
Copyright © The OWASP Foundation

Permission is granted to copy, distribute and/or modify this document

under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP Top 10 – 2010
The Top 10 Most Critical Web
Application Security Risks

Adrian Hayes
Security Consultant
Security-Assessment.com

OWASP - 2010

Introduction

OWASP Top 10 Project

 “The OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.”

Why are we covering this?

Flaws 4, 5 and 6

What I see day to day during webapp assessments

Widely applicable to .nz businesses

These slides are heavily entirely based on the work of
others

See credits at the end

OWASP - 2010

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2010

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the ‘authorized’ objects for the current user, or

• Hiding the object references in hidden fields

• … and then not enforcing these restrictions on the server side

• This is called presentation layer access control, and doesn’t work

• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

OWASP - 2010

Insecure Direct Object References

Illustrated

Attacker notices his acct
parameter is 6065

 ?acct=6065

He modifies it to a

nearby number

 ?acct=6066

Attacker views the

victim’s account
information

https://www.onlinebank.com/user?acct=6065

OWASP - 2010

A4 – Avoiding Insecure Direct Object

References

Eliminate the direct object reference
 Replace them with a temporary mapping value (e.g. 1, 2, 3)

 ESAPI provides support for numeric & random mappings
 IntegerAccessReferenceMap & RandomAccessReferenceMap

Validate the direct object reference
Verify the parameter value is properly formatted

Verify the user is allowed to access the target object
 Query constraints work great!

Verify the requested mode of access is allowed to the target
object (e.g., read, write, delete)

http://app?file=1

Report123.xls

http://app?id=7d3J93
Acct:9182374 http://app?id=9182374

http://app?file=Report123.xls
Access

Reference

Map

http://app/?file=1
http://app/?file=1
http://app/?id=7d3J93

OWASP - 2010

A5 – Cross Site Request Forgery (CSRF)

• An attack where the victim’s browser is tricked into issuing a command to
a vulnerable web application

• Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials,
…) with each request

Cross Site Request Forgery

• What if a hacker could steer your mouse and get you to click on links in
your online banking application?

• What could they make you do?

Imagine…

• Initiate transactions (transfer funds, logout user, close account)

• Access sensitive data

• Change account details

Typical Impact

OWASP - 2010

CSRF Vulnerability Pattern

The Problem
 Web browsers automatically include most credentials with each

request

 Even for requests caused by a form, script, or image on another site

All sites relying solely on automatic
credentials are vulnerable!
 (almost all sites are this way)

Automatically Provided Credentials
 Session cookie

 Basic authentication header

 IP address

 Client side SSL certificates

 Windows domain authentication

OWASP - 2010

CSRF Illustrated

3

2

Attacker sets the trap on some website on the internet

(or simply via an e-mail) 1

While logged into vulnerable site,

victim views attacker site

Vulnerable site sees

legitimate request from

victim and performs the

action requested

 tag loaded by

browser – sends GET

request (including

credentials) to vulnerable

site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a

n
sa

c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s

Hidden tag

contains attack against

vulnerable site

Application with CSRF

vulnerability

OWASP - 2010

A5 – Avoiding CSRF Flaws

 Add a secret, not automatically submitted, token to ALL sensitive requests
 This makes it impossible for the attacker to spoof the request

 (unless there’s an XSS hole in your application)
 Tokens should be cryptographically strong or random

 Options

 Store a single token in the session and add it to all forms and links
 Hidden Field: <input name="token" value="687965fdfaew87agrde"

type="hidden"/>
 Single use URL: /accounts/687965fdfaew87agrde

 Form Token: /accounts?auth=687965fdfaew87agrde …
 Beware exposing the token in a referer header

 Hidden fields are recommended
 Can have a unique token for each function

 Use a hash of function name, session id, and a secret
 Can require secondary authentication for sensitive functions (e.g., eTrade)

 Don’t allow attackers to store attacks on your site

 Properly encode all input on the way out
 This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet
for more details

http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet

OWASP - 2010

A6 – Security Misconfiguration

• Everywhere from the OS up through the App Server

• Don’t forget all the libraries you are using!!

Web applications rely on a secure foundation

• Think of all the places your source code goes

• Security should not require secret source code

Is your source code a secret?

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing OS or server patch

• XSS flaw exploits due to missing application framework patches

• Unauthorized access to default accounts, application functionality or data,
or unused but accessible functionality due to poor server configuration

Typical Impact

OWASP - 2010

Hardened OS

Web Server

App Server

Framework

Security Misconfiguration Illustrated

App Configuration

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e
 M

g
m

t

E
-C

o
m

m
e
rc

e

B
u

s.
 F

u
n

c
ti

o
n

s

Test Servers

QA Servers

Source Control

Development

Database

Insider

OWASP - 2010

A6 – Avoiding Security Misconfiguration

 Verify your system’s configuration management

 Secure configuration “hardening” guideline

 Automation is REALLY USEFUL here

 Must cover entire platform and application

 Keep up with patches for ALL components

 This includes software libraries, not just OS and Server applications

 Analyze security effects of changes

 Can you “dump” the application configuration

 Build reporting into your process

 If you can’t verify it, it isn’t secure

 Verify the implementation

 Scanning finds generic configuration and missing patch problems

OWASP - 2010

Summary: How do you address these

problems?

 Develop Secure Code

 Follow the best practices in OWASP’s Guide to Building Secure Web
Applications

 http://www.owasp.org/index.php/Guide

 Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure

 http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization

 Use OWASP’s ESAPI as a basis for your standard components

 http://www.owasp.org/index.php/ESAPI

 Review Your Applications

 Have an expert team review your applications

 Review your applications yourselves following OWASP Guidelines

 OWASP Code Review Guide:
 http://www.owasp.org/index.php/Code_Review_Guide

 OWASP Testing Guide:
 http://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP - 2010

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
e

n
ti

c
a

to
r

U
s
e

r

A
c
c
e

s
s
C

o
n

tr
o

ll
e
r

A
c
c
e

s
s
R

e
fe

re
n

c
e
M

a
p

V
a

li
d

a
to

r

E
n

c
o

d
e

r

H
T

T
P

U
ti

li
ti

e
s

E
n

c
ry

p
to

r

E
n

c
ry

p
te

d
P

ro
p

e
rt

ie
s

R
a

n
d

o
m

iz
e

r

E
x

c
e

p
ti

o
n

 H
a

n
d

li
n

g

L
o

g
g

e
r

In
tr

u
s
io

n
D

e
te

c
to

r

S
e

c
u

ri
ty

C
o

n
fi

g
u

ra
ti

o
n

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

http://www.owasp.org/index.php/ESAPI

OWASP - 2010

Acknowledgements

 We’d like to thank the Primary Project Contributors

 Aspect Security for sponsoring the project

 Jeff Williams (Author who conceived of and launched Top 10 in 2003)

 Dave Wichers (Author and current project lead)

 Organizations that contributed vulnerability statistics

 Aspect Security

 MITRE

 Softtek

 WhiteHat Security

 A host of reviewers and contributors, including:

 Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Jim Manico, Paul Petefish, Eric Sheridan, Neil Smithline,
Andrew van der Stock, Colin Watson, OWASP Denmark and Sweden
Chapters

