
Top 10 Defenses for Website 

Security 

 

August 2012 

 

 
 



Jim Manico     @manicode 

• VP of Security Architecture, WhiteHat Security 

• 15 years of web-based, database-driven 
software development and analysis experience 

• Over 7 years as a provider of secure developer 
training courses for SANS, Aspect Security and 
others 

• Running for the OWASP Board 2013 

• OWASP Connections Committee Chair 
-  OWASP Podcast Series Producer/Host 
-  OWASP Cheat-Sheet Series Manager 



Query Parameterization (PHP) 

$stmt = $dbh->prepare("INSERT INTO REGISTRY 

(name, value) VALUES (:name, :value)"); 

 

$stmt->bindParam(':name', $name); 

$stmt->bindParam(':value', $value); 

[1] 



Query Parameterization (.NET) 

SqlConnection objConnection = new 

SqlConnection(_ConnectionString); 

objConnection.Open();  

SqlCommand objCommand = new SqlCommand(  

  "SELECT * FROM User WHERE Name = @Name AND Password =     

  @Password", objConnection); 

objCommand.Parameters.Add("@Name", NameTextBox.Text);  

objCommand.Parameters.Add("@Password", PassTextBox.Text); 

SqlDataReader objReader = objCommand.ExecuteReader(); 



Query Parameterization (Java) 

String newName = request.getParameter("newName") ; 

String id = request.getParameter("id"); 

 

//SQL 

PreparedStatement pstmt = con.prepareStatement("UPDATE    

 EMPLOYEES SET NAME = ? WHERE ID = ?");  

pstmt.setString(1, newName);  

pstmt.setString(2, id); 

  

//HQL 

Query safeHQLQuery = session.createQuery("from Employees

 where id=:empId");  

safeHQLQuery.setParameter("empId", id);  

 



Query Parameterization (Ruby) 

# Create  

Project.create!(:name => 'owasp')  

# Read  

Project.all(:conditions => "name = ?", name)  

Project.all(:conditions => { :name => name })  

Project.where("name = :name", :name => name)  

Project.where(:id=> params[:id]).all  

# Update  

project.update_attributes(:name => 'owasp')  

 



Query Parameterization Fail (Ruby) 

# Create  

Project.create!(:name => 'owasp')  

# Read  

Project.all(:conditions => "name = ?", name)  

Project.all(:conditions => { :name => name })  

Project.where("name = :name", :name => name)  

Project.where(:id=> params[:id]).all  

# Update  

project.update_attributes(:name => 'owasp')  



Query Parameterization (Cold Fusion) 

<cfquery name="getFirst" dataSource="cfsnippets">  

 SELECT * FROM #strDatabasePrefix#_courses WHERE 

intCourseID = <cfqueryparam value=#intCourseID# 

CFSQLType="CF_SQL_INTEGER">  

</cfquery>  

 



Query Parameterization (PERL) 

my $sql = "INSERT INTO foo (bar, baz) VALUES 

( ?, ? )"; 

my $sth = $dbh->prepare( $sql );  

$sth->execute( $bar, $baz );  

 



Query Parameterization (.NET LINQ) 

public bool login(string loginId, string shrPass) {  

  DataClassesDataContext db = new DataClassesDataContext();  

  var validUsers = from user in db.USER_PROFILE               

        where user.LOGIN_ID == loginId                                        

      && user.PASSWORDH == shrPass             

      select user; 

  if (validUsers.Count() > 0) return true;  

  return false;  

}; 



OWASP Query Parameterization 

Cheat Sheet 

 



Secure Password Storage  

public String hash(String password, String userSalt, int iterations)  

     throws EncryptionException { 

byte[] bytes = null; 

try { 

  MessageDigest digest = MessageDigest.getInstance(hashAlgorithm); 

  digest.reset(); 

  digest.update(ESAPI.securityConfiguration().getMasterSalt()); 

  digest.update(userSalt.getBytes(encoding)); 

  digest.update(password.getBytes(encoding)); 

 

  // rehash a number of times to help strengthen weak passwords 

  bytes = digest.digest(); 

  for (int i = 0; i < iterations; i++) { 

     digest.reset();  bytes = digest.digest(bytes); 

   } 

  String encoded = ESAPI.encoder().encodeForBase64(bytes,false); 

  return encoded; 

} catch (Exception ex) { 

       throw new EncryptionException("Internal error", "Error"); 

}} 

[2] 



Secure Password Storage  

public String hash(String password, String userSalt, int iterations)  

     throws EncryptionException { 

byte[] bytes = null; 

try { 

  MessageDigest digest = MessageDigest.getInstance(hashAlgorithm); 

  digest.reset(); 

  digest.update(ESAPI.securityConfiguration().getMasterSalt()); 

  digest.update(userSalt.getBytes(encoding)); 

  digest.update(password.getBytes(encoding)); 

 

  // rehash a number of times to help strengthen weak passwords 

  bytes = digest.digest(); 

  for (int i = 0; i < iterations; i++) { 

     digest.reset();  bytes = digest.digest(bytes); 

   } 

  String encoded = ESAPI.encoder().encodeForBase64(bytes,false); 

  return encoded; 

} catch (Exception ex) { 

       throw new EncryptionException("Internal error", "Error"); 

}} 



Secure Password Storage  

public String hash(String password, String userSalt, int iterations)  

     throws EncryptionException { 

byte[] bytes = null; 

try { 

  MessageDigest digest = MessageDigest.getInstance(hashAlgorithm); 

  digest.reset(); 

  digest.update(ESAPI.securityConfiguration().getMasterSalt()); 

  digest.update(userSalt.getBytes(encoding)); 

  digest.update(password.getBytes(encoding)); 

 

  // rehash a number of times to help strengthen weak passwords 

  bytes = digest.digest(); 

  for (int i = 0; i < iterations; i++) { 

     digest.reset();  bytes = digest.digest(salts + bytes + hash(i)); 

   } 

  String encoded = ESAPI.encoder().encodeForBase64(bytes,false); 

  return encoded; 

} catch (Exception ex) { 

       throw new EncryptionException("Internal error", "Error"); 

}} 



Secure Password Storage  

• BCRYPT 
- Really slow on purpose 
- Blowfish derived 
- Suppose you are supporting millions on concurrent 

logins… 
- Takes about 10 concurrent runs of BCRYPT to pin 

a high performance laptop CPU 
 

• PBKDF2 
- Takes up a lot of memory 
- Suppose you are supporting millions on concurrent 

logins… 
 



OWASP Password Storage 

Cheat Sheet 



Contextual Output Encoding 

(XSS Defense) 

• Session Hijacking 

• Site Defacement 

• Network Scanning 

• Undermining CSRF Defenses 

• Site Redirection/Phishing 

• Load of Remotely Hosted Scripts 

• Data Theft 

• Keystroke Logging 

• Attackers using XSS more frequently 

[3] 



XSS Defense by Data Type and Context 

Data Type Context Defense 

String HTML Body HTML Entity Encode 

String HTML Attribute Minimal Attribute Encoding 

String GET Parameter URL Encoding 

String Untrusted URL URL Validation, avoid javascript: 

URLs, Attribute encoding, safe URL 

verification 

String CSS Strict structural validation, CSS Hex 

encoding, good design 

HTML HTML Body HTML Validation (JSoup, AntiSamy, 

HTML Sanitizer) 

Any DOM DOM XSS Cheat Sheet 

Untrusted JavaScript Any Sandboxing 

JSON Client Parse Time JSON.parse() or json2.js 

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing, 

class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight, 

marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan, 

scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width 



HTML Body Context 

<span>UNTRUSTED DATA</span> 



HTML Attribute Context 

<input type="text" name="fname" 

value="UNTRUSTED DATA"> 



HTTP GET Parameter Context 

<a href="/site/search?value=UNTRUSTED 

DATA">clickme</a>  



URL Context 

<a href="UNTRUSTED 

URL">clickme</a> 

<iframe src="UNTRUSTED URL" />  



CSS Value Context 

<div style="width: UNTRUSTED 

DATA;">Selection</div>  



JavaScript Variable Context 

<script>var currentValue='UNTRUSTED 

DATA';</script> 

 

<script>someFunction('UNTRUSTED 

DATA');</script>  



JSON Parsing Context 

JSON.parse(UNTRUSTED JSON 

DATA)  



 SAFE use of JQuery 

 $(‘#element’).text(UNTRUSTED DATA); 

 

UNSAFE use of JQuery 

$(‘#element’).html(UNTRUSTED DATA); 



27 

jQuery methods that directly update DOM or can execute JavaScript 

$() or jQuery() .attr() 

.add() .css() 

.after() .html() 

.animate() .insertAfter() 

.append() .insertBefore() 

.appendTo() Note: .text() updates DOM, but is 

safe. 

Dangerous jQuery 1.7.2 Data Types 

CSS Some Attribute Settings 

HTML URL (Potential Redirect) 

jQuery methods that accept URLs to potentially unsafe content 

jQuery.ajax() jQuery.post() 

jQuery.get() load() 

jQuery.getScript() 



 Contextual encoding is a crucial technique needed to stop all 

types of XSS 

 jqencoder is a jQuery plugin that allows developers to do 

contextual encoding in JavaScript to stop DOM-based XSS 

 http://plugins.jquery.com/plugin-tags/security 

 $('#element').encode('html', cdata); 

JQuery Encoding with JQencoder 

 

http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security


Best Practice: DOM-Based XSS Defense 

• Untrusted data should only be treated as displayable text 

• JavaScript encode and delimit untrusted data as quoted 

strings 

• Use document.createElement("…"), 

element.setAttribute("…","value"), element.appendChild(…), 

etc. to build dynamic interfaces (safe attributes only) 

• Avoid use of HTML rendering methods 

• Make sure that any untrusted data passed to eval() methods 

is delimited with string delimiters and enclosed within a 

closure such as eval(someFunction(‘UNTRUSTED DATA’)); 



OWASP Abridged XSS Prevention 

Cheat Sheet 

 



Content Security Policy [4] 
• Anti-XSS W3C standard 

• CSP 1.1 Draft 19 published August 2012 

- https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-
specification.dev.html 

• Must move all inline script and style into external scripts 

• Add the X-Content-Security-Policy response header to 
instruct the browser that CSP is in use 

- Firefox/IE10PR: X-Content-Security-Policy 

- Chrome Experimental: X-WebKit-CSP 

- Content-Security-Policy-Report-Only 

• Define a policy for the site regarding loading of content 

 

 

 

https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html


CSP By Example 1 

Source: http://people.mozilla.com/~bsterne/content-security-

policy/details.html 

 

Content may only come from its own domain: 

 

X-Content-Security-Policy: allow 'self’ 

http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html


CSP By Example 2 

Source: http://people.mozilla.com/~bsterne/content-security-

policy/details.html 

 

Site allows images from anywhere, plugin content from a list of 

trusted media providers, and scripts only from its server: 

 

X-Content-Security-Policy: allow 'self'; img-src *; object-src 

media1.com media2.com; script-src scripts.example.com 

http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html


CSP By Example 3 

Source: http://people.mozilla.com/~bsterne/content-security-

policy/details.html 

 

Force HTTPS 

 

X-Content-Security-Policy: allow https://www.site.com 

 

http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
https://www.site.com


CSP By Example 4 

Source: http://www.html5rocks.com/en/tutorials/security/content-

security-policy/  

 

Site that loads resources from a content delivery network and 

does not need framed content or any plugins  

 

X-Content-Security-Policy: default-src https://cdn.example.net; 

frame-src 'none'; object-src 'none' 

http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/


OWASP Content Security Policy 

Cheat Sheet 

(in progress) 

 



Cross-Site Request Forgery 

Tokens and Re-authentication 

• Cryptographic Tokens 

- Primary and most powerful defense. Randomness is 
your friend 

 

• Require users to re-authenticate 

- Amazon.com does this *really* well 

 

• Double-cookie submit defense 

- Decent defense, but not based on randomness; based 
on SOP 

 

[5] 



OWASP Cross-Site Request 

Forgery 

Cheat Sheet 

 



Multi Factor Authentication 

• Passwords as a single AuthN factor are DEAD! 

• Mobile devices are quickly becoming the “what you 
have” factor 

• SMS and native apps for MFA are not perfect but heavily 
reduce risk vs. passwords only 

• Password strength and password policy can be MUCH 
WEAKER in the face of MFA 

• If you are protecting your magic user and fireball wand 
with MFA (Blizzard.net) you may also wish to consider 
protecting your multi-billion dollar enterprise with MFA 

[6] 



OWASP Authentication Sheet 

Cheat Sheet 

 



Forgot Password Secure Design 

• Require identity and security questions  

- Last name, account number, email, DOB 

- Enforce lockout policy 

- Ask one or more good security questions 

- http://www.goodsecurityquestions.com/ 

• Send the user a randomly generated token via out-of-
band method 

- email, SMS or token  

• Verify code in same Web session 

- Enforce lockout policy 

•  Change password 

- Enforce password policy      

 

 

[7] 

http://www.goodsecurityquestions.com/


OWASP Forgot Password 

Cheat Sheet 



• Ensure secure session IDs 

- 20+ bytes, cryptographically random 

- Stored in HTTP Cookies 

- Cookies: Secure, HTTP Only, limited path 

- No Wildcard Domains 

• Generate new session ID at login time 

- To avoid session fixation 

• Session Timeout 

- Idle Timeout 

- Absolute Timeout 

- Logout Functionality 

 

 

Session Defenses [8] 



OWASP Session Management 

Cheat Sheet 

 



X-Frame-Options 

 // to prevent all framing of this content  

response.addHeader( "X-FRAME-OPTIONS", "DENY" );  

 

 // to allow framing of this content only by this site  

response.addHeader( "X-FRAME-OPTIONS", "SAMEORIGIN" ); 

 

 // to allow framing from a specific domain 

 response.addHeader( "X-FRAME-OPTIONS", "ALLOW-FROM X" ); 

[9] 



OWASP Clickjacking 

Cheat Sheet 

 

 

 

 

 



Encryption in Transit 

(HTTPS/TLS) 

• Authentication credentials and session identifiers must 
be encrypted in transit via HTTPS/SSL 

- Starting when the login form is rendered 

- Until logout is complete 

- CSP and HSTS can help here 

• https://www.ssllabs.com free online assessment of 
public-facing server HTTPS configuration 

• https://www.owasp.org/index.php/Transport_Layer_Protection_C
heat_Sheet for HTTPS 
best practices 

 

 

[10] 

https://www.ssllabs.com
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet


OWASP Transport Layer Protection 

Cheat Sheet 



Thank You 

jim@owasp.org 

jim.manico@whitehatsec.com 

 

 

 

 

 

 


