Securing AngularJS Applications

Sebastian Lekies (@slekies)

NGULARIJS

oy Google

Who Am 1?

Sebastian Lekies (@slekies)
Senior Software Engineer at Google

-> Tech Lead of the Web application security scanning team
=> Google Internal Security Scanner & Cloud Security Scanner

PhD Student at the University of Bochum [EIIE]

- Thesis topic: "Client-Side Web Application security”
-> Interested in client-side attacks: XSS, ClickJacking, CSRF, etc.

Agenda

1. Introduction
a. What is Cross-Site Scripting?
b. Whatis AngularJS?

2. Basic Angular Security Concepts
a. Strict Contextual Auto Escaping
b. The HTML Sanitizer

3. Common Security pitfalls
a. Server-Side Template Injection
b. Client-Side Template Injection
c. Converting strings to HTML
d. White- and Blacklisting URLs

4. Conclusion

A quick introduction to Cross-Site Scripting (XSS)...

- XSS is a code injection problem:

echo "<hl>Hello ".$ GET['username']."</h1>";

= C # | [website.com/xss.php?username=sebastian <2 | €« X ff -D websité.com;’xss.{Jhg?usemame:cscript)alertﬂ}c/scriﬂt:-

[

Hello sebastian Hello website.com says:

1

| Prevent this page from creating additional dialogs.

A quick introduction to Cross-Site Scripting (XSS)...

- Attacker model
Exploit: http://website.com/xss.php?username=<script>attackerCode</script>

Browser
[www.website.com/xss.php?username=<script>attackerC...]

www.website.com

Attacker User HTML + JS

2 -2 U .0

<scri pt>attackerCode</scr|pt>

Defending against Cross-Site Scripting (XSS)...

Defending against XSS: Context-aware escaping and validation
HTML Context

echo "<h1>Hello " htmlentities($_GET['username']) "</h1>";

- Mixed Context: HTML + URI Context

echo "link";

(A brief) Introduction to
AngularJS

What is AngularJdS? INNGULARJS

; by Google
AngularJsS is a client-side MVC/MVVM Web application framework...

e ..redefining the way client-side-heavy single page apps are written

"Angular is what HTML would have been,
had it been designed for applications” *

e Problem: HTML is great for static pages, but not so great for dynamic Uls
e Solution: Angular's declarative templating system with two-way data bindings

* https://docs.angularjs.org/guide/introduction

Introduction to Angular - Example

Include the newest version of Angular...

src="./angularjs/1.5.7/angular.min.js"

Introduction to Angular - Example

Create a module...

var myApp = angular.module('myApp', []);

ng-app="myApp"

Introduction to Angular - Example

Create controllers, views and viewmodels...

Controller

var controller = myApp.controller('myCtrl', function($scope) {

$scope.name = "OWASP Day";
1)

data bindings

ng-app="my~pp"
ng-controller="myCtrl"
Hello {{name}}

Directive EXpression

View Model

Important Terms: Directives

Directives are markers for enriching HTML with custom functionality:

// Directive as a tag
name="expression"

// Directive as an attribute
person name="expression"

AngulardS comes with a lot of built-in directives: e.g. ngBind, nglf, nginclude, etc.

More about directives: https://docs.angularjs.org/guide/directive

Important Terms: Expressions

Angular Expressions are JavaScript-like code snippets...
e .. .evaluated against the corresponding scope
e ..sandboxed to prevent access to global JS properties (not for security!!)

// Used for string interpolation
{1+2}} — 3
Hello {{getName()}}

id="{{id}}"

/I Used within directives
ng-click="greet()"~greet

More about expressions: https://docs.angularjs.org/guide/expression

Angular's Security
Concepts

Strict Contextual Auto Escaping

Recap: XSS can be prevented by proper output encoding and validation

echo "<iframe src="".$ GET['url']."'></iframe>"; // XSS vulnerability

Output encoding required: URL Validation required:
e Encode all HTML control characters e No JavaScript, data or about URI
e E.g. htmlentities in php e Only same-domain URLs

Manual output encoding in a complex project is doomed to fail!

Strict Contextual Auto Escaping

Let Angular do the encoding and validation for you:

e Within the controller Angular templates are XSS free...

$scope.url = <user-controlled>; e ..by automatically encoding output

e ..and validating URLs
e Within the view e ..if you do not tamper with security

<!-- url gets auto-encoded and validated -->

ng-src="{{url}}"

Behind the Scenes: Output Encoding and URL validation

When parsing an expression Angular determines the context:

HTML

URL

RESOURCE_URL

CSS (currently unused)

JS (currently unused, interpolation inside scripts is not supported)

a e~

...and applies the correct output encoding or validation function

Behind the Scenes: Output Encoding and URL validation

HTML Context

Hello {{name}}!

attribute="{{name}}"

Managed by the SsceProvider

® enabled(boolean);
e Enabled by Default

If enabled all values are encoded with a secure encoding function

Never disable Strict Contextual Auto Escaping!!

Behind the Scenes: Output Encoding and URL validation

URL Context (for passive content)

ngHref="url"

ngSrc="url"

Managed by the ScompileProvider
® aHrefSanitizationWhitelist([regexp]);

e imgSrcSanitizationWhitelist([regexp]);
e By default: http, https, mailto and ftp

If a given URL matches the regular expression
e ..the URL gets written into the DOM
e If not, the string "unsafe:" is prepended to the URL

Behind the Scenes: Output Encoding and URL validation

RESOURCE_URL Context (for active content)

ngSrc="url"

ngSrc="url"
nglnclude="url"

Managed by the SsceDelegateProvider

® resourceUrlWhitelist([whitelist]);
e resourceUrlBlacklist([blacklist]);

Allowed list values: 'self', RegExp, String (with * and ** wildcards)
By Default: Only same-domain URLs are supported

The HTML Sanitizer

Use Case: Angular escapes output. What if | want to render HTML?

Solution: ng-bind-html-unsafe (< Angular 1.2), ng-bind-html & the sanitizer

/[Within the Controller
$scope.html = "<script>alert(1)</script><h1 onclick="alert(1)">Hello World!</h1>";
<I-- Within the view -->

ng-bind-htmI="html"

<l-- Result -->

Hello World! <I-- The script tag and the event handler get sanitized -->

Common Security Pitfalls

(based on real-world bugs)

Server-Side Template
Injection

Server-side template injection

Angular is a client-side framework...
e Thelogic is implemented in JavaScript
e The serveris a mechanism to store data and code.
e The server must not generate templates based on user input

Any template received from the
server is considered trusted

Templates vs. Prepared Statements

Prepared statements for SQL Injection prevention

I/l The statement itself is considered trusted.
stmt = db prepareStatement("SELECT * FROM users WHERE username = ?'

// Untrusted data is inserted separately.
stmt setValue 1, userlnput

Auto-escaping templates for XSS prevention

I/l The template itself is considered trusted.
{{username}}

// Untrusted data is inserted via data bindings.
$scope.username = userlnput ;

Server-side template injection - The wrong way

Unfortunately, people mix traditional applications with angular

src="./angularjs/1.5.7/angular.min.js"
ng-app="exampleApp" ng-controller="exampleCtrl"

echo "<h1>Hello " htmlentities($_GET['username’])."</h1>"; # This is a vulnerability.

Including Angular into this server-generated page, creates a vulnerability

Consequences of an expression injection

- Exploit: http://website.com/xss.php?username={{attackerCode}}

Browser
[www.website.com/xss.php?username={{attackerC...]

Attacker User www.website.com

Scope
‘ ™ x // ‘ HTML + JS ‘ g'
&S
{{attackerCode}} / //

{{sandboxEscape}}

Server-side template injection

Do not dynamically generate Angular templates on the
server-side.

Define your Angular templates statically and populate your
templates via data bindings on the client-side.

Client-Side Template
Injection

Client-side template injection

New trend: Mixing Angular, with other third-party libraries

/I A non angular-related library. Secure without Angular. Insecure with Angular.
document.write(escapeForHTML (userlnput));

src="./angularjs/1.5.7/angular.min.js"

Do not write user input to the DOM before angular runs.

Inserting HTML into the
DOM.

Use Case: Enrich user-provided values with HTML

Use case: "Enrich user input with HTML!"
e Userinput: "OWASP Day"

/[Within the controller
$scope.html = "Hello " + userlnput + "!";

<!-- Within the view -->

{html}}

e Result:

Hello OWASP Day!

Mhhh, the results are auto-encoded!

Wrong way 1: Disable the escaping

Wrong Solution 1: Let's disable the escaping!
e Userinput: "OWASP Day"

/[Within the controller
$sce.enabled(false); // Disables strict auto escaping
$scope.html = "Hello " + userlnput + "!";

<!-- Within the view -->

{html}}

e Result:

Hello OWASP Day !

This works, but security is _completely_ disabled!

Wrong way 2: Use jgLite APIs

Wrong Solution 2: Use element.html() to insert HTML
e Userinput: "OWASP Day"

// Within the controller

angular.element(someElem).html("Hello " + userlnput + "")

e Result:

Hello OWASP Day !

This works, but value is not auto-escaped!

Wrong way 3: Make the value trusted

Wrong Solution 3: Use ngBindHtml & trustAsHtml|

GD-" g|e angular js write html

{=

AngularJS Documentation for ngBindHtml
https://docs.angularjs.org/api/ng/directive/ngBindHtml ~

Evaluates the expression and inserts the resulting HTML into the element in a secure
way. By default, the resulting HTML content will be sanitized using the ...

Wrong way 3: Make the value trusted

Wrong Solution 3: Use ngBindHtml & trustAsHtml|

/ Within the Controller
$scope.html = "Hello World!";

<l-- Within the view -->
ng-bind-html="html"

@ Uncaught Error: [$injector:modulerr] http://errors.angularjs.org/l.4.7/%injector/modulerr?p@=myApp&pl=Errors3A%2..
ogleapis.com%2Fajax%2Flibs%2Fangularjs%2Fl.4.7%2Fangular.min. js%3A19%3A463)

> |

Mhhh, a "Module Error" exception? What is this about?

Wrong way 3: Make the value trusted

Wrong Solution 3: Use ngBindHtml & trustAsHtml|

ngBindHtml Module Error

All Images Shopping Videos News More » Search tools

About 94500 results (0,66 seconds)

Did you mean: ng Bind Html Module Error

angularjs - With ng-bind-html-unsafe removed, how do | ...
stackoverflow.com/._./with-ng-bind-html-unsafe-removed-how-do-i-inje...
Oct 16, 2013 - But without ng-bind-html-unsafe , 1 get this error: Create a custom
filter which can be in a common.module.js file for example - used through ...

e

Wrong way 3: Make the value trusted

Wrong Solution 3: Use ngBindHtml & trustAsHtml|

A, | You indicated that you're using Angular 1.2.0... as one of the other comments indicated, ng-bind-
html-unsafe has been deprecated.
262

Instead, you'll want to do something like this:

<divIng-bind-htm1="preview_data.preview.embed.htmlSafe"></div>

In your controller, inject the $sce service, and mark the HTML as "trusted":

myApp.controller('myCtrl', ['$scope', '$sce', function($scope, $sce) {

L e

$scope.preview _data.preview.embed.htmlSafe =
$sce.trustAsHtml(preview_data.preview.embed.html);

)

Note that you'll want to be using 1.2.0-rc3 or newer. (They fixed a bug in rc3 that prevented
"watchers" from working properly on trusted HTML.)

Wrong way 3: Make the value trusted

Wrong Solution 3: Use ngBindHtml & trustAsHtml|
e Userinput: "OWASP Day"

/[Within the controller
$scope.html = $sce.trustAsHtmI("Hello " + userlnput + "!");

<!-- Within the view -->

{{html}}

e Result:

Hello OWASP Day !

This works, but security is disabled!

Wrong way 4: Encode the value and then trust it

Wrong Solution 4: Use ngBindHtml & trustAsHtml & custom encoding
e Userinput: "OWASP Day"

/[Within the controller
var escapedUserlnput = escapeForHtml(userinput);

$scope.html = $sce.trustAsHtmI("Hello " + escapedUserinput + "!");
<I-- Within the view -->

{{html}}
e Result;

Hello OWASP Day !

This works, but managing security on your own is dangerous!

The right way: Use ngBindHtml and the sanitizer

Correct Solution: use ngBindHtml and the sanitizer

/[Within the Controller
$scope.html = "Hello " + userlnput + "!";

<l-- Within the view -->
ng-bind-html="html"

@ Uncaught Error: [$injector:modulerr] http://errors.angularjs.org/l.4.7/%injector/modulerr?p@=myApp&pl=Errors3A%2..
ogleapis.com%2Fajax%2Flibs%2Fangularjs%2Fl.4.7%2Fangular.min. js%3A19%3A463)

> |

The sanitizer module dependency is missing

The right way: Use ngBindHtml and the sanitizer

Correct Solution: use ngBindHtml and the sanitizer
src="//code.angularjs.org/1.5.7/angular-sanitize.js"

var myApp = angular.module('myApp', ["ngSanitize"]);
var controller = myApp.controller('myCtrl', function($scope) {

$scope.html = "Hello " + userlnput + "!"

1

<l-- Within the view -->
ng-bind-html="html"

Inserting HTML into the DOM: Summary

Getting Security Right

White- and Blacklisting
URLS

White- and Blacklisting Resource URLs

Angular supports many URL-based directives:
e ngSrc, nginclude, ngHref
e These directives should never contain user-provided data

Angular validates URLs based on predefined white- and blacklists.
SsceDelegateProvider.resourceUrl (White[Black)list([Llist]);
By default only same domain URLs are allowed

String, RegExes and 'Self' are allowed

Strings support two wildcards

o *: Matches all but URL control characters (:, /, ?, &, ., 3)
o **: Matches all characters

White- and Blacklisting Resource URLs

Wrong way 1: Wildcards in the scheme

/l Whitelist all possible schemes

"**:/lexample.org/*"
e Exploit 1: http://evil.com/?ignore=://example.org/a
e Exploit 2: javascript:alert(1);//example.org/a

/l Less permissive, but still bad
"*:/lexample.org/*"
e Exploit 1: javascript://example.org/a%0A%0Dalert(1)

White- and Blacklisting Resource URLs

Wrong way 2: ** Wildcards in the domain

/l Whitelist all possible subdomains
"https://**.example.org/*"
e Exploit 1: https://evil.com/?ignore=://example.org/a

/ Whitelist all possible top level domains
"https://example.**"

e Exploit 1: https://example.evil.com

e Exploit 2: https://example.:foo@evil.com

White- and Blacklisting Resource URLs

Wrong way 3: Use Regular Expressions

// Use a RegEx to whitelist a domain

/http:\\/\www.example.org/g
e Exploit 1: http://wwwaexample.org // (dots are not escaped)
e Exploit X: All the wildcard-based exploits can be applied as well

White- and Blacklisting Resource URLs

Do's and Dont's
e Never use regular expressions!
e Do not use wildcards in the scheme!

e Do notuse **in the host!

e Optimal: Whitelist only specific URLS!

Conclusion

Conclusion

AngularJS offers strong security guarantees...
e ..if you follow the Angular philosophy

Templates are considered trusted

e Do not generate them dynamically at runtime
e Do not mix angular with other libraries
e Do not switch off strict contextual auto escaping

If you need to add HTML...

e ...use ng-bind-html and the sanitizer
e ..avoid using trustAsHTML
e ..never use DOM or jqgLite APIs

If you need to whitelist URLs, stay away from regular expressions and wildcards.

Thank you!

