibana doesn‘t likes nested data structures and
doesn‘t exposes many ElasticSearch features

● WASEQuery: collection of few useful queries

Example: List of all CSPs that contain the word unsafe

Mass-Scanning the Alexa Top 1m

● Scanning from AWS EC2 instances
– 1 x t2.micro as scan controller (misused a bit as worker)

– 4 x m4.large spot instances as scan workers

– 4 x t2.micro.elasticsearch

– 2h x 3 x r3.xlarge.elasticsearch for final analysis (required much RAM for some complex queries)

– 1 day for scanning complete 1m list

– ~1,50€ scanning costs, ~3€ analysis

● Tools:
– GNU Parallel

– curl

– WASEProxy

● No response bodys!
● 35,6 GB ES Indexes
● 15.311.855 ES Docs

Controller

GNU Parallel

Worker

ElasticSearch
curl

Internet

Invokes
via SSH

WASEProxy

HTTP

HTTP

Stores
via HTTP

Domain List

Results

Results: Popular Embedded Objects

Results: DOCTYPE Declarations

What‘s Next – Future Development

● Documentation and Automation of Mass-Scan Setup
● Extraction of further attributes
● Further Input Frontends:

– PCAP

– Raw Text Files

– OWASP ZAP

● Development of a fancy query language
● Search interface in Burp Extension

That‘s it!

Get it on GitHub:
https://github.com/thomaspatzke/WASE

...Pull Requests are Welcome! :)

Live Demo: http://wase-demo.patzke.org

Questions?
Mail: thomas@patzke.org

Twitter: @blubbfiction

https://github.com/thomaspatzke/WASE
mailto:thomas@patzke.org

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17

