
CHvote – towards 2.0

Evolution of the electronic voting
system of Canton Geneva

Bio

• Thomas Hofer

• Java Dev

• OWASP Geneva, co-chapter leader

• State of Geneva

• @thhofer / thomas.hofer@owasp.org

https://twitter.com/@thhofer
https://twitter.com/@thhofer
mailto:thomas.hofer@owasp.org

Outline

• Context

• Updated requirements

• Core protocol concepts

• Implementation overview

• Current results

• Ongoing work

Context

• Stable democracy

• 4 referendum & initiatives rounds / year

• municipal, cantonal and federal elections

– Usually 2-4 rounds / year

• currently used by several cantons

• Developed, hosted & maintained by Geneva

Preliminary project – Goals

• New voting protocol (BFH)

• PoC Implementation (State of Geneva)

– Feasibility

– Performance

– Constraints and limitations

• Publication of specification and code

https://e-voting.bfh.ch/

Updated requirements > Intro

• New ordinance on Electronic Voting (2013)
– Technical & admin requirements

• Compliance levels -> allowed percentage of
electorate
– 30% / 50% / 100%

• https://www.bk.admin.ch/themen/pore/evoting/
07979/index.html

https://www.bk.admin.ch/themen/pore/evoting/07979/index.html
https://www.bk.admin.ch/themen/pore/evoting/07979/index.html

Upd. Req. > Individual verifiability

voters must receive proof that the server system has registered the vote as it was
entered by the voter on the user platform – VEleS, art. 4

• In current version: random codes per voter / response

Upd. Req. > End-to-End encryption

• In current version:

– Incompatible with individual verifiability
implementation

– Server needs to know vote to return the matching
verification code

Votes must not be stored or transmitted in unencrypted form at any time from being
entered to tallying. – Technical and administrative requirements, section 3.3.4

Upd. Req. > Universal verifiability

• In current version:

– Not available; external supervision by party
representatives holding the private decryption key

For universal verification, the auditors receive proof that the result has been
ascertained correctly. They must evaluate the proof in a observable procedure. –
VEleS, art. 5 paragraph 4

Upd. Req. > Control components

• In current version:

– Application server protected by organisational
measures and enforced policies

The trustworthy part of the system includes either one or a small number of groups
of independent components secured by special measures (control components).
Their use must also make any abuse recognisable if per group only one of the control
components works correctly and in particular is not manipulated unnoticed. – VEleS,
art. 5, par. 6

Core protocol concepts

• El Gamal homomorphic encryption

• Oblivious Transfer for individual verifiability

– Cast-as-Intended Verification in Electronic
Elections Based on Oblivious Transfer

• Pedersen Commitments

• Non-interactive Zero-Knowledge Proofs

• Wikström’s Proof of a Shuffle

https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5

Homomorphic encryption

• Allows re-encryptions

– Useful for anonymizing when shuffling

• Allows for key sharing

– Control components each hold a key share

Oblivious Transfer

• In short
– Server knows n secret messages

– Client allowed to retrieve k secret messages

– Server cannot know which messages the client asked
for

– Perfect match for the verification codes issue!

• In detail
– Cast-as-Intended Verification in Electronic Elections

Based on Oblivious Transfer

https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5
https://link.springer.com/chapter/10.1007/978-3-319-52240-1_5

Commitments and ZKPs

• “public” commitments for the secrets

• ZKPs relative to those commitments

– Chain of truth from key generation to ballot
decryption

• Combination yields Universal verifiability

Wikström’s Proof of a Shuffle

• Re-encrypting mix-net

• Since shuffled, simple pre-image proofs would
not work

• Since re-encrypted, ciphertexts are not equal

• Need for a specific profo that the
cryptographic shuffle is valid

Implementation

• Algorithms
– ch.ge.ve.protopoc.service.algorithm

• Utilities defined in specification

– ch.ge.ve.protopoc.service.support

• Simulation-related classes
– ch.ge.ve.protopoc.service.simulation

• Run simulation
– ./gradlew simulation

Implementation – Snippet

/**
 * Algorithm 7.4: GetNIZKPChallenge
 *
 * @param y the public values vector (domain unspecified)
 * @param t the commitments vector (domain unspecified)
 * @param kappa the soundness strength of the challenge
 * @return the computed challenge
 */
public BigInteger getNIZKPChallenge(Object[] y, Object[] t,

 int kappa) {
 return conversion.toInteger(

 hash.recHash_L(y, t)).mod(BigIntegers.TWO.pow(kappa));
}

Implementation – Demo

Results: Specification

• https://ia.cr/2017/325

• Written by team at BFH

https://ia.cr/2017/325

Results: PoC implementation

• Covers complete protocol (incl. proofs)

• Available on GitHub

– https://github.com/republique-et-canton-de-
geneve/chvote-protocol-poc

• Issues & PRs welcome!

https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc

Result: Performance estimates

• Also available on GitHub

– Much better than initially feared

– 100k ballots could be

• Shuffled,

• Decrypted,

• & Verified;

• Using “standard” hardware

• Within operational time constraints

Soooo… what’s left then?

• GUI 

• Distribution

– Real infrastructure for Control Components

• Resilience

• Custom rules for layout, specific elections, …

• Back-office, test zone, …

• Cantonal interoperability

Q&A

