
OWASP	
 Mobile	
 Top	
 10	
 Risks:	
 Introduc<on	

Official Job Title

	

Credit
This talk introduces the Top 10 work primarily by:

§  Jack Mannino

§  Mike Zusman

§  Zach Lanier

§  OWASP Data Submitters & Manglers

Mobile Application Summary
Deployment in a “hostile” environment
There is no “Security via Obsecurity”
Similar behaviour to a traditional in-browser applications
Similar to a thick client
Everything can be reversed

Three primary threats to consider
§  Threat to user data
§  Threat to device integrity
§  Threat to end-point services

OWASP Mobile Top 10 Risk Project
Initially released in 2011

Attempt to understand mobile threats

Primary focus is on applications

Device security is “considered”

Server side endpoints are in scope

Is designed to be device / platform agnostic

M1: Insecure Data Storage
Common storage facilities
§  Plist files
§  SQLite DB’s
§  Text Files

Items of Interest
§  Credentials
§  Authentication tokens
§  Unique identifiers
§  CC / PII data

Not to be mistaken with M10 (Hardcoded)

M1: Insecure Data Storage (Example)

M2: Weak Server Side Controls
All the backend services
Application consumption generally over HTTP

Many of the common OWASP web issues apply:
§  SQL injection
§  XML / XXE issues
§  Cross site scripting
§  Poor authentication
§  Poor authorisation

M3: Insufficient Transport Layer Protection

SSL enforcement
SSL enforcement consistency
Certificate & CA management

Things of interest:
§  Self-signed certificates
§  Appropriate length ciphers
§  “Wildcard” certificate trust
§  In-application certificate acceptance

M3: Insufficient Transport Layer Protection (Example)

$ curl --head "https://m.facebook.com/dialog/oauth?
type=user_agent&display=touch&redirect_uri=fbconnect%3A%2F
%2Fsuccess&sdk=ios&scope=&client_id=111111111111111"

HTTP/1.1 302 Found
Cache-Control: private, no-cache, no-store, must-revalidate
Content-Type: application/xhtml+xml; charset=utf-8
Expires: Sat, 01 Jan 2000 00:00:00 GMT
Location: http://m.facebook.com/login.php?
skip_api_login=1&api_key=111111111111111&signed_next=1&next=https%3A%2F
%2Fm.facebook.com%2Fdialog%2Foauth%<snip>
Pragma: no-cache

M4: Client Side Injection
Not all applications are “native”
Hybrid Applications
§  Bundled HTML + JSON
§  Wrapped HTTP pages

See also: M7 Security Decisions Via Untrusted Inputs

XSS / CSRF twists:
§  Cross-application communications
§  SMS sending
§  Phone dialing
§  In-application payment process

SQL Injection twists:
§  SQLite IS a database.

M4: Client Side Injection (Example)

sqlite3 *database;
sqlite3_stmt *statement;
if(sqlite3_open([databasePath UTF8String], &database) == SQLITE_OK)
{
 NSString *sql = [NSString stringWithFormat:@"INSERT INTO messages
VALUES('1','%@','%@','%@')", msg, user, displayname];
 const char *insert_stmt = [sql UTF8String];
 sqlite3_prepare_v2(database, insert_stmt, -1, &statement, NULL);
 if (sqlite3_step(statement) == SQLITE_DONE)

M5: Poor Authorisation and Authentication

Primarily an architecture issue

Security controls based on wrong assumptions

Many “unique” values may be compromised:
§  IMSI
§  IMEI
§  UUID

Some identifiers may persist across hardware resets

M5: Poor Authorisation and Authentication (Example)

ANDROID_ID: 9774d56d682e549c

Commit: 0fe27cf5bd1407bc7b4eabefaa91ff535582badc
Author: Doug Zongker dougz@android.com (Thu Aug 19 13:38:26 2010 -0700)
Committer: Doug Zongker dougz@android.com (Thu Aug 19 13:38:26 2010 -0700)
Tree: c37a29d2893c5554325b53ad0ed1da564ecc8183
Parent: 46906276448dd36e7a5cca38fbe9fdb3142f7948[diff]

“make android_id random seed depend on time as well as ro.serialno”

M6: Improper Session Handling
Mobile sessions persist over long periods of time

Revocation capability lacking

Classic session issues:
§  Poor token generation
§  Not appropriately expired server-side
§  Session fixation attacks

M7: Security Decisions Via Untrusted Inputs
Commonly abuse of application “features”

Two primary vectors of attack:
§  iOS URL handlers
§  Android intent handlers

Primary attack vectors:
§  Cross-Application abuse
§  Client Side Injection (browser, other app)

M7: Security Decisions Via Untrusted Inputs (Example)

M7: Security Decisions Via Untrusted Inputs (Example)

<iframe	
 src=”skype://kiwicon/910November2013?call”></iframe>

M8: Side Channel Data Leakage
Mobile devices are very “clever”
Contain all sorts of features
Law enforcement “dreamland”

Items of Interest:
§  Automatic screenshots
§  Web caches
§  Temp directories
§  Console logging
§  Autocorrect dictionaries

M8: Side Channel Data Leakage (Example)

742:~ mark$ cd ~/stash/forensics/
742:forensics mark$ ls -l en_AU-dynamic-text.dat
-rw-r--r-- 1 mark staff 7076 9 Sep 21:56 en_AU-dynamic-text.dat
742:forensics mark$ strings -a en_AU-dynamic-text.dat | grep -i kiwicon
kiwicon

M8: Side Channel Data Leakage (Bonus)

M9: Broken Cryptography
Known secure libraries incorrectly implemented
NEVER ROLL YOUR OWN!
Common “encryption” implementations:
§  Encoding (Base64)
§  Obfuscation (XOR)
§  Serialisation (go see Tom at 3pm)

M9: Broken Cryptography
Known secure libraries incorrectly implemented
NEVER ROLL YOUR OWN!
Common “encryption” implementations:
§  Encoding (Base64)
§  Obfuscation (XOR)
§  Serialisation (go see Tom at 3pm)
§  Combine all of the things!

Avoid known weak algorithms (MD5 etc)
Avoid known weak ciphers

M9: Broken Cryptography “Example”

M9: Broken Cryptography “Example”

M10: Sensitive Information Disclosure
Similar to M1 but hardcoded values
Everything can be reversed
Application assets, binaries and storage
Hardcoded secrets will always be revealed

Often identified “secrets” include:
§  API keys
§  Passwords
§  Developer / Debug functionality

Conclusion
“Same bugs, different platform”
Many browser mitigations are lost in applications
Lack of understanding of mobile application relationships

Updated Top 10 due sometime soon (2013)
We expect to see little change given our experiences

www.insomniasec.com

