
Copyright © The OWASP Foundation

Permission is granted to copy, distribute and/or modify this document

under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP Top 10 – 2010
The Top 10 Most Critical Web
Application Security Risks

Adrian Hayes
Security Consultant
Security-Assessment.com

OWASP - 2010

Introduction

OWASP Top 10 Project

 “The OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.”

Why are we covering this?

Flaws 4, 5 and 6

What I see day to day during webapp assessments

Widely applicable to .nz businesses

These slides are heavily entirely based on the work of
others

See credits at the end

OWASP - 2010

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2010

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the ‘authorized’ objects for the current user, or

• Hiding the object references in hidden fields

• … and then not enforcing these restrictions on the server side

• This is called presentation layer access control, and doesn’t work

• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

OWASP - 2010

Insecure Direct Object References

Illustrated

Attacker notices his acct
parameter is 6065

 ?acct=6065

He modifies it to a

nearby number

 ?acct=6066

Attacker views the

victim’s account
information

https://www.onlinebank.com/user?acct=6065

OWASP - 2010

A4 – Avoiding Insecure Direct Object

References

Eliminate the direct object reference
 Replace them with a temporary mapping value (e.g. 1, 2, 3)

 ESAPI provides support for numeric & random mappings
 IntegerAccessReferenceMap & RandomAccessReferenceMap

Validate the direct object reference
Verify the parameter value is properly formatted

Verify the user is allowed to access the target object
 Query constraints work great!

Verify the requested mode of access is allowed to the target
object (e.g., read, write, delete)

http://app?file=1

Report123.xls

http://app?id=7d3J93
Acct:9182374 http://app?id=9182374

http://app?file=Report123.xls
Access

Reference

Map

http://app/?file=1
http://app/?file=1
http://app/?id=7d3J93

OWASP - 2010

A5 – Cross Site Request Forgery (CSRF)

• An attack where the victim’s browser is tricked into issuing a command to
a vulnerable web application

• Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials,
…) with each request

Cross Site Request Forgery

• What if a hacker could steer your mouse and get you to click on links in
your online banking application?

• What could they make you do?

Imagine…

• Initiate transactions (transfer funds, logout user, close account)

• Access sensitive data

• Change account details

Typical Impact

OWASP - 2010

CSRF Vulnerability Pattern

The Problem
 Web browsers automatically include most credentials with each

request

 Even for requests caused by a form, script, or image on another site

All sites relying solely on automatic
credentials are vulnerable!
 (almost all sites are this way)

Automatically Provided Credentials
 Session cookie

 Basic authentication header

 IP address

 Client side SSL certificates

 Windows domain authentication

OWASP - 2010

CSRF Illustrated

3

2

Attacker sets the trap on some website on the internet

(or simply via an e-mail) 1

While logged into vulnerable site,

victim views attacker site

Vulnerable site sees

legitimate request from

victim and performs the

action requested

 tag loaded by

browser – sends GET

request (including

credentials) to vulnerable

site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a

n
sa

c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s

Hidden tag

contains attack against

vulnerable site

Application with CSRF

vulnerability

OWASP - 2010

A5 – Avoiding CSRF Flaws

 Add a secret, not automatically submitted, token to ALL sensitive requests
 This makes it impossible for the attacker to spoof the request

 (unless there’s an XSS hole in your application)
 Tokens should be cryptographically strong or random

 Options

 Store a single token in the session and add it to all forms and links
 Hidden Field: <input name="token" value="687965fdfaew87agrde"

type="hidden"/>
 Single use URL: /accounts/687965fdfaew87agrde

 Form Token: /accounts?auth=687965fdfaew87agrde …
 Beware exposing the token in a referer header

 Hidden fields are recommended
 Can have a unique token for each function

 Use a hash of function name, session id, and a secret
 Can require secondary authentication for sensitive functions (e.g., eTrade)

 Don’t allow attackers to store attacks on your site

 Properly encode all input on the way out
 This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet
for more details

http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet

OWASP - 2010

A6 – Security Misconfiguration

• Everywhere from the OS up through the App Server

• Don’t forget all the libraries you are using!!

Web applications rely on a secure foundation

• Think of all the places your source code goes

• Security should not require secret source code

Is your source code a secret?

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing OS or server patch

• XSS flaw exploits due to missing application framework patches

• Unauthorized access to default accounts, application functionality or data,
or unused but accessible functionality due to poor server configuration

Typical Impact

OWASP - 2010

Hardened OS

Web Server

App Server

Framework

Security Misconfiguration Illustrated

App Configuration

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e
 M

g
m

t

E
-C

o
m

m
e
rc

e

B
u

s.
 F

u
n

c
ti

o
n

s

Test Servers

QA Servers

Source Control

Development

Database

Insider

OWASP - 2010

A6 – Avoiding Security Misconfiguration

 Verify your system’s configuration management

 Secure configuration “hardening” guideline

 Automation is REALLY USEFUL here

 Must cover entire platform and application

 Keep up with patches for ALL components

 This includes software libraries, not just OS and Server applications

 Analyze security effects of changes

 Can you “dump” the application configuration

 Build reporting into your process

 If you can’t verify it, it isn’t secure

 Verify the implementation

 Scanning finds generic configuration and missing patch problems

OWASP - 2010

Summary: How do you address these

problems?

 Develop Secure Code

 Follow the best practices in OWASP’s Guide to Building Secure Web
Applications

 http://www.owasp.org/index.php/Guide

 Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure

 http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization

 Use OWASP’s ESAPI as a basis for your standard components

 http://www.owasp.org/index.php/ESAPI

 Review Your Applications

 Have an expert team review your applications

 Review your applications yourselves following OWASP Guidelines

 OWASP Code Review Guide:
 http://www.owasp.org/index.php/Code_Review_Guide

 OWASP Testing Guide:
 http://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP - 2010

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
e

n
ti

c
a

to
r

U
s
e

r

A
c
c
e

s
s
C

o
n

tr
o

ll
e
r

A
c
c
e

s
s
R

e
fe

re
n

c
e
M

a
p

V
a

li
d

a
to

r

E
n

c
o

d
e

r

H
T

T
P

U
ti

li
ti

e
s

E
n

c
ry

p
to

r

E
n

c
ry

p
te

d
P

ro
p

e
rt

ie
s

R
a

n
d

o
m

iz
e

r

E
x

c
e

p
ti

o
n

 H
a

n
d

li
n

g

L
o

g
g

e
r

In
tr

u
s
io

n
D

e
te

c
to

r

S
e

c
u

ri
ty

C
o

n
fi

g
u

ra
ti

o
n

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

http://www.owasp.org/index.php/ESAPI

OWASP - 2010

Acknowledgements

 We’d like to thank the Primary Project Contributors

 Aspect Security for sponsoring the project

 Jeff Williams (Author who conceived of and launched Top 10 in 2003)

 Dave Wichers (Author and current project lead)

 Organizations that contributed vulnerability statistics

 Aspect Security

 MITRE

 Softtek

 WhiteHat Security

 A host of reviewers and contributors, including:

 Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Jim Manico, Paul Petefish, Eric Sheridan, Neil Smithline,
Andrew van der Stock, Colin Watson, OWASP Denmark and Sweden
Chapters

